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Abstract 

This study presents a new algorithm for structural topological optimization of 2D continuum structures by 

combining the Extended Finite Element Method (X-FEM) with an evolutionary optimization algorithm. Taking 

advantage of an isoline design approach for boundary representation in a fixed grid domain, X-FEM can be 

implemented to improve the accuracy of FE solutions on the boundary during the optimization process. 

Although this approach doesn't use any remeshing or moving mesh algorithms, final topologies have smooth 

and clearly defined boundaries which need no further interpretation. Numerical comparisons of the converged 

solutions with standard BESO solutions show the efficiency of the proposed method and comparison with the 

converged solutions using MSC NASTRAN confirms the high accuracy of this method.    

Keywords: Topology Optimization, X-FEM, ESO, Fixed grid, evolutionary 

 

1. Introduction 

 

In recent years, structural optimization has become a rapidly growing field of research, with application in many 

areas such as mechanical, civil and automotive engineering. Topology optimization is one of the most 

challenging aspects of structural optimization, in which one needs to find the best topology as well as shape of a 

design domain. The approaches that have been proposed for the topology optimization of continuous structures 

fall into two categories: first, mathematical based methods such as homogenization (Bendsøe and Kikuchi, 

1988), Solid Isotropic Material with Penalization (SIMP) (Bendsøe, 1989; Zhou and Rozvany, 1991) and level 

set method (Wang et al., 2003; Allaire et al, 2004); second, heuristic methods which are more intuitive and less 
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mathematical, such as evolutionary structural optimization (ESO/BESO) methods (Xie and Steven 1993; Querin 

et al, 1998; Yang et al, 1999) . 

ESO is based on the assumption that the optimal layout of the design domain can be obtained by gradually 

removing inefficient material from the design domain (Huang and Xie, 2009). In the original ESO method, the 

elements of the design space were ranked in terms of their sensitivity, and those with lower sensitivity were 

removed from the design domain until a converged solution was obtained. Bi-directional evolutionary structural 

optimization (BESO) is an extension of ESO in which the elements are allowed to be added and removed 

simultaneously. These heuristic methods are easy to program and provide a clear topology (no grey regions of 

intermediate densities as in SIMP) in the resulting optimal designs. Conventional ESO/BESO algorithms have 

been successful since they can be easily combined with the finite element model of a structure. However they 

suffer from a weak capability of boundary representation as they are defined by the finite element mesh, which 

is non-optimal with respect to the final converged solution. This limitation causes difficulties in combining these 

methods with CAD and the obtained solutions require post processing to manufacture a design with smooth and 

manufacturable surface.  

The fixed grid finite element method (FG-FEM) allows the boundaries of the design to cross over finite 

elements. This capability has been used in boundary based optimization methods such as the level set method, 

and element based optimization methods, such as fixed grid evolutionary structural optimization (FG-ESO). FG-

ESO or Isoline/Isosurface approach (Victoria et al, 2009; Victoria et al, 2010) is an alternative to ESO in which 

the inefficient material is allowed to be removed/added within the elements of the design domain during an 

evolutionary process. The boundaries are defined by the intersection of the isoline plane with the criteria 

distribution of the design domain. Since in this approach the boundary of the design is no longer consistent with 

the fixed finite elements as in ESO, a classical finite element analysis may result in a poor FE approximation on 

the boundary. Conventionally in the fixed grid finite element approach, the element stiffness is assumed to be 

proportional to the area fraction of the solid material within the element (also called the density scheme). 

Although this approach is widely accepted and implemented in many works (Allaire et al, 2004; Victoria et al, 

2009), studies have shown that it cannot provide accurate results for the boundary elements (Dunning et al, 2008; 

Wei et al, 2010).The Extended finite element method (X-FEM) is another fixed grid approach which can be 

used to model void/solid interfaces. X-FEM extends the classical finite element approach by adding special 

shape functions which can represent a discontinuity inside finite elements. In this approach, the geometry of the 

discontinuity is often described by a level set method. A combination of the level set description of the geometry 
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and the fixed mesh framework of X-FEM has been used in recent level set based topology optimization work 

(Wei et al, 2010; Miegroet et al, 2007). 

