Skip to main content

Research Repository

Advanced Search

Outputs (4)

Living cells as a biological analog of optical tweezers – a non-invasive microrheology approach (2023)
Journal Article
Hardiman, W., Clark, M., Friel, C., Huett, A., Pérez-Cota, F., Setchfield, K., …Tassieri, M. (2023). Living cells as a biological analog of optical tweezers – a non-invasive microrheology approach. Acta Biomaterialia, 166, 317-325. https://doi.org/10.1016/j.actbio.2023.04.039

Microrheology, the study of fluids on micron length-scales, promises to reveal insights into cellular biology, including mechanical biomarkers of disease and the interplay between biomechanics and cellular function. Here a minimally-invasive passive... Read More about Living cells as a biological analog of optical tweezers – a non-invasive microrheology approach.

Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells (2020)
Journal Article
Pérez-Cota, F., Fuentes-Domínguez, R., La Cavera III, S., Hardiman, W., Yao, M., Setchfield, K., …Clark, M. (2020). Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells. Journal of Applied Physics, 128(16), Article 160902. https://doi.org/10.1063/5.0023744

© 2020 Author(s). Characterization of the elasticity of biological cells is growing as a new way to gain insight into cell biology. Cell mechanics are related to most aspects of cellular behavior, and applications in research and medicine are broad.... Read More about Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells.

Tropomyosin 1: multiple roles in the developing heart and in the formation of congenital heart defects (2017)
Journal Article
England, J., Granados-Riveron, J. T., Polo-Parada, L., Kuriakose, D., Moore, C., Brook, J. D., …Loughna, S. (2017). Tropomyosin 1: multiple roles in the developing heart and in the formation of congenital heart defects. Journal of Molecular and Cellular Cardiology, 106, https://doi.org/10.1016/j.yjmcc.2017.03.006

Tropomyosin 1 (TPM1) is an essential sarcomeric component, stabilising the thin filament and facilitating actin's interaction with myosin. A number of sarcomeric proteins, such as alpha myosin heavy chain, play crucial roles in cardiac development. M... Read More about Tropomyosin 1: multiple roles in the developing heart and in the formation of congenital heart defects.

Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing (2016)
Journal Article
Sifrim, A., Hitz, M., Wilsdon, A., Breckpot, J., Turki, S. H. A., Thienpont, B., …Hurles, M. E. (2016). Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nature Genetics, 48(9), 1060-1065. https://doi.org/10.1038/ng.3627

Congenital heart defects (CHDs) have a neonatal incidence of 0.8–1%. Despite abundant examples of monogenic CHD in humans and mice, CHD has a low absolute sibling recurrence risk (~2.7%), suggesting a considerable role for de novo mutations (DNMs) an... Read More about Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing.