Skip to main content

Research Repository

Advanced Search

Outputs (18)

Prey killing without invasion by Bdellovibrio bacteriovorus defective for a MIDAS-family adhesin (2024)
Journal Article
Tyson, J., Radford, P., Lambert, C., Till, R., Huwiler, S. G., Lovering, A. L., & Sockett, R. E. (2024). Prey killing without invasion by Bdellovibrio bacteriovorus defective for a MIDAS-family adhesin. Nature Communications, 15(1), Article 3078. https://doi.org/10.1038/s41467-024-47412-3

The bacterium Bdellovibrio bacteriovorus is a predator of other Gram-negative bacteria. The predator invades the prey’s periplasm and modifies the prey’s cell wall, forming a rounded killed prey, or bdelloplast, containing a live B. bacteriovorus. Re... Read More about Prey killing without invasion by Bdellovibrio bacteriovorus defective for a MIDAS-family adhesin.

Prey killing without invasion by Bdellovibrio bacteriovorus defective for a MIDAS-family (2024)
Journal Article
Tyson, J., Radford, P., Lambert, C., Till, R., Huwiler, S. G., Loverering, A. L., & Sockett, R. E. (2024). Prey killing without invasion by Bdellovibrio bacteriovorus defective for a MIDAS-family. Nature Communications, 15, Article 3078. https://doi.org/10.1038/s41467-024-47412-3

The bacterium Bdellovibrio bacteriovorus is a predator of other Gram-negative bacteria. The predator invades the prey’s periplasm and modifies the prey’s cell wall, forming a rounded killed prey, or bdelloplast, containing a live B. bacteriovorus. Re... Read More about Prey killing without invasion by Bdellovibrio bacteriovorus defective for a MIDAS-family.

Bdellovibrio bacteriovorus uses chimeric fibre proteins to recognize and invade a broad range of bacterial hosts (2024)
Journal Article
Caulton, S. G., Lambert, C., Tyson, J., Radford, P., Al-Bayati, A., Greenwood, S., …Lovering, A. L. (2024). Bdellovibrio bacteriovorus uses chimeric fibre proteins to recognize and invade a broad range of bacterial hosts. Nature Microbiology, 9(1), 214-227. https://doi.org/10.1038/s41564-023-01552-2

Predatory bacteria, like the model endoperiplasmic bacterium Bdellovibrio bacteriovorus, show several adaptations relevant to their requirements for locating, entering and killing other bacteria. The mechanisms underlying prey recognition and handlin... Read More about Bdellovibrio bacteriovorus uses chimeric fibre proteins to recognize and invade a broad range of bacterial hosts.

An MltA-Like Lytic Transglycosylase Secreted by Bdellovibrio bacteriovorus Cleaves the Prey Septum during Predatory Invasion (2023)
Journal Article
Banks, E. J., Lambert, C., Mason, S. S., Tyson, J., Radford, P. M., McLaughlin, C., …Sockett, R. E. (2023). An MltA-Like Lytic Transglycosylase Secreted by Bdellovibrio bacteriovorus Cleaves the Prey Septum during Predatory Invasion. Journal of Bacteriology, 205(4), Article 00475-22. https://doi.org/10.1128/jb.00475-22

Lytic transglycosylases cut peptidoglycan backbones, facilitating a variety of functions within bacteria, including cell division, pathogenesis, and insertion of macromolecular machinery into the cell envelope. Here, we identify a novel role of a sec... Read More about An MltA-Like Lytic Transglycosylase Secreted by Bdellovibrio bacteriovorus Cleaves the Prey Septum during Predatory Invasion.

Production of 3′,3′-cGAMP by a Bdellovibrio bacteriovorus promiscuous GGDEF enzyme, Bd0367, regulates exit from prey by gliding motility (2022)
Journal Article
Lowry, R. C., Hallberg, Z. F., Till, R., Simons, T. J., Nottingham, R., Want, F., …Lambert, C. (2022). Production of 3′,3′-cGAMP by a Bdellovibrio bacteriovorus promiscuous GGDEF enzyme, Bd0367, regulates exit from prey by gliding motility. PLoS Genetics, 18(5), Article e1010164. https://doi.org/10.1371/journal.pgen.1010164

Bacterial second messengers are important for regulating diverse bacterial lifestyles. Cyclic di-GMP (c-di-GMP) is produced by diguanylate cyclase enzymes, named GGDEF proteins, which are widespread across bacteria. Recently, hybrid promiscuous (Hypr... Read More about Production of 3′,3′-cGAMP by a Bdellovibrio bacteriovorus promiscuous GGDEF enzyme, Bd0367, regulates exit from prey by gliding motility.

