Skip to main content

Research Repository

Advanced Search

A scanner system for high-resolution quantification of variation in root growth dynamics of Brassica

Adu, Michael Osei; Chatot, Antoine; Wiesel, Lea; Bennett, Malcolm J.; Broadley, Martin R.; White, Philip J.; Dupuy, Lionel X.


Michael Osei Adu

Antoine Chatot

Lea Wiesel

Philip J. White

Lionel X. Dupuy


The potential exists to breed for root system architectures that optimize resource acquisition. However, this requires the ability to screen root system development quantitatively, with high resolution, in as natural an environment as possible, with high throughput. This paper describes the construction of a low-cost, high-resolution root phenotyping platform, requiring no sophisticated equipment and adaptable to most laboratory and glasshouse environments, and its application to quantify environmental and temporal variation in root traits between genotypes of Brassica rapa L. Plants were supplied with a complete nutrient solution through the wick of a germination paper. Images of root systems were acquired without manual intervention, over extended periods, using multiple scanners controlled by customized software. Mixed-effects models were used to describe the sources of variation in root traits contributing to root system architecture estimated from digital images. It was calculated that between one and 43 replicates would be required to detect a significant difference (95% CI 50% difference between traits). Broad-sense heritability was highest for shoot biomass traits (0.60), intermediate (0.25-0.60) for the length and diameter of primary roots and lateral root branching density on the primary root, and lower (0.25) for other root traits. Models demonstrate that root traits show temporal variations of various types. The phenotyping platform described here can be used to quantify environmental and temporal variation in traits contributing to root system architecture in B. rapa and can be extended to screen the large populations required for breeding for efficient resource acquisition. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.


Adu, M. O., Chatot, A., Wiesel, L., Bennett, M. J., Broadley, M. R., White, P. J., & Dupuy, L. X. (2014). A scanner system for high-resolution quantification of variation in root growth dynamics of Brassica. Journal of Experimental Botany, 65(8), 2039-2048.

Journal Article Type Article
Acceptance Date Jan 20, 2014
Online Publication Date Mar 6, 2014
Publication Date Jan 1, 2014
Deposit Date Nov 18, 2016
Publicly Available Date Nov 18, 2016
Journal Journal of Experimental Botany
Print ISSN 0022-0957
Electronic ISSN 1460-2431
Publisher Oxford University Press
Peer Reviewed Peer Reviewed
Volume 65
Issue 8
Pages 2039-2048
Keywords Architecture, high-resolution, high throughput, model, nitrogen, phenotyping, phosphorus, root
Public URL
Publisher URL
Copyright Statement Copyright information regarding this work can be found at the following address:


You might also like

Downloadable Citations