Skip to main content

Research Repository

Advanced Search

Outputs (13)

A conserved trypanosomatid differentiation regulator controls substrate attachment and morphological development in Trypanosoma congolense (2024)
Journal Article
Silvester, E., Szoor, B., Ivens, A., Awuah-Mensah, G., Gadelha, C., Wickstead, B., & Matthews, K. R. (2024). A conserved trypanosomatid differentiation regulator controls substrate attachment and morphological development in Trypanosoma congolense. PLoS Pathogens, 20(2), Article e1011889. https://doi.org/10.1371/journal.ppat.1011889

Trypanosomatid parasites undergo developmental regulation to adapt to the different environments encountered during their life cycle. In Trypanosoma brucei, a genome wide selectional screen previously identified a regulator of the protein family ESAG... Read More about A conserved trypanosomatid differentiation regulator controls substrate attachment and morphological development in Trypanosoma congolense.

A synthetic ancestral kinesin-13 depolymerizes microtubules faster than any natural depolymerizing kinesin (2022)
Journal Article
Belsham, H. R., Alghamdi, H. M., Dave, N., Rathbone, A. J., Wickstead, B., & Friel, C. T. (2022). A synthetic ancestral kinesin-13 depolymerizes microtubules faster than any natural depolymerizing kinesin. Open Biology, 12(8), Article 220133. https://doi.org/10.1098/rsob.220133

The activity of a kinesin is largely determined by the approximately 350 residue motor domain, and this region alone is sufficient to classify a kinesin as a member of a particular family. The kinesin-13 family are a group of microtubule depolymerizi... Read More about A synthetic ancestral kinesin-13 depolymerizes microtubules faster than any natural depolymerizing kinesin.

Divergent metabolism between Trypanosoma congolense and Trypanosoma brucei results in differential sensitivity to metabolic inhibition (2021)
Journal Article
Steketee, P. C., Dickie, E. A., Iremonger, J., Crouch, K., Paxton, E., Jayaraman, S., …Morrison, L. J. (2021). Divergent metabolism between Trypanosoma congolense and Trypanosoma brucei results in differential sensitivity to metabolic inhibition. PLoS Pathogens, 17(7), Article e1009734. https://doi.org/10.1371/journal.ppat.1009734

Animal African Trypanosomiasis (AAT) is a debilitating livestock disease prevalent across sub-Saharan Africa, a main cause of which is the protozoan parasite Trypanosoma congolense. In comparison to the well-studied T. brucei, there is a major paucit... Read More about Divergent metabolism between Trypanosoma congolense and Trypanosoma brucei results in differential sensitivity to metabolic inhibition.

Trypanosome KKIP1 Dynamically Links the Inner Kinetochore to a Kinetoplastid Outer Kinetochore Complex (2021)
Journal Article
Brusini, L., D’Archivio, S., McDonald, J., & Wickstead, B. (2021). Trypanosome KKIP1 Dynamically Links the Inner Kinetochore to a Kinetoplastid Outer Kinetochore Complex. Frontiers in Cellular and Infection Microbiology, 11, Article 641174. https://doi.org/10.3389/fcimb.2021.641174

Kinetochores perform an essential role in eukaryotes, coupling chromosomes to the mitotic spindle. In model organisms they are composed of a centromere-proximal inner kinetochore and an outer kinetochore network that binds to microtubules. In spite o... Read More about Trypanosome KKIP1 Dynamically Links the Inner Kinetochore to a Kinetoplastid Outer Kinetochore Complex.

TbSAP is a novel chromatin protein repressing metacyclic variant surface glycoprotein expression sites in bloodstream form Trypanosoma brucei (2021)
Journal Article
Davies, C., Ooi, C. P., Sioutas, G., Hall, B. S., Sidhu, H., Butter, F., …Rudenko, G. (2021). TbSAP is a novel chromatin protein repressing metacyclic variant surface glycoprotein expression sites in bloodstream form Trypanosoma brucei. Nucleic Acids Research, 49(6), 3242-3262. https://doi.org/10.1093/nar/gkab109

The African trypanosome Trypanosoma brucei is a unicellular eukaryote, which relies on a protective variant surface glycoprotein (VSG) coat for survival in the mammalian host. A single trypanosome has >2000 VSG genes and pseudogenes of which only one... Read More about TbSAP is a novel chromatin protein repressing metacyclic variant surface glycoprotein expression sites in bloodstream form Trypanosoma brucei.

Reliable, scalable functional genetics in bloodstream-form Trypanosoma congolense in vitro and in vivo (2021)
Journal Article
Awuah-Mensah, G., McDonald, J., Steketee, P. C., Autheman, D., Whipple, S., D'Archivio, S., …Wickstead, B. (2021). Reliable, scalable functional genetics in bloodstream-form Trypanosoma congolense in vitro and in vivo. PLoS Pathogens, 17(1), Article e1009224. https://doi.org/10.1371/journal.ppat.1009224

Copyright: © 2021 Awuah-Mensah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author a... Read More about Reliable, scalable functional genetics in bloodstream-form Trypanosoma congolense in vitro and in vivo.

Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes (2016)
Journal Article
D’Archivio, S., & Wickstead, B. (2017). Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes. Journal of Cell Biology, 216(2), 379-391. https://doi.org/10.1083/jcb.201608043

Kinetochores are multiprotein complexes that couple eukaryotic chromosomes to the mitotic spindle to ensure proper segregation. The model for kinetochore assembly is conserved between humans and yeast, and homologues of several components are widely... Read More about Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes.

The family-specific ?4-helix of the kinesin-13, MCAK, is critical to microtubule end recognition (2016)
Journal Article
Patel, J. T., Belsham, H. R., Rathbone, A. J., Wickstead, B., Gell, C., & Friel, C. T. (2016). The family-specific ?4-helix of the kinesin-13, MCAK, is critical to microtubule end recognition. Open Biology, 6(10), Article 160223. https://doi.org/10.1098/rsob.160223

Kinesins that influence the dynamics of microtubule growth and shrinkage require the ability to distinguish between the microtubule end and the microtubule lattice. The microtubule depolymerizing kinesin MCAK has been shown to specifically recognize... Read More about The family-specific ?4-helix of the kinesin-13, MCAK, is critical to microtubule end recognition.

Plasmodium P-type cyclin CYC3 modulates endomitotic growth during oocyst development in mosquitoes (2015)
Journal Article
Roques, M., Wall, R. J., Douglass, A. P., Ramaprasad, A., Ferguson, D. J. P., Kaindama, M. L., …Tewari, R. (2015). Plasmodium P-type cyclin CYC3 modulates endomitotic growth during oocyst development in mosquitoes. PLoS Pathogens, 11(11), Article e1005273. https://doi.org/10.1371/journal.ppat.1005273

Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisi... Read More about Plasmodium P-type cyclin CYC3 modulates endomitotic growth during oocyst development in mosquitoes.