This study presents a simple and effective evolutionary optimization approach in a fixed grid domain. The 

novelty of this work is to apply X-FEM to the evolutionary optimisation algorithm. The proposed method 

doesn't require a level set framework for geometry description in the X-FEM and the boundaries of the design 

can be simply represented by isolines of a desired structural performance.  The algorithm is implemented in the 

topology optimization of two test cases and the final solutions are compared to standard BESO solutions. To 

evaluate the accuracy of the proposed method, the solutions are imported to NASTRAN and reanalysed using 

the classical finite element method. 

 

2. Fixed grid approach  

The fixed-grid method is a technique to model the boundaries with a non-conforming mesh. It has been used for 

solving the problems with moving boundaries such as those requiring structural optimization problems. Unlike 

the remeshing methods in which the design domain, or a narrow area around the boundary, is remeshed in every 

iteration, the fixed grid FEM doesn’t require the time consuming remeshing process and can be easily 

implemented. In this method the real structure is superimposed on the fixed finite elements of the design space 

and makes three types of elements: the solid elements which lie inside the structure (S elements), the void 

elements which lie outside the structure (V elements) and the elements which lie on the boundary of the 

structure (B elements), as shown in figure 1.  

 

 

Figure 1. A material/void interface problem in a fixed grid. 
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2.1. Density scheme 

In a conventional fixed grid approach, the stiffness matrix of boundary elements is approximated by a density 

scheme in which the stiffness of the element is proportional to the area ratio of the solid part of the element: 

𝜉(𝑒) =
𝐴𝑠

(𝑒)

𝐴𝑠
(𝑒)

+𝐴𝑣
(𝑒) =

𝐴𝑠
(𝑒)

𝐴𝑡
(𝑒)                                         (1) 

𝐾𝐵 =  𝐾𝑆𝜉(𝑒)                                                      (2) 

where 𝐴𝑠
(𝑒)

, 𝐴𝑣
(𝑒)

 and 𝐴𝑡
(𝑒)

 represent the solid area, void area and the total area of the element, respectively, and 

𝐾𝐵 and 𝐾𝑆 are the stiffness matrices of the boundary element and solid element, respectively.  

In the density scheme, the material is considered to be uniformly distributed through the whole element and the 

variations in material distribution in an element are not taken into account in calculating the element stiffness 

matrix. For example, figure 2 shows three different shapes for a boundary element where the area fraction of 

solid material within the element is 0.50. Using the density method (equation 2) the same stiffness is calculated 

for all three elements. This method may cause errors near the boundary of the design during the optimization 

process.  

 

Figure 2. (a) Typical boundary elements for area ratio=0.50. (b) Their density scheme equivalent solid element with 50% 

density. 

2.2. eXtended Finite Element Method 

The extended finite element method (X-FEM) (Belytschko and Black, 1999; Moës et al, 1999) is an alternative 

fixed grid approach in which the classical finite element approximation is enriched by special functions through 

the concept of partition of unity (Melenk and Babuška, 1996). X-FEM was originally developed to represent 

crack growth in a fixed grid domain. Using traditional FEM for the simulation of crack propagation is very 

challenging because of the continuous changes in the topology of the domain. The application of X-FEM for 

this case has been very successful because the FE mesh can be generated independent of the geometry of the 

crack, and remeshing is not required during crack propagation. For crack modelling, the idea of X-FEM is to use 

additional degrees of freedom in the usual FE spaces by adding a discontinuous function (Heaviside step 

function) and the asymptotic crack tip displacement fields to the conventional FE displacement field. Therefore 
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the standard finite element approximation is extended by adding enrichment functions to the continuous 

displacement field and defining additional degrees of freedom for the nodes which support the discontinuity: 

𝑢(𝑥) = ∑ 𝑢𝑖𝑁𝑖(𝑥)𝑖 + ∑ 𝑎𝑗𝑁𝑗(𝑥)𝑗 𝐻(𝑥).             (3) 

