Skip to main content

Research Repository

Advanced Search

Effect of nozzle geometry on the gas dynamics and evaporation rates of Suspension High Velocity Oxy Fuel (SHVOF) thermal spray: a numerical investigation

Chadha, S.; Jefferson-Loveday, R.; Hussain, T.


S. Chadha

R. Jefferson-Loveday

Profile Image

Professor of Coatings and Surface Engineering


Thermally sprayed coatings formed from sub-micron or nanoparticles feedstock provide enhanced coating properties and Suspension High Velocity Oxy Fuel (SHVOF) thermal spray is a process that allows the deposition of dense coatings from fine particulates. However, in SHVOF thermal spray, submicron and nanoparticles are significantly influenced by fluctuations in the gas velocity and temperature field due to turbulence and disturbance of the gas fields from the breakup of the suspension due to the small inertia of the particles. In this study, an ethanol suspension containing widely used engineering ceramic particles, TiO2, with four different particle concentrations was considered 0, 10, 15 and 25?wt%. The aim of this paper was to model four nozzle geometries and to investigate the influence the nozzle geometry has on the gas flow and the evaporation rate at four particle concentrations. Comparing four nozzle geometries it is found that the gas exits the longer barrel nozzles at a high velocity; while the velocity in the free jet region beyond the shock diamonds is greater for the shorter nozzles. It is seen that the shorter the nozzle the higher the gas temperature in the free jet; which is due to the lower contact time of the gas with the cooled nozzle walls. This study also considered the effect the nozzle geometry has on the evaporation of the suspension. It was found that the longer the combustion chamber the lower the maximum evaporation rate. Moreover, higher particle concentrations result in evaporation commencing closer to the nozzle inlet due to the lower volatile fraction of the suspension.


Chadha, S., Jefferson-Loveday, R., & Hussain, T. (2019). Effect of nozzle geometry on the gas dynamics and evaporation rates of Suspension High Velocity Oxy Fuel (SHVOF) thermal spray: a numerical investigation. Surface and Coatings Technology, 371, 78-89.

Journal Article Type Article
Acceptance Date Oct 27, 2018
Online Publication Date Oct 29, 2018
Publication Date Aug 15, 2019
Deposit Date Oct 30, 2018
Publicly Available Date Jan 17, 2019
Journal Surface and Coatings Technology
Print ISSN 0257-8972
Electronic ISSN 1879-3347
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 371
Pages 78-89
Keywords SHVOF; HVSFS; Numerical modelling; Suspension thermal spray; Nozzle geometry; Volatile fraction
Public URL
Publisher URL


You might also like

Downloadable Citations