I. El Mellas
Dynamics of long bubbles propagating through cylindrical micro-pin fin arrays
El Mellas, I.; Municchi, F.; Icardi, M.; Magnini, M.
Authors
F. Municchi
Dr MATTEO ICARDI MATTEO.ICARDI@NOTTINGHAM.AC.UK
Associate Professor
MIRCO MAGNINI MIRCO.MAGNINI@NOTTINGHAM.AC.UK
Associate Professor
Abstract
The dynamics of two-phase flows confined within complex and non-straight geometries is of interest for a variety of applications such as micro-pin fin evaporators and flow in unsaturated porous media. Despite the propagation of bubbles in straight channels of circular and noncircular cross-sections has been studied extensively, very little is known about the fluid dynamics features of bubbles and liquid films deposited upon the inner walls of complex geometries. In this work, we investigate the dynamics of long gas bubbles and thin films as bubbles propagate through arrays of in-line cylindrical pins of circular shape in cross-flow, for a range of capillary and Reynolds numbers relevant to heat transfer applications and flow in porous media, different pitch of the cylinders and bubble lengths. Three-dimensional numerical simulations of the two-phase flow are performed using the open-source finite-volume library OpenFOAM v.1812, using a geometric Volume of Fluid (VOF) method to capture the interface dynamics. Systematic analyses are conducted for a range of capillary numbers Ca = 0. 04 --2R, Reynolds numbers Re = 1 -- 1000, streamwise pitch of the cylinders sx = 0. 125R, with R being the radius of the pin fins, and initial bubble length Lb = 2. 5R --12R. The simulations reveal that when bubbles propagate through pin fin arrays, they tend to partially coat the cylinders with a thin liquid film and to expand in the cross-stream direction within the gap left between adjacent cylinders. The liquid film deposited on the cylinders is significantly thinner than that reported for straight channels and similar geometrical constraints. As the streamwise distance between the cylinders is decreased, the flow configuration tends towards that for a straight channel, whereas larger distances cause the bubble to expand excessively in the cross-stream direction, and to eventually arrest when sx > 2R. Inertial effects have a strong impact on the bubble shape and dynamics when Re > 500, triggering time-dependent patterns that lead to bubble fragmentation and much thicker liquid films.
Citation
El Mellas, I., Municchi, F., Icardi, M., & Magnini, M. (2023). Dynamics of long bubbles propagating through cylindrical micro-pin fin arrays. International Journal of Multiphase Flow, 163, 104443. https://doi.org/10.1016/j.ijmultiphaseflow.2023.104443
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 3, 2023 |
Online Publication Date | Mar 11, 2023 |
Publication Date | 2023-06 |
Deposit Date | May 22, 2023 |
Publicly Available Date | May 24, 2023 |
Journal | International Journal of Multiphase Flow |
Print ISSN | 0301-9322 |
Electronic ISSN | 1879-3533 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 163 |
Pages | 104443 |
DOI | https://doi.org/10.1016/j.ijmultiphaseflow.2023.104443 |
Keywords | Pin fins; Microchannel; Porous media; Two-phase; Bubbles; Volume-of-fluid |
Public URL | https://nottingham-repository.worktribe.com/output/18529834 |
Files
1-s2.0-S0301932223000642-main
(4 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
MPeat2D - A fully coupled mechanical-ecohydrological model of peatland development in two dimensions
(2023)
Preprint / Working Paper
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search