Skip to main content

Research Repository

Advanced Search

A Recommender System based on Idiotypic Artificial Immune Networks

Cayzer, Steve; Aickelin, Uwe

A Recommender System based on Idiotypic Artificial Immune Networks Thumbnail


Authors

Steve Cayzer

Uwe Aickelin



Abstract

The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an Artificial Immune System (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by Collaborative Filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen-antibody interaction for matching and idiotypic antibody-antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques.

Citation

Cayzer, S., & Aickelin, U. (2005). A Recommender System based on Idiotypic Artificial Immune Networks. https://doi.org/10.1007/s10852-004-5336-7

Journal Article Type Article
Publication Date Jan 1, 2005
Deposit Date Oct 24, 2007
Publicly Available Date Oct 24, 2007
Journal Journal of Mathematical Modelling and Algorithms, 4(2),
Peer Reviewed Peer Reviewed
DOI https://doi.org/10.1007/s10852-004-5336-7
Public URL https://nottingham-repository.worktribe.com/output/1020218
Publisher URL http://www.springerlink.com/content/n6071h5240681011/fulltext.pdf
Additional Information The original publication is available at www.springerlink.com

Files





Downloadable Citations