In the above equation, the function on the right hand side shows the conventional finite element approximation 

of the displacement field in an element where 𝑁𝑖  are the classical shape functions associated to the nodal 

degrees of freedom, 𝑢𝑖 . 𝑁𝑗(𝑥)𝐻(𝑥) supported by enriched degrees of freedom, 𝑎𝑗 , are discontinuous shape 

functions constructed by multiplying a classical 𝑁𝑗(𝑥)  shape function with a Heaviside function 𝐻(𝑥) 

presenting a switch value where the discontinuity lies. X-FEM has also been implemented for other kinds of 

discontinuities such as fluid/structure interaction (Gerstenberger and Wall 2008) and modelling holes and 

inclusions (Sukumar et al 2001). In our case the X-FEM scheme for modelling holes and inclusions can be 

implemented for modelling material/void interfaces during the optimization process. In this approach, the 

displacement field is approximated by the following equation 

𝑢(𝑥) = ∑ 𝑁𝑖(𝑥)

𝑖

𝐻(𝑥)𝑢𝑖                                      (4) 

where the Heaviside function H(x) has the following properties 

𝐻(𝑥) = {
1     𝑖𝑓 𝑥 ∈ Ω
0     𝑖𝑓 𝑥 ∉ Ω

  .                                     (5) 

which implies that the value of Heaviside function is 1 for the nodes outside the void and 0 for the nodes in the 

interior of the void. Since there is no enrichment in the displacement approximation equation of X-FEM in 

modelling holes and inclusions, there will be no augmented degrees of freedom during optimization. The 

proposed X-FEM integration scheme will be discussed in next sections. 

 

3. Structural optimization problem 

The topology optimisation problem where the objective is to minimize the strain energy can be written as 

Minimize: 𝑐 =
1

2
𝑈𝑇𝐾𝑈                                     (6) 

Subject to:  
∑ 𝑣𝑆

(𝑒)𝑁
𝑒=1

𝑉0
= 𝑉∗                                  (7) 

where c is the total strain energy, and U and K are the global displacement and global stiffness matrices, 

respectively. N denotes the number of finite elements in the design domain. 𝑣𝑆
(𝑒)

 is the volume of the solid part 
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of the element, 𝑉0 is the design domain volume and 𝑉∗ is the prescribed volume fraction. While in ESO/BESO 

methods, the presence/absence of each element in the design domain is considered as a design variable, in our 

proposed method the material distribution inside each element is considered as a design variable. Strain energy 

density (SED) is a reliable criterion to indicate inefficient use of material in a design space (Huang and Xie, 

2009). Elemental SED can be obtained from 

𝑆𝐸𝐷𝑒 =
1

2
𝑢𝑒

𝑇𝑘𝑒𝑢𝑒/𝑣𝑒                                         (8) 

with 𝑢𝑒  the element displacement vector and 𝑘𝑒   the element stiffness matrix, which is calculated using an 

XFEM scheme. The topology optimization operates by gradually removing the material from low SED regions 

and adding it to high SED regions during an evolutionary procedure. The effective removal/redistribution of 

material within the design domain can be achieved through an isoline topology optimization approach by 

assigning a weak material property to low SED regions and solid material property to high SED regions (soft-

kill scheme). 

 

Figure 3. Level set description of a 2D design. (a) 3D level set function (signed distance function) (b) 2D design domain 

with solid and void phases. 
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3.1. Isoline topology optimization 

The basic idea of isoline design is to represent the shape and topology of the structure using the contours of the 

desired structural behaviour. This idea has been suggested in several studies (Maute and Ramm, 1995; Lee et al, 

2007). The isoline boundary representation differs from the level set description of the design boundary. In the 

level set method the boundary is described by a zero level set function (usually signed distance function) (figure 

3) and the evolution of boundary is represented by solving so called ‘Hamilton-Jacobi’ equation. In the isoline 

method, the design boundary is represented by a minimum level of a criterion (such as von Mises stress or SED) 

which is iteratively updated during the design process (figure 4). The isoline optimization algorithm that is used 

in this paper is originated from isoline topology design (ITD) algorithm proposed by Victoria et al (2009). 

