Skip to main content

Research Repository

Advanced Search

Outputs (8)

Wireless electrical–molecular quantum signalling for cancer cell apoptosis (2023)
Journal Article
Jain, A., Gosling, J., Liu, S., Wang, H., Stone, E. M., Chakraborty, S., …Rawson, F. J. (2024). Wireless electrical–molecular quantum signalling for cancer cell apoptosis. Nature Nanotechnology, 19, 106-114. https://doi.org/10.1038/s41565-023-01496-y

Quantum biological tunnelling for electron transfer is involved in controlling essential functions for life such as cellular respiration and homoeostasis. Understanding and controlling the quantum effects in biology has the potential to modulate biol... Read More about Wireless electrical–molecular quantum signalling for cancer cell apoptosis.

Electric field responsive nanotransducers for glioblastoma (2022)
Journal Article
Jain, A., Jobson, I., Griffin, M., Rahman, R., Smith, S., & Rawson, F. J. (2022). Electric field responsive nanotransducers for glioblastoma. Bioelectronic Medicine, 8, Article 17. https://doi.org/10.1186/s42234-022-00099-7

Background Electric field therapies such as Tumor Treating Fields (TTFields) have emerged as a bioelectronic treatment for isocitrate dehydrogenase wild-type and IDH mutant grade 4 astrocytoma Glioblastoma (GBM). TTFields rely on alternating curre... Read More about Electric field responsive nanotransducers for glioblastoma.

Metallocatanionic vesicle-mediated enhanced singlet oxygen generation and photodynamic therapy of cancer cells (2022)
Journal Article
Sharma, B., Jain, A., Pérez-García, L., Watts, J. A., Rawson, F. J., Chaudhary, G. R., & Kaur, G. (2022). Metallocatanionic vesicle-mediated enhanced singlet oxygen generation and photodynamic therapy of cancer cells. Journal of Materials Chemistry B, 10(13), 2160-2170. https://doi.org/10.1039/d2tb00011c

In clinics, photodynamic therapy (PDT) is established as a non-invasive therapeutic modality for certain types of cancers and skin disease. However, due to poor water solubility, photobleaching, and the dark toxicity of photosensitizers (PSs), furthe... Read More about Metallocatanionic vesicle-mediated enhanced singlet oxygen generation and photodynamic therapy of cancer cells.

Engineering bacteria to control electron transport altering the synthesis of non-native polymer (2021)
Journal Article
Bennett, M. R., Jain, A., Kovacs, K., Hill, P. J., Alexander, C., & Rawson, F. J. (2021). Engineering bacteria to control electron transport altering the synthesis of non-native polymer. RSC Advances, 12, 451-457. https://doi.org/10.1039/d1ra06403g

The use of bacteria as catalysts for radical polymerisations of synthetic monomers has recently been established. However, the role of trans Plasma Membrane Electron Transport (tPMET) in modulating these processes is not well understood. We sort to s... Read More about Engineering bacteria to control electron transport altering the synthesis of non-native polymer.

Impedimetric Characterization of Bipolar Nanoelectrodes with Cancer Cells (2021)
Journal Article
Robinson, A. J., Jain, A., Rahman, R., Abayzeed, S., Hague, R. J., & Rawson, F. J. (2021). Impedimetric Characterization of Bipolar Nanoelectrodes with Cancer Cells. ACS Omega, 6(44), 29495-29505. https://doi.org/10.1021/acsomega.1c03547

Merging of electronics with biology, defined as bioelectronics, at the nanoscale holds considerable promise for sensing and modulating cellular behavior. Advancing our understanding of nanobioelectronics will facilitate development and enable applica... Read More about Impedimetric Characterization of Bipolar Nanoelectrodes with Cancer Cells.

Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles (2020)
Journal Article
Jain, A., Trindade, G. F., Hicks, J. M., Potts, J. C., Rahman, R., J. M. Hague, R., …Rawson, F. J. (2021). Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles. Journal of Colloid and Interface Science, 587, 150-161. https://doi.org/10.1016/j.jcis.2020.12.025

Protein orientation in nanoparticle-protein conjugates plays a crucial role in binding to cell receptors and ultimately, defines their targeting efficiency. Therefore, understanding fundamental aspects of the role of protein orientation upon adsorpti... Read More about Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles.

Modulating the Biological Function of Protein by Tailoring the Adsorption Orientation on Nanoparticles (2020)
Other
Jain, A., Trindade, G., Hicks, J. M., Potts, J. C., Rahman, R., Hague, R., …Rawson, F. Modulating the Biological Function of Protein by Tailoring the Adsorption Orientation on Nanoparticles

Protein orientation in nanoparticle-protein conjugates plays a crucial role in binding to cell receptors and ultimately, defines their targeting efficiency. Therefore, understanding fundamental aspects of the role of protein orientation upon adsorpti... Read More about Modulating the Biological Function of Protein by Tailoring the Adsorption Orientation on Nanoparticles.

Wireless Nanobioelectronics for Electrical Intracellular Sensing (2019)
Journal Article
Sanjuan-Alberte, P., Jain, A., Shaw, A. J., Abayzeed, S. A., Domínguez, R. F., Alea-Reyes, M. E., …Rawson, F. J. (2019). Wireless Nanobioelectronics for Electrical Intracellular Sensing. ACS Applied Nano Materials, 2(10), 6397-6408. https://doi.org/10.1021/acsanm.9b01374

For the field of bioelectronics to make an impact on healthcare, there is an urgent requirement for the development of “wireless” electronic systems to enable modulation of chemistry inside of cells. Herein we report on an intracellular wireless elec... Read More about Wireless Nanobioelectronics for Electrical Intracellular Sensing.