Skip to main content

Research Repository

Advanced Search

Extending the operation of a solar air collector to night-time by integrating radiative sky cooling: A comparative experimental study (2022)
Journal Article
Hu, M., Zhao, B., Suhendri, Cao, J., Wang, Q., Riffat, S., Su, Y., & Pei, G. (2022). Extending the operation of a solar air collector to night-time by integrating radiative sky cooling: A comparative experimental study. Energy, 251, Article 123986. https://doi.org/10.1016/j.energy.2022.123986

Solar thermal collectors are generally unproductivity at night without sunlight. Radiative cooling, on the other hand, is another renewable technology harvesting coldness from extraterrestrial space and can effectively work nocturnally. Therefore, th... Read More about Extending the operation of a solar air collector to night-time by integrating radiative sky cooling: A comparative experimental study.

Numerical and experimental validations of the theoretical basis for a nozzle based pulse technique for determining building airtightness (2020)
Journal Article
Cooper, E., Zheng, X., & Wood, C. J. (2021). Numerical and experimental validations of the theoretical basis for a nozzle based pulse technique for determining building airtightness. Building and Environment, 188, Article 107459. https://doi.org/10.1016/j.buildenv.2020.107459

Motivated by intentions of avoiding large net fluid flow and enabling a more practical airtightness test for large buildings, a low-pressure Pulse pressurisation technique was developed for measuring building airtightness at pressures that are consid... Read More about Numerical and experimental validations of the theoretical basis for a nozzle based pulse technique for determining building airtightness.

Investigation of an innovative PV/T-ORC system using amorphous silicon cells and evacuated flat plate solar collectors (2020)
Journal Article
Kutlu, C., Li, J., Su, Y., Wang, Y., Pei, G., & Riffat, S. (2020). Investigation of an innovative PV/T-ORC system using amorphous silicon cells and evacuated flat plate solar collectors. Energy, 203, Article 117873. https://doi.org/10.1016/j.energy.2020.117873

Solar-driven organic Rankine cycle (s-ORC) power generation is a promising technology with thermal storage for flexible operation to meet domestic variable electricity demand. A satisfactory efficiency of this technology can be obtained only at mediu... Read More about Investigation of an innovative PV/T-ORC system using amorphous silicon cells and evacuated flat plate solar collectors.

Experimental Studies of a Pulse Pressurisation Technique for Measuring Building Airtightness (2019)
Journal Article
Zheng, X., Zu, Y., Cooper, E., Gillott, M., Tetlow, D., Riffat, S., & Wood, C. (2019). Experimental Studies of a Pulse Pressurisation Technique for Measuring Building Airtightness. Future Cities and Environment, 5(1), 1-17. https://doi.org/10.5334/fce.66

A pulse pressurisation technique is developed and utilised for determining building leakage at low pressure, based on a "quasi-steady pulse" concept. The underlying principle of the technique is to subject the building envelope to a known volume chan... Read More about Experimental Studies of a Pulse Pressurisation Technique for Measuring Building Airtightness.

CFD multiphase modelling of the acetone condensation and evaporation process in a horizontal circular tube (2019)
Journal Article
Mohammed, H. I., Giddings, D., Walker, G. S., & Power, H. (2019). CFD multiphase modelling of the acetone condensation and evaporation process in a horizontal circular tube. International Journal of Heat and Mass Transfer, 134, 1159-1170. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.062

With increasing demands on energy efficiency, the use of low grade waste heat using vapour absorption refrigeration systems (VARS) are receiving renewed interest. One idea is to use the combination of acetone and zinc bromide as the salt solution, wh... Read More about CFD multiphase modelling of the acetone condensation and evaporation process in a horizontal circular tube.

Computer modelling and experimental investigation of building integrated sub-wet bulb temperature evaporative cooling system (2016)
Journal Article
Boukhanouf, R., Alharbi, A., Ibrahim, H. G., Amer, O., & Worall, M. (2017). Computer modelling and experimental investigation of building integrated sub-wet bulb temperature evaporative cooling system. Applied Thermal Engineering, 115, https://doi.org/10.1016/j.applthermaleng.2016.12.119

The paper presents computer modelling and laboratory experiment results of a sub-wet bulb temperature indirect evaporative cooling system for space cooling in buildings. The prototype employs hollow porous ceramic water containers as wet media materi... Read More about Computer modelling and experimental investigation of building integrated sub-wet bulb temperature evaporative cooling system.