Unlike ESO/BESO methods in which the optimization operates at an elemental level, in the ITD approach, the 

optimization is performed in a global level, based on structural performance. In our study, the distribution of the 

desired structural behaviour is obtained in the analysis phase through the use of X-FEM. 

The ITD approach can be summarized into the following steps: 

1- An extended finite element analysis is performed to find the distribution of strain energy density within the 

design domain. 

2- A minimum SED level (MSL) is determined and the new structural boundary is obtained from intersection 

of SED distribution and MSL.   

3- The regions of the domain having the criteria (SED) level less than MSL are not included in the design 

domain. Therefore their material property is set to the weak material. The regions where the criteria level 

are greater than MSL are inside the design domain and their material property is set to the solid material. 

Steps 1-3 are repeated by gradually increasing the MSL until a desired optimum is obtained. 
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Figure 4. (a) Initial design domain with boundary conditions. (b) SED distribution on the initial design domain. (c) Isolines 

of strain energy density (initial design domain). (d) Structural boundary represented by intersection of criteria (SED) 

distribution and MSL at volume fraction = 0.5. (e) Final solution shown in a fixed grid domain (volume fraction = 0.5). 

 

3.1.1. The evolutionary procedure in isoline topology optimization 

 

The nodal level of SED in any part of the design domain can be obtained by performing an extended FE analysis 

and comparing the SED of that node with the maximum SED of the entire domain. Using the nodal SED level, 

the elements are categorized into three groups: void elements, solid elements and boundary elements: 

𝑣𝑜𝑖𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑓, 𝑓𝑜𝑟 𝑗 = 1: 4,
𝑆𝐸𝐷𝑗

𝑆𝐸𝐷𝑚𝑎𝑥

< 𝑅𝐹𝑖       

𝑠𝑜𝑙𝑖𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑓, 𝑓𝑜𝑟 𝑗 = 1: 4,
𝑆𝐸𝐷𝑗

𝑆𝐸𝐷𝑚𝑎𝑥

> 𝑅𝐹𝑖       
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𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑓 𝑛𝑒𝑖𝑡ℎ𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑏𝑜𝑣𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑒𝑥𝑖𝑠𝑡    (9) 

where 𝑅𝐹𝑖 is the current redistribution factor (RF), and j denotes the element’s node number. The boundary of 

design can be obtained by the intersection of the SED distribution and the minimum SED level, which is 

calculated by 

𝑀𝑆𝐿 = 𝑅𝐹𝑖 × 𝑆𝐸𝐷𝑚𝑎𝑥.                                                                       (10) 

With the current redistribution factor, the iterative process of the extended finite element analysis and material 

removal/redistribution takes place until the change in volume fraction is less than a minimum value ∆𝑉, which 

means that a steady state is almost reached. An evolutionary rate, ER, is added to the redistribution factor, such 

that 

𝑅𝐹𝑖+1 = 𝑅𝐹𝑖 + 𝐸𝑅.                                            (11) 

With the new redistribution factor, the extended finite element analysis and material removal/redistribution is 

repeated until a new steady state is reached. The evolutionary process continues until a desired optimum, such as 

a final volume fraction or a maximum strain energy level, is reached.  In this study, the volume fraction and the 

objective function (total strain energy) are used to check the convergence. The evolutionary process continues 

until the volume fraction condition is satisfied. From this time, the optimization process runs with a constant 

redistribution factor (zero evolution rate) until the changes in the objective function in the last 5 iterations are 

within a 0.1% tolerance. 

The number of iterations in the evolutionary process in the proposed method is affected by the value of 

evolution rate as well as the maximum strain energy density (SEDmax). Selecting a high evolution rate can 

reduce the computational time. However, very high values of evolution rate may result in local optima or non-

convergent solutions. A typical value for the evolution rate can be obtained from 

𝑒𝑟 = 0.01 ×
𝑆𝐸𝐷𝑎𝑣𝑒

𝑆𝐸𝐷𝑚𝑎𝑥
                                       (12) 

 where 𝑆𝐸𝐷𝑎𝑣𝑒 is the average SED for the fully solid design domain. 

