Skip to main content

Research Repository

Advanced Search

Outputs (6)

Small Molecule Fluorescent Ligands for the Atypical Chemokine Receptor 3 (ACKR3) (2023)
Journal Article
Dekkers, S., Comez, D., Karsai, N., Arimont-Segura, M., Canals, M., Caspar, B., …Stocks, M. J. (2023). Small Molecule Fluorescent Ligands for the Atypical Chemokine Receptor 3 (ACKR3). ACS Medicinal Chemistry Letters, 15(1), 143–148. https://doi.org/10.1021/acsmedchemlett.3c00469

The atypical chemokine receptor 3 (ACKR3) is a receptor that induces cancer progression and metastasis in multiple cell types. Therefore, new chemical tools are required to study the role of ACKR3 in cancer and other diseases. In this study, fluoresc... Read More about Small Molecule Fluorescent Ligands for the Atypical Chemokine Receptor 3 (ACKR3).

Assessment of the potential of novel and classical opioids to induce respiratory depression in mice (2023)
Journal Article
Hill, R., Sanchez, J., Lemel, L., Antonijevic, M., Hosking, Y., Mistry, S. N., …Canals, M. (2023). Assessment of the potential of novel and classical opioids to induce respiratory depression in mice. British Journal of Pharmacology, 180(24), 3160-3174. https://doi.org/10.1111/bph.16199

Background and Purpose Opioid-induced respiratory depression limits the use of μ-opioid receptor agonists in clinical settings and is the main cause of opioid overdose fatalities. The relative potential of different opioid agonists to induce respira... Read More about Assessment of the potential of novel and classical opioids to induce respiratory depression in mice.

Fluorescently Labeled Morphine Derivatives for Bioimaging Studies (2018)
Journal Article
Lam, R., Gondin, A. B., Canals, M., Kellam, B., Briddon, S. J., Graham, B., & Scammells, P. J. (2018). Fluorescently Labeled Morphine Derivatives for Bioimaging Studies. Journal of Medicinal Chemistry, 61(3), 1316-1329. https://doi.org/10.1021/acs.jmedchem.7b01811

Opioids, like morphine, are the mainstay analgesics for the treatment and control of pain. Despite this, they often exhibit severe side effects that limit dose; patients often become tolerant and dependent on these drugs, which remains a major health... Read More about Fluorescently Labeled Morphine Derivatives for Bioimaging Studies.

Synthesis, Biological Evaluation, and Utility of Fluorescent Ligands Targeting the ?-Opioid Receptor (2015)
Journal Article
Schembri, L. S., Stoddart, L. A., Briddon, S. J., Kellam, B., Canals, M., Graham, B., & Scammells, P. J. (2015). Synthesis, Biological Evaluation, and Utility of Fluorescent Ligands Targeting the ?-Opioid Receptor. Journal of Medicinal Chemistry, 58(24), 9754-9767. https://doi.org/10.1021/acs.jmedchem.5b01664

Fluorescently labeled ligands are useful pharmacological research tools for studying receptor localization, trafficking, and signaling processes via fluorescence imaging. They are also employed in fluorescent binding assays. This study is centered on... Read More about Synthesis, Biological Evaluation, and Utility of Fluorescent Ligands Targeting the ?-Opioid Receptor.

Mechanistic Insights into Allosteric Structure-Function Relationships at the M1 Muscarinic Acetylcholine Receptor (2014)
Journal Article
Abdul-Ridha, A., Lane, J. R., Mistry, S. N., Lopez, L., Sexton, P. M., Scammells, P. J., …Canals, M. (2014). Mechanistic Insights into Allosteric Structure-Function Relationships at the M1 Muscarinic Acetylcholine Receptor. Journal of Biological Chemistry, 289(48), 33701-33711. https://doi.org/10.1074/jbc.m114.604967

Benzylquinolone carboxylic acid (BQCA) is the first highly selective positive allosteric modulator (PAM) for the M1 muscarinic acetylcholine receptor (mAChR), but it possesses low affinity for the allosteric site on the receptor. More recent drug dis... Read More about Mechanistic Insights into Allosteric Structure-Function Relationships at the M1 Muscarinic Acetylcholine Receptor.

Molecular determinants of allosteric modulation at the M1 muscarinic acetylcholine receptor (2014)
Journal Article
Abdul-Ridha, A., López, L., Keov, P., Thal, D. M., Mistry, S. N., Sexton, P. M., …Christopoulos, A. (2014). Molecular determinants of allosteric modulation at the M1 muscarinic acetylcholine receptor. Journal of Biological Chemistry, 289(9), 6067-6079. https://doi.org/10.1074/jbc.M113.539080

Benzylquinolone carboxylic acid (BQCA) is an unprecedented example of a selective positive allosteric modulator of acetylcholine at the M1 muscarinic acetylcholine receptor (mAChR). To probe the structural basis underlying its selectivity, we utilize... Read More about Molecular determinants of allosteric modulation at the M1 muscarinic acetylcholine receptor.