Skip to main content

Research Repository

Advanced Search

Outputs (3)

Sustained Release of Dexamethasone from 3D-Printed Scaffolds Modulates Macrophage Activation and Enhances Osteogenic Differentiation (2023)
Journal Article
Majrashi, M., Yang, J., Ghaemmaghami, A., Kotowska, A., Hicks, J. M., & Scurr, D. (2023). Sustained Release of Dexamethasone from 3D-Printed Scaffolds Modulates Macrophage Activation and Enhances Osteogenic Differentiation. ACS Applied Materials and Interfaces, 15(49), 56623–56638. https://doi.org/10.1021/acsami.3c09774

Enhancing osteogenesis via modulating immune cells is emerging as a new approach to address current challenges in repairing bone defects and fractures. However, much remains unknown about the crosstalk between immune cells and osteolineage cells duri... Read More about Sustained Release of Dexamethasone from 3D-Printed Scaffolds Modulates Macrophage Activation and Enhances Osteogenic Differentiation.

Bioprinting Using Mechanically Robust Core–Shell Cell-Laden Hydrogel Strands (2017)
Journal Article
Mistry, P., Aied, A., Alexander, M. R., Shakesheff, K., Bennett, A., & Yang, J. (2017). Bioprinting Using Mechanically Robust Core–Shell Cell-Laden Hydrogel Strands. Macromolecular Bioscience, 17(6), Article 1600472. https://doi.org/10.1002/mabi.201600472

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim The strand material in extrusion-based bioprinting determines the microenvironments of the embedded cells and the initial mechanical properties of the constructs. One unmet challenge is the combinat... Read More about Bioprinting Using Mechanically Robust Core–Shell Cell-Laden Hydrogel Strands.

Application of Targeted Molecular and Material Property Optimization to Bacterial Attachment-Resistant (Meth)acrylate Polymers (2016)
Journal Article
Adlington, K., Nguyen, N. T., Eaves, E., Yang, J., Chang, C. Y., Li, J., …Irvine, D. J. (2016). Application of Targeted Molecular and Material Property Optimization to Bacterial Attachment-Resistant (Meth)acrylate Polymers. Biomacromolecules, 17(9), 2830-2838. https://doi.org/10.1021/acs.biomac.6b00615

© 2016 American Chemical Society. Developing medical devices that resist bacterial attachment and subsequent biofilm formation is highly desirable. In this paper, we report the optimization of the molecular structure and thus material properties of a... Read More about Application of Targeted Molecular and Material Property Optimization to Bacterial Attachment-Resistant (Meth)acrylate Polymers.