 

3.2. X-FEM integration scheme 

Equation 4 defines a zero displacement field for the void part of the element, which means that only the solid 

part of the element contributes to the element stiffness matrix. Thus we can use the same displacement function 

as FEM (first term in equation 3) and simply remove the integral in the void sub-domain of the element: 

𝐾𝑒 = ∫ 𝐵𝑇𝐷𝑆𝐵𝑡𝑑Ω
Ω𝑆

                                            (13) 
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where Ω𝑆 is the solid sub-domain, 𝐵 is the displacement differentiation matrix, 𝐷𝑆 is the elasticity matrix for the 

solid material and t is the thickness of the element. When an element is cut by the boundary, the remaining solid 

sub-domain is no longer the reference rectangular element. In order to numerically calculate the integral given 

by equation 13, the solid part of the boundary element is partitioned into several sub-triangles (figure 5) and the 

Gauss quadrature method is used: 

𝐾𝑒 = ∑ ∫ 𝐵𝑇𝐷𝑆𝐵𝑡𝑑Ω
𝑇𝑖

𝑛

𝑖=1

                                  (14) 

where n is the number of sub-triangles inside the element and T denotes the triangle domain. 

 

 

Figure 5. The solid sub-domain of the boundary elements are partitioned into several sub-triangles. 

 

3.2.1. Triangulation of boundary elements 

The topology and shape of a boundary element can be found using the values of nodal relative SED 

which is defined by: 

𝑆𝐸𝐷𝑟𝑒𝑙
𝑗

= 𝑆𝐸𝐷𝑗 − 𝑀𝑆𝐿                                 (15) 

where j denotes the node number.  Nodes having negative relative SED belong to the void part of the 

domain and nodes with positive relative SED are located in the solid domain. Therefore, an element 

which has at least one node with negative  SEDrel and one with positive  SEDrel is a boundary element. 
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The intersection point of the boundary and element edge between two neighbouring nodes i and j can 

be found using bilinear interpolation of nodal SEDrel and shape functions: 

𝑥𝑖 =
𝑙𝑖𝑗

1−
𝑆𝐸𝐷𝑟𝑒𝑙

𝑖

𝑆𝐸𝐷
𝑟𝑒𝑙
𝑗

                                                  (16) 

where 𝑥𝑖  is the distance between node i and the intersection point, and 𝑙𝑖𝑗  is the element length 

between the nodes i and j. Depending on its topology, a boundary element may have 2, 3 or 4 

intersection points. The sub-triangles can be defined by defining an extra point inside the solid sub-

domain of the element (typically in the centre of solid area) and connecting it to the solid nodes as 

well as the intersection points. Figure 6 shows a boundary element with two intersection points and 

typical values for SEDrel. 

  

Figure 6. A boundary element with typical values for nodal relative SED 

 

3.2.2. Gauss quadrature method  

In order to apply the Gauss quadrature method to triangles, the two dimensional integrals in terms of the 

physical coordinates are transferred to the triangle’s natural coordinates and represented as a series of weighted 

functions: 

∬ 𝐹(𝑥, 𝑦)𝑑𝑥𝑑𝑦

Ω𝑒

= 𝐴𝑇 ∑ 𝑊𝑖𝐹(𝜉1
𝑖 , 𝜉2

𝑖 , 𝜉3
𝑖 )

𝑚

𝑖=1

                               (17) 

where m is the number of gauss points, 𝜉 the coordinates of the gauss points, and 𝐴𝑇 is the area of the triangle. 

