Skip to main content

Research Repository

Advanced Search

Outputs (6)

Co-assembling living material as an in vitro lung epithelial infection model (2023)
Journal Article
Wu, Y., Romero, M., Robertson, S. N., Fenn, S., Fisher, L., Willingham, I., …Mata, A. (2024). Co-assembling living material as an in vitro lung epithelial infection model. Matter, 7(1), 216-236. https://doi.org/10.1016/j.matt.2023.10.029

Biofilms are robust living 3D materials that play key roles in nature but also cause major problems, such as tolerance to antibiotic treatment. Recreation of these living structures in vitro is critical to understand their biology and develop solutio... Read More about Co-assembling living material as an in vitro lung epithelial infection model.

Identification of Pseudomonas aeruginosa exopolysaccharide Psl in biofilms using 3D OrbiSIMS (2023)
Journal Article
Khateb, H., Hook, A. L., Kern, S., Watts, J. A., Singh, S., Jackson, D., …Alexander, M. R. (2023). Identification of Pseudomonas aeruginosa exopolysaccharide Psl in biofilms using 3D OrbiSIMS. Biointerphases, 18(3), Article 031007. https://doi.org/10.1116/6.0002604

Secondary ion mass spectrometry (SIMS) offers advantages over both liquid extraction mass spectrometry and matrix assisted laser desorption mass spectrometry in that it provides the direct in situ analysis of molecules and has the potential to preser... Read More about Identification of Pseudomonas aeruginosa exopolysaccharide Psl in biofilms using 3D OrbiSIMS.

Sulfation at Glycopolymer Side Chains Switches Activity at the Macrophage Mannose Receptor (CD206) In Vitro and In Vivo (2022)
Journal Article
Mastrotto, F., Pirazzini, M., Negro, S., Salama, A., Martinez-Pomares, L., & Mantovani, G. (2022). Sulfation at Glycopolymer Side Chains Switches Activity at the Macrophage Mannose Receptor (CD206) In Vitro and In Vivo. Journal of the American Chemical Society, 144(50), 23134–23147. https://doi.org/10.1021/jacs.2c10757

The mannose receptor (CD206) is an endocytic receptor expressed by selected innate immune cells and nonvascular endothelium, which plays a critical role in both homeostasis and pathogen recognition. Although its involvement in the development of seve... Read More about Sulfation at Glycopolymer Side Chains Switches Activity at the Macrophage Mannose Receptor (CD206) In Vitro and In Vivo.

Sulfation at Glycopolymer Side Chains Switches Activity at the Macrophage Mannose Receptor (CD206) In Vitro and In Vivo (2022)
Journal Article
Mastrotto, F., Pirazzini, M., Negro, S., Salama, A., Martinez-Pomares, L., & Mantovani, G. (2022). Sulfation at Glycopolymer Side Chains Switches Activity at the Macrophage Mannose Receptor (CD206) In Vitro and In Vivo. Journal of the American Chemical Society, 144(50), 23134-23147. https://doi.org/10.1021/jacs.2c10757

The mannose receptor (CD206) is an endocytic receptor expressed by selected innate immune cells and nonvascular endothelium, which plays a critical role in both homeostasis and pathogen recognition. Although its involvement in the development of seve... Read More about Sulfation at Glycopolymer Side Chains Switches Activity at the Macrophage Mannose Receptor (CD206) In Vitro and In Vivo.

Carbohydrates from Pseudomonas aeruginosa biofilms interact with immune C-type lectins and interfere with their receptor function (2021)
Journal Article
Singh, S., Almuhanna, Y., Alshahrani, M. Y., Lowman, D. W., Rice, P. J., Gell, C., …Martinez-Pomares, L. (2021). Carbohydrates from Pseudomonas aeruginosa biofilms interact with immune C-type lectins and interfere with their receptor function. npj Biofilms and Microbiomes, 7(1), Article 87. https://doi.org/10.1038/s41522-021-00257-w

Bacterial biofilms represent a challenge to the healthcare system because of their resilience against antimicrobials and immune attack. Biofilms consist of bacterial aggregates embedded in an extracellular polymeric substance (EPS) composed of polysa... Read More about Carbohydrates from Pseudomonas aeruginosa biofilms interact with immune C-type lectins and interfere with their receptor function.

Development of dual anti-biofilm and anti-bacterial medical devices (2020)
Journal Article
Burroughs, L., Singh, S., Ashraf, W., Martinez-Pomares, L., Bayston, R., & Hook, A. L. (2020). Development of dual anti-biofilm and anti-bacterial medical devices. Biomaterials Science, 8(14), 3926-3934. https://doi.org/10.1039/d0bm00709a

The rising occurrence of antimicrobial resistance demands new strategies for delivering antibiotics to ensure their effective use. In this study, a multi-functional strategy to address medical device associated infections is explored whereby an anti-... Read More about Development of dual anti-biofilm and anti-bacterial medical devices.