Asymmetric peptidoglycan editing generates cell curvature in Bdellovibrio predatory bacteria (2022)
Journal Article
Banks, E. J., Valdivia-Delgado, M., Biboy, J., Wilson, A., Cadby, I. T., Vollmer, W., …Sockett, R. E. (2022). Asymmetric peptidoglycan editing generates cell curvature in Bdellovibrio predatory bacteria. Nature Communications, 13(1), Article 1509. https://doi.org/10.1038/s41467-022-29007-y

Peptidoglycan hydrolases contribute to the generation of helical cell shape in Campylobacter and Helicobacter bacteria, while cytoskeletal or periskeletal proteins determine the curved, vibrioid cell shape of Caulobacter and Vibrio. Here, we identify... Read More about Asymmetric peptidoglycan editing generates cell curvature in Bdellovibrio predatory bacteria.

A lysozyme with altered substrate specificity facilitates prey cell exit by the periplasmic predator Bdellovibrio bacteriovorus (2020)
Journal Article
Harding, C. J., Huwiler, S. G., Somers, H., Lambert, C., Ray, L. J., Till, R., …Lovering, A. L. (2020). A lysozyme with altered substrate specificity facilitates prey cell exit by the periplasmic predator Bdellovibrio bacteriovorus. Nature Communications, 11, Article 4817. https://doi.org/10.1038/s41467-020-18139-8

Lysozymes are among the best-characterized enzymes, acting upon the cell wall substrate peptidoglycan. Here, examining the invasive bacterial periplasmic predator Bdellovibrio bacteriovorus, we report a diversified lysozyme, DslA, which acts, unusual... Read More about A lysozyme with altered substrate specificity facilitates prey cell exit by the periplasmic predator Bdellovibrio bacteriovorus.

Evolutionary diversification of the RomR protein of the invasive deltaproteobacterium, Bdellovibrio bacteriovorus (2019)
Journal Article
Lowry, R. C., Milner, D. S., Al-Bayati, A. M., Lambert, C., Francis, V. I., Porter, S. L., & Sockett, R. E. (2019). Evolutionary diversification of the RomR protein of the invasive deltaproteobacterium, Bdellovibrio bacteriovorus. Scientific Reports, 9(1), 1-15. https://doi.org/10.1038/s41598-019-41263-5

Bdellovibrio bacteriovorus is a predatory deltaproteobacterium that encounters individual Gram-negative prey bacteria with gliding or swimming motility, and then is able to invade such prey cells via type IVa pilus-dependent mechanisms. Movement cont... Read More about Evolutionary diversification of the RomR protein of the invasive deltaproteobacterium, Bdellovibrio bacteriovorus.

Engulfment, persistance and fate of Bdellovibrio bacteriovorus predators inside human phagocytic cells informs their future therapeutic potential (2019)
Journal Article
Raghunathan, D., Radford, P. M., Gell, C., Negus, D., Moore, C., Till, R., …Tyson, J. (2019). Engulfment, persistance and fate of Bdellovibrio bacteriovorus predators inside human phagocytic cells informs their future therapeutic potential. Scientific Reports, 9, 1-16. https://doi.org/10.1038/s41598-019-40223-3

In assessing the potential of predatory bacteria, such as Bdellovibrio bacteriovorus, to become live therapeutic agents against bacterial infections, it is crucial to understand and quantify Bdellovibrio host cell interactions at a molecular level. H... Read More about Engulfment, persistance and fate of Bdellovibrio bacteriovorus predators inside human phagocytic cells informs their future therapeutic potential.

Examining diabetic heel ulcers through an ecological lens: microbial community dynamics associated with healing and infection (2019)
Journal Article
Sloan, T. J., Turton, J. C., Tyson, J., Musgrove, A., Fleming, V. M., Lister, M. M., …Jeffcoate, W. (2019). Examining diabetic heel ulcers through an ecological lens: microbial community dynamics associated with healing and infection. Journal of Medical Microbiology, 68(2), 230-240. https://doi.org/10.1099/jmm.0.000907

Purpose: While some micro-organisms, such as Staphylococcus aureus, are clearly implicated in causing tissue damage in diabetic foot ulcers (DFUs), our knowledge of the contribution of the entire microbiome to clinical outcomes is limited. We profile... Read More about Examining diabetic heel ulcers through an ecological lens: microbial community dynamics associated with healing and infection.