Substituting equation 17 into equation 14, the element stiffness matrix can be obtained by 
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𝐾𝑒 = ∑ ∑ 𝐴𝑇𝑊𝑗𝑓(𝜉1
𝑗
, 𝜉2

𝑗
, 𝜉3

𝑗
)

𝑚

𝑗=1

𝑛

𝑖=1

                                                  (18) 

where   

𝑓 = 𝐵𝑇𝐷𝑆𝐵𝑡                                                                                   

with n the number of sub-triangles in the solid domain of the element. In our study, the second order gauss rule 

with 3 midline gauss points was implemented (figure 7). To validate this X-FEM scheme, we calculated the 

stiffness matrix of a fully solid rectangular element having the Young’s modulus E=1 and the Poisson’s ratio 

𝜐 = 0.3, by 2 different approaches: first, using the classical finite element approximation; second, using the X-

FEM scheme described above in which the element is divided into sub-triangles and integration is performed 

using gauss quadrature for triangles, as shown in figure 8. Both methods resulted in exactly the same stiffness 

matrix for the element, thus validating the X-FEM scheme. 

 

Figure 7. X-FEM integration scheme. 

 

                          

  (a)                                    (b)                                                           (c) 

Figure 8. (a) A solid element represented by classical FEM. (b) The solid element represented by our X-FEM scheme. (c) 

The stiffness matrix obtained using both FEM and X-FEM approaches. 

 

 

3.3. Combining X-FEM and the optimization algorithm 

Figure 9 illustrates the topology optimization procedure used, which in general consists of the following steps: 

1- Initialization: in this step, the dimensions of the design domain, fixed grid mesh and initial material 

distribution within the design domain are defined; boundary and loading conditions are applied and the 
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parameters of the optimization algorithm, such as evolution rate (ER) and final volume fraction, are 

defined. 

2- Finite Element Analysis: a classical finite element analysis of the initial design domain is performed. 

3-  Calculate Strain Energy Density (SED): the strain energy density of the elements and nodes are 

calculated. 

4- Calculation of the Redistribution Factor (RF) and Minimum SED Level (MSL): the redistribution 

factor is calculated by increasing the value from the last iteration and MSL increases by increasing RF. 

5- Extraction of the boundary of the design: the boundary of the design is obtained from the intersection 

of the SED distribution and MSL. 

6- Convergence check: the convergence of the optimization algorithm (such as target volume) is checked 

by comparing the convergence criteria with the defined convergence threshold. If the convergence 

condition is satisfied, the algorithm jumps to step 9, otherwise it progresses to step 7.  

7- X-FEM structural analysis: an X-FEM analysis is performed on the fixed grid design domain.  Using 

nodal SED numbers, the elements are categorized into three groups: solid, void and boundary elements. 

Solid and void elements are treated using classical finite element approximation. The stiffness matrix 

of the boundary elements are calculated by partitioning the solid sub-domain into several sub-triangles 

and applying gauss quadrature integration scheme described in section 3.2. The global stiffness matrix 

is calculated by assembling the element stiffness matrices.  

8- Go to step 3. 

9- Stop the optimization process. 
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Figure 9. Flowchart of optimization algorithm. 

 

 

4. Numerical Examples 

The proposed method of combining X-FEM and evolutionary optimization algorithm was implemented in a 

MATLAB code to present the topology optimization of 2D rectangular domains as a first validation stage prior 

to full 3D implementation. Two test cases are used in this study (figure 10). A consistent dimensionless set of 

parameters are used for both test cases. Test case 1 was a short cantilever beam having length 60, height 30 and 

thickness 1 where a unit concentrated load is applied in the middle of the free end (symmetric case). Test case 2 

was a cantilever beam having the same dimensions as test case 1 but with the load applied at the bottom of the 

free end (non-symmetric case).  The material properties of the solid material were Young’s modulus E=1 and 

Poisson’s ratio 𝜐 = 0.3. The target volume was 50% of the initial design domain. To avoid singularity issues 

with the concentrated loading, the strain energy inside the loading regions shown in figure 8 were not used in 
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the calculation of the total strain energy and the tip displacements were measured from outside the loading 

region along the line of loading.  

 

 

Figure 10. The two test cases. 

