Skip to main content

Research Repository

See what's under the surface

Advanced Search

'The application of Bayesian Optimization and Classifier Systems in Nurse Scheduling'

Li, Jingpeng; Aickelin, Uwe

Authors

Jingpeng Li

Uwe Aickelin



Abstract

Abstract. Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person's assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems.

Publication Date Jan 1, 2004
Peer Reviewed Peer Reviewed
APA6 Citation Li, J., & Aickelin, U. (2004). 'The application of Bayesian Optimization and Classifier Systems in Nurse Scheduling'
Copyright Statement Copyright information regarding this work can be found at the following address: http://eprints.nottingh.../end_user_agreement.pdf

Files

04ppsn_boa.pdf (211 Kb)
PDF

Copyright Statement
Copyright information regarding this work can be found at the following address: http://eprints.nottingham.ac.uk/end_user_agreement.pdf





You might also like



Downloadable Citations

;