Skip to main content

Research Repository

Advanced Search

Linkage-based genome assembly improvement of oil palm (Elaeis guineensis)

Ong, Ai-Ling; Teh, Chee-Keng; Kwong, Qi-Bin; Tangaya, Praveena; Appleton, David Ross; Massawe, Festo; Mayes, Sean

Linkage-based genome assembly improvement of oil palm (Elaeis guineensis) Thumbnail


Authors

Ai-Ling Ong

Chee-Keng Teh

Qi-Bin Kwong

Praveena Tangaya

David Ross Appleton

Festo Massawe

SEAN MAYES SEAN.MAYES@NOTTINGHAM.AC.UK
Associate Professor



Abstract

Meiotic crossovers in outbred species, such as oil palm (Elaeis guineensis Jacq., 2n = 32) contribute to allelic re-assortment in the genome. Such genetic variation is usually exploited in breeding to combine positive alleles for trait superiority. A good quality reference genome is essential for identifying the genetic factors underlying traits of interest through linkage or association studies. At the moment, an AVROS pisifera genome is publicly available for oil palm. Distribution and frequency of crossovers throughout chromosomes in different origins of oil palm are still unclear. Hence, an ultrahigh-density genomic linkage map of a commercial Deli dura x AVROS pisifera family was constructed using the OP200K SNP array, to evaluate the genetic alignment with the genome assembly. A total of 27,890 linked SNP markers generated a total map length of 1,151.7 cM and an average mapping interval of 0.04 cM. Nineteen linkage groups represented 16 pseudo-chromosomes of oil palm, with 61.7% of the mapped SNPs present in the published genome. Meanwhile, the physical map was also successfully extended from 658 Mb to 969 Mb by assigning unplaced scaffolds to the pseudo-chromosomes. A genic linkage map with major representation of sugar and lipid biosynthesis pathways was subsequently built for future studies on oil related quantitative trait loci (QTL). This study improves the current physical genome of the commercial oil palm, and provides important insights into its recombination landscape, eventually unlocking the full potential genome sequence-enabled biology for oil palm.

Citation

Ong, A., Teh, C., Kwong, Q., Tangaya, P., Appleton, D. R., Massawe, F., & Mayes, S. (2019). Linkage-based genome assembly improvement of oil palm (Elaeis guineensis). Scientific Reports, 9(1), Article 6619. https://doi.org/10.1038/s41598-019-42989-y

Journal Article Type Article
Acceptance Date Apr 10, 2019
Online Publication Date Apr 29, 2019
Publication Date 2019-12
Deposit Date Apr 30, 2019
Publicly Available Date May 10, 2019
Journal Scientific Reports
Electronic ISSN 2045-2322
Publisher Nature Publishing Group
Peer Reviewed Peer Reviewed
Volume 9
Issue 1
Article Number 6619
DOI https://doi.org/10.1038/s41598-019-42989-y
Public URL https://nottingham-repository.worktribe.com/output/1881381
Publisher URL https://www.nature.com/articles/s41598-019-42989-y

Files




You might also like



Downloadable Citations