 

4.1. Preliminary examination of convergence  

 

The initial design domain was descritized using a 60x30 mesh. The optimization started with a fully solid design 

domain. The evolution histories of the objective function and volume fraction for test cases 1 and 2 are shown in 

figure 11. It can be seen that the strain energy increases, as material is gradually removed from the design 

domain, then reaches a constant value at convergence.  

The development of the topology in the iterative optimization processes for the two test cases are illustrated in 

figures 12 and 13. It can be seen that initially a number of holes appear as the volume fraction decreases. After a 

certain number of iterations some of the holes merge to make larger holes, thus reducing the final complexity of 

the topology.  It can be seen in figure 12 that the topology remains symmetric throughout the optimization. It 

can be seen in the final topologies that despite using a coarse mesh for this optimization problem, the final 

designs have clearly defined, smooth boundaries and need no further interpretation (unlike standard SIMP and 

ESO/BESO methods). In the next two sections, the accuracy of the results are studied and the method is 

compared with standard BESO. 
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(a) 

 
(b) 

 

Figure 11. Evolution history of objective function, SE, and volume fraction (VF) for (a) Test case 1 and (b) Test 

case 2. 
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Figure 12. Evolution of topology in test case 1. 
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Figure 13. Evolution of topology in test case 2. 

 

 

4.2. Evaluating X-FEM solutions  
 

In order to accurately evaluate the performance of the final solutions and the accuracy of the proposed method, 

the obtained solutions were discretized by a converged, fine structured finite element mesh and solved using the 

commercial finite element solver NASTRAN from MSC Software (Santa Ana, California, USA) (figure 14).  

Table 1 compares the X-FEM solutions and the converged NASTRAN solutions in terms of their strain energies 

and tip displacements. It can be seen that the X-FEM solutions are very close to the regenerated NASTRAN 
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solutions with percentage error less than 0.7. The small difference in the X-FEM and NASTRAN results may be 

attributed to the different mesh size used in the two approaches and would be expected to decrease by reducing 

the mesh size of the design space. However it could be argued that the accuracy obtained using the coarse mesh 

is sufficient for the topology optimization and the added accuracy of a finer mesh will unnecessarily increase 

computational time. This is an increasingly important consideration when the method is used for the 

optimization of real-life 3D structures (as will be shown in future works).  

 

 

Figure 14. XFEM solution discretized using a converged, fine mesh and imported to NASTRAN for solution. 

                                   

 

Table 1. Comparison of  X-FEM solutions and regenerated NASTRAN structures. 

Test case 1 Strain Energy Tip Displacement 

X-FEM 29.81 57.08 

NASTRAN 30.01 57.36 

% Error 0.67 0.49 

Test case 2 Strain Energy Tip Displacement 

X-FEM 30.82 61.77 

NASTRAN 31.04 62.10 

% Error 0.70 0.53 
 

 

4.3. Comparison with BESO solutions 

The solutions obtained from the proposed method are compared with BESO solutions for a range of mesh sizes 

The BESO solutions were obtained using a soft-kill BESO MATLAB code (Huang and Xie, 2009). In order to 

overcome the checkerboard problem (Jog and Harber, 1996) in the BESO solutions and retain the complexity of 
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the converged solutions, a small filter radius of 1.2 times the element length, was used. The selected evolution 

rate for BESO was 0.004 which was chosen to give approximately the same number of iterations to converge as 

the XFEM-Isoline optimization approach (180-200 iterations). 

 

4.3.1. Comparison of strain energies 

Comparing the topologies obtained using the two approaches for test case 1 (the symmetric problem) one may 

notice that the converged solutions for the same mesh size have similar topologies (table 2); however the BESO 

solutions tend to have higher strain energies than the X-FEM solutions. The probable reason for this is the 

poorer edge representation in BESO method, which has reduced the performance of the converged solutions.  At 

high mesh density the two methods had very similar performance, as would be expected, however, this would 

obviously be more computationally expensive. To increase the performance of these BESO solutions, additional 

post-processing is required to smooth the boundaries. In test case 2, which is a non-symmetric problem, the two 

approaches have generated different topologies (table 3).  The strain energies of the X-FEM solutions are again 

lower than the BESO ones, indicating better performance for the X-FEM solutions.   

