Skip to main content

Research Repository

Advanced Search

Switching daylight: Performance prediction of climate adaptive ETFE foil façades

Flor, Jan Frederik; Liu, Xiao; Sun, Yanyi; Beccarelli, Paolo; Chilton, John; Wu, Yupeng

Switching daylight: Performance prediction of climate adaptive ETFE foil façades Thumbnail


Authors

Jan Frederik Flor

Xiao Liu

Yanyi Sun

John Chilton

YUPENG WU yupeng.wu@nottingham.ac.uk
Professor of Building Physics



Abstract

This paper reports on the daylighting performance of switchable ethylene-tetrafluoroethylene (ETFE) foil in double-skin façades (DSF). In contrast to conventional glazing or static ETFE façades, switchable ETFE moderates incident daylight and controls internal light distribution by actively responding to weather conditions and solar light intensity. To better understand the light control function of ETFE and the impact of parameters such as climate, latitude and window-to-wall ratios (WWR), a validated optical model was used to evaluate different DSF designs. ETFE façades were modelled with a Bidirectional-scattering distribution-function (BSDF) and spectral data, obtained from experimental measurements, to accurately represent specular and diffuse light transmittance. Based on the five-phase method, a parametric climate data-driven simulation of an office room with different façade designs was conducted for three climate scenarios (Oceanic, Mediterranean, Sub-Tropical). When employing switchable ETFE in façades with different WWRs (30–90%), an annual increase of useful daylight illuminance (UDI) from 11 to 69% in the range of 500–2000lx was recorded. The calculated glare probability (DGPs) declined 59% in the best-case scenarios, providing working conditions with imperceptible glare for 94% of the scheduled time. Simultaneously, the daylight uniformity ratio (UR) increased up to 19% compared to a room with a conventional double-glazed façade. Significant improvements of daylight quality were achieved for façades with large windows in climates with abundant solar light available all year long. Overall, this study contributes to expanding the knowledge on adaptive membrane façades, demonstrating their capacity to enhance the daylighting performance of indoor spaces in different climates.

Citation

Flor, J. F., Liu, X., Sun, Y., Beccarelli, P., Chilton, J., & Wu, Y. (2022). Switching daylight: Performance prediction of climate adaptive ETFE foil façades. Building and Environment, 209, Article 108650. https://doi.org/10.1016/j.buildenv.2021.108650

Journal Article Type Article
Acceptance Date Dec 2, 2021
Online Publication Date Dec 6, 2021
Publication Date Feb 1, 2022
Deposit Date Dec 17, 2021
Publicly Available Date Dec 17, 2021
Journal Building and Environment
Print ISSN 0360-1323
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 209
Article Number 108650
DOI https://doi.org/10.1016/j.buildenv.2021.108650
Keywords Building and Construction; Geography, Planning and Development; Civil and Structural Engineering; Environmental Engineering
Public URL https://nottingham-repository.worktribe.com/output/7022043
Publisher URL https://www.sciencedirect.com/science/article/pii/S0360132321010416

Files





Downloadable Citations