Skip to main content

Research Repository

Advanced Search

A fast Bayesian inference scheme for identification of local structural properties of layered composites based on wave and finite element-assisted metamodeling strategy and ultrasound measurements

Yan, Wang Ji; Chronopoulos, Dimitrios; Cantero-Chinchilla, Sergio; Yuen, Ka Veng; Papadimitriou, Costas

A fast Bayesian inference scheme for identification of local structural properties of layered composites based on wave and finite element-assisted metamodeling strategy and ultrasound measurements Thumbnail


Authors

Wang Ji Yan

Dimitrios Chronopoulos

Sergio Cantero-Chinchilla

Ka Veng Yuen

Costas Papadimitriou



Abstract

© 2020 Elsevier Ltd Reliable verification and evaluation of the mechanical properties of a layered composite ensemble are critical for industrially relevant applications, however it still remains an open engineering challenge. In this study, a fast Bayesian inference scheme based on multi-frequency single shot measurements of wave propagation characteristics is developed to overcome the limitations of ill-conditioning and non-uniqueness associated with the conventional approaches. A Transitional Markov chain Monte Carlo (TMCMC) algorithm is employed for the sampling process. A Wave and Finite Element (WFE)-assisted metamodeling scheme in lieu of expensive-to-evaluate explicit FE analysis is proposed to cope with the high computational cost involved in TMCMC sampling. For this, the Kriging predictor providing a surrogate mapping between the probability spaces of the model predictions for the wave characteristics and the mechanical properties in the likelihood evaluations is established based on the training outputs computed using a WFE forward solver, coupling periodic structure theory to conventional FE. The valuable uncertainty information of the prediction variance introduced by the use of a surrogate model is also properly taken into account when estimating the parameters’ posterior probability distribution by TMCMC. A numerical study as well as an experimental study are conducted to verify the computational efficiency and accuracy of the proposed methodology. Results show that the TMCMC algorithm in conjunction with the WFE forward solver-aided metamodeling can sample the posterior Probability Density Function (PDF) of the updated parameters at a very reasonable cost. This approach is capable of quantifying the uncertainties of recovered independent characteristics for each layer of the composite structure under investigation through fast and inexpensive experimental measurements on localized portions of the structure.

Citation

Yan, W. J., Chronopoulos, D., Cantero-Chinchilla, S., Yuen, K. V., & Papadimitriou, C. (2020). A fast Bayesian inference scheme for identification of local structural properties of layered composites based on wave and finite element-assisted metamodeling strategy and ultrasound measurements. Mechanical Systems and Signal Processing, 143, Article 106802. https://doi.org/10.1016/j.ymssp.2020.106802

Journal Article Type Article
Acceptance Date Mar 9, 2020
Online Publication Date Apr 6, 2020
Publication Date Sep 1, 2020
Deposit Date Apr 30, 2020
Publicly Available Date Apr 7, 2021
Journal Mechanical Systems and Signal Processing
Print ISSN 0888-3270
Electronic ISSN 1096-1216
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 143
Article Number 106802
DOI https://doi.org/10.1016/j.ymssp.2020.106802
Keywords Control and Systems Engineering; Signal Processing; Mechanical Engineering; Civil and Structural Engineering; Aerospace Engineering; Computer Science Applications
Public URL https://nottingham-repository.worktribe.com/output/4279604
Publisher URL https://www.sciencedirect.com/science/article/abs/pii/S0888327020301886

Files




Downloadable Citations