Sophie E. Smart
Clinical predictors of antipsychotic treatment resistance: Development and internal validation of a prognostic prediction model by the STRATA-G consortium
Smart, Sophie E.; Agbedjro, Deborah; Pardiñas, Antonio F.; Ajnakina, Olesya; Alameda, Luis; Andreassen, Ole A.; Barnes, Thomas R.E.; Berardi, Domenico; Camporesi, Sara; Cleusix, Martine; Conus, Philippe; Crespo-Facorro, Benedicto; D'Andrea, Giuseppe; Demjaha, Arsime; Di Forti, Marta; Do, Kim; Doody, Gillian; Eap, Chin B.; Ferchiou, Aziz; Guidi, Lorenzo; Homman, Lina; Jenni, Raoul; Joyce, Eileen; Kassoumeri, Laura; Lastrina, Ornella; Melle, Ingrid; Morgan, Craig; O'Neill, Francis A.; Pignon, Baptiste; Restellini, Romeo; Richard, Jean-Romain; Simonsen, Carmen; Španiel, Filip; Szöke, Andrei; Tarricone, Ilaria; Tortelli, Andrea; Üçok, Alp; Vázquez-Bourgon, Javier; Murray, Robin M.; Walters, James T.R.; Stahl, Daniel; MacCabe, James H.
Authors
Deborah Agbedjro
Antonio F. Pardiñas
Olesya Ajnakina
Luis Alameda
Ole A. Andreassen
Thomas R.E. Barnes
Domenico Berardi
Sara Camporesi
Martine Cleusix
Philippe Conus
Benedicto Crespo-Facorro
Giuseppe D'Andrea
Arsime Demjaha
Marta Di Forti
Kim Do
Gillian Doody
Chin B. Eap
Aziz Ferchiou
Lorenzo Guidi
Lina Homman
Raoul Jenni
Eileen Joyce
Laura Kassoumeri
Ornella Lastrina
Ingrid Melle
Craig Morgan
Francis A. O'Neill
Baptiste Pignon
Romeo Restellini
Jean-Romain Richard
Carmen Simonsen
Filip Španiel
Andrei Szöke
Ilaria Tarricone
Andrea Tortelli
Alp Üçok
Javier Vázquez-Bourgon
Robin M. Murray
James T.R. Walters
Daniel Stahl
James H. MacCabe
Abstract
Our aim was to, firstly, identify characteristics at first-episode of psychosis that are associated with later antipsychotic treatment resistance (TR) and, secondly, to develop a parsimonious prediction model for TR. We combined data from ten prospective, first-episode psychosis cohorts from across Europe and categorised patients as TR or non-treatment resistant (NTR) after a mean follow up of 4.18 years (s.d. = 3.20) for secondary data analysis. We identified a list of potential predictors from clinical and demographic data recorded at first-episode. These potential predictors were entered in two models: a multivariable logistic regression to identify which were independently associated with TR and a penalised logistic regression, which performed variable selection, to produce a parsimonious prediction model. This model was internally validated using a 5-fold, 50-repeat cross-validation optimism-correction. Our sample consisted of N = 2216 participants of which 385 (17 %) developed TR. Younger age of psychosis onset and fewer years in education were independently associated with increased odds of developing TR. The prediction model selected 7 out of 17 variables that, when combined, could quantify the risk of being TR better than chance. These included age of onset, years in education, gender, BMI, relationship status, alcohol use, and positive symptoms. The optimism-corrected area under the curve was 0.59 (accuracy = 64 %, sensitivity = 48 %, and specificity = 76 %). Our findings show that treatment resistance can be predicted, at first-episode of psychosis. Pending a model update and external validation, we demonstrate the potential value of prediction models for TR.
Citation
Smart, S. E., Agbedjro, D., Pardiñas, A. F., Ajnakina, O., Alameda, L., Andreassen, O. A., Barnes, T. R., Berardi, D., Camporesi, S., Cleusix, M., Conus, P., Crespo-Facorro, B., D'Andrea, G., Demjaha, A., Di Forti, M., Do, K., Doody, G., Eap, C. B., Ferchiou, A., Guidi, L., …MacCabe, J. H. (2022). Clinical predictors of antipsychotic treatment resistance: Development and internal validation of a prognostic prediction model by the STRATA-G consortium. Schizophrenia Research, 250, 1-9. https://doi.org/10.1016/j.schres.2022.09.009
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 4, 2022 |
Online Publication Date | Oct 12, 2022 |
Publication Date | 2022-12 |
Deposit Date | Nov 21, 2022 |
Publicly Available Date | Nov 21, 2022 |
Journal | Schizophrenia Research |
Print ISSN | 0920-9964 |
Electronic ISSN | 1573-2509 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 250 |
Pages | 1-9 |
DOI | https://doi.org/10.1016/j.schres.2022.09.009 |
Keywords | Prospective longitudinal cohort, Stratification, Treatment resistant schizophrenia, First episode psychosis, Prediction modelling, Machine learning |
Public URL | https://nottingham-repository.worktribe.com/output/13166077 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S0920996422003425?via%3Dihub |
Files
Clinical predictors of antipsychotic treatment resistance
(638 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search