Skip to main content

Research Repository

Advanced Search

Outputs (122)

Tripartite quantum Rabi model with trapped Rydberg ions (2024)
Journal Article
Hamlyn, T. J., Zhang, C., Lesanovsky, I., & Li, W. (in press). Tripartite quantum Rabi model with trapped Rydberg ions. Physical Review Research,

We investigate a tripartite quantum Rabi model (TQRM) wherein a bosonic mode concurrently couples to two spin-1/2 particles through a spin-spin interaction, resulting in a spin-spin-boson coupling-a departure from conventional quantum Rabi models fea... Read More about Tripartite quantum Rabi model with trapped Rydberg ions.

Inferring interpretable dynamical generators of local quantum observables from projective measurements through machine learning (2024)
Journal Article
Cemin, G., Carnazza, F., Andergassen, S., Martius, G., Carollo, F., & Lesanovsky, I. (2024). Inferring interpretable dynamical generators of local quantum observables from projective measurements through machine learning. Physical Review Applied, 21(4), Article L041001. https://doi.org/10.1103/physrevapplied.21.l041001

To characterize the dynamical behavior of many-body quantum systems, one is usually interested in the evolution of so-called order parameters rather than in characterizing the full quantum state. In many situations, these quantities coincide with the... Read More about Inferring interpretable dynamical generators of local quantum observables from projective measurements through machine learning.

Coherent Spin-Phonon Scattering in Facilitated Rydberg Lattices (2024)
Journal Article
Magoni, M., Nill, C., & Lesanovsky, I. (2024). Coherent Spin-Phonon Scattering in Facilitated Rydberg Lattices. Physical Review Letters, 132(13), Article 133401. https://doi.org/10.1103/physrevlett.132.133401

We investigate the dynamics of a one-dimensional spin system with facilitation constraint that can be studied using Rydberg atoms in arrays of optical tweezer traps. The elementary degrees of freedom of the system are domains of Rydberg excitations t... Read More about Coherent Spin-Phonon Scattering in Facilitated Rydberg Lattices.

Continuous Sensing and Parameter Estimation with the Boundary Time Crystal (2024)
Journal Article
Cabot, A., Carollo, F., & Lesanovsky, I. (2024). Continuous Sensing and Parameter Estimation with the Boundary Time Crystal. Physical Review Letters, 132(5), Article 050801. https://doi.org/10.1103/physrevlett.132.050801

A boundary time crystal is a quantum many-body system whose dynamics is governed by the competition between coherent driving and collective dissipation. It is composed of N two-level systems and features a transition between a stationary phase and an... Read More about Continuous Sensing and Parameter Estimation with the Boundary Time Crystal.

Entangled time-crystal phase in an open quantum light-matter system (2023)
Journal Article
Mattes, R., Lesanovsky, I., & Carollo, F. (2023). Entangled time-crystal phase in an open quantum light-matter system. Physical Review A, 108(6), Article 062216. https://doi.org/10.1103/physreva.108.062216

Time crystals are nonequilibrium many-body phases in which the state of the system dynamically approaches a limit cycle. While these phases have recently been the focus of intensive research, it is still far from clear whether they can host quantum c... Read More about Entangled time-crystal phase in an open quantum light-matter system.

Quantum reaction-limited reaction-diffusion dynamics of annihilation processes (2023)
Journal Article
Perfetto, G., Carollo, F., Garrahan, J. P., & Lesanovsky, I. (2023). Quantum reaction-limited reaction-diffusion dynamics of annihilation processes. Physical Review E, 108(6), Article 064104. https://doi.org/10.1103/physreve.108.064104

We investigate the quantum reaction-diffusion dynamics of fermionic particles which coherently hop in a one-dimensional lattice and undergo annihilation reactions. The latter are modelled as dissipative processes which involve losses of pairs 2A→∅, t... Read More about Quantum reaction-limited reaction-diffusion dynamics of annihilation processes.

Rydberg-ion flywheel for quantum work storage (2023)
Journal Article
Martins, W. S., Carollo, F., Li, W., Brandner, K., & Lesanovsky, I. (2023). Rydberg-ion flywheel for quantum work storage. Physical Review A, 108(5), Article L050201. https://doi.org/10.1103/PhysRevA.108.L050201

Trapped ions provide a platform for quantum technologies that offers long coherence times and high degrees of scalability and controllability. Here, we use this platform to develop a realistic model of a thermal device consisting of two laser-driven,... Read More about Rydberg-ion flywheel for quantum work storage.

Thermodynamics of Quantum Trajectories on a Quantum Computer (2023)
Journal Article
Cech, M., Lesanovsky, I., & Carollo, F. (2023). Thermodynamics of Quantum Trajectories on a Quantum Computer. Physical Review Letters, 131(12), Article 120401. https://doi.org/10.1103/physrevlett.131.120401

Quantum computers have recently become available as noisy intermediate-scale quantum devices. Already these machines yield a useful environment for research on quantum systems and dynamics. Building on this opportunity, we investigate open-system dyn... Read More about Thermodynamics of Quantum Trajectories on a Quantum Computer.

Dissipative quantum many-body dynamics in (1+1)D quantum cellular automata and quantum neural networks (2023)
Journal Article
Boneberg, M., Carollo, F., & Lesanovsky, I. (2023). Dissipative quantum many-body dynamics in (1+1)D quantum cellular automata and quantum neural networks. New Journal of Physics, 25, Article 093020. https://doi.org/10.1088/1367-2630/aceff4

Classical artificial neural networks, built from elementary units, possess enormous expressive power. Here we investigate a quantum neural network architecture, which follows a similar paradigm. It is structurally equivalent to so-called (1+1)D quant... Read More about Dissipative quantum many-body dynamics in (1+1)D quantum cellular automata and quantum neural networks.

Molecular Dynamics in Rydberg Tweezer Arrays: Spin-Phonon Entanglement and Jahn-Teller Effect (2023)
Journal Article
Magoni, M., Joshi, R., & Lesanovsky, I. (2023). Molecular Dynamics in Rydberg Tweezer Arrays: Spin-Phonon Entanglement and Jahn-Teller Effect. Physical Review Letters, 131(9), Article 093002. https://doi.org/10.1103/physrevlett.131.093002

Atoms confined in optical tweezer arrays constitute a platform for the implementation of quantum computers and simulators. State-dependent operations are realized by exploiting electrostatic dipolar interactions that emerge, when two atoms are simult... Read More about Molecular Dynamics in Rydberg Tweezer Arrays: Spin-Phonon Entanglement and Jahn-Teller Effect.