It can be seen in tables 2 and 3 that both methods result in final topologies that are mesh dependent, which is 

generally the case for element based topology optimization methods. Pseudo mesh-independent topologies can 

be obtained by the use of coarsening actions such as filtering the sensitivities or increasing the filter radius 

(Huang and Xie, 2007). However these methods still have their limits in terms of mesh independency and will 

tend to result in coarser solution that can have lower performance than more refined solutions. Generally 

speaking, increasing the mesh density increases the complexity of the converged solutions and reduces the strain 

energies. Therefore increasing the mesh density can improve the performance of the final optimized result. This 

issue has also been studied in earlier investigations for BESO (Aremu et al, 2012). Figure 15 illustrates the 

strain energy of the converged solution as a function of mesh density for test case 2. It shows that X-FEM 

optimization approach is more robust than the BESO method and that the strain energies of the X-FEM 

solutions converged earlier than BESO ones. However, as the mesh gets finer the strain energies of BESO 

solutions get closer to the X-FEM solutions. It can be seen that increasing the mesh density results in the strain 

energies produced using XFEM-Isoline approach and NASTRAN FEA become close, relative to the 

fluctuations in the data beyond 1/h=80. 
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Table 2. X-FEM and BESO solutions of test case 1 for a range of mesh sizes. 

Mesh 40 x 20 60 x 30 80 x 40 100 x 50 120 x 60 

X-FEM 

      

SE  29.49 29.04 28.91 28.85 28.88 

BESO 

      

SE 31.55 30.34 30.08 30.06 29.80 

 

Table 3. X-FEM and BESO solutions of test case 2 for a range of mesh sizes. 

Mesh 40 x 20 60 x 30 80 x 40 100 x 50 120 x 60 

X-FEM 

     

SE  31.08 30.82 30.74 30.54 30.64 

BESO 

      

SE  32.91 32.05 31.54 31.72 31.57 
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Figure 15. Changes in strain energy (SE) by reducing the mesh size (h) in test case 2. 

 

Table 4 compares the computational time for the two optimization methods for test case 1 after 100 iterations. It 

can be seen that at low mesh densities BESO is much faster than XFEM, however, the computational time ratio 

decreases by increasing the mesh density. It is shown in the paper that BESO solutions require higher mesh 

densities and more post-processing to obtain a smooth topology, therefore the total time for design could be 

decreased by using the XFEM-Isoline method.  

Table 4. Comparison of the time cost of BESO and X-FEM for 100 iterations  

Approach\Mesh 40x20 60x30 80x40 100x50 120x60 

X-FEM 19 s 43 s 92 s 188 s 434 s 

BESO 9 s 25 s 65 s 151 s 399 s 

Ratio 211% 172% 142% 125% 109% 
 

 

4.3.2. Comparison of surface roughness 

As a post processing stage, a Laplacian smoothing algorithm can be used to create smoother boundaries for the 

optimised topologies, if this is required for manufacture for instance. Laplacian smoothing is an iterative 

smoothing technique, commonly used in image processing and improving the quality of finite element meshes 

(Cannan et al, 1993; Freitag, 1997). In the image processing application, Laplacian smoothing operates by 

replacing the grey value of a pixel with an average of the grey values of neighbouring pixels. In the FE meshing 

application, the location of a vertex is modified using the average of the locations of neighbouring vertices 

(Vollmer et al, 2001).  Figure 16 shows the boundaries before and after smoothing for the BESO solutions of 

test case 2 for a range of mesh densities. The average surface roughness of the optimized topologies before 

smoothing and the number of iterations in the Laplacian smoothing are also included in the figure. The root 
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mean square roughness (Rq) was determined by comparison of the topology boundaries before and after the 

Laplacian smoothing. It can be seen in Figure 16 that the surface roughness of the topologies from the BESO 

optimization increases as the mesh density decreases. Figure 17 shows the boundaries of X-FEM solutions for 

the same test case before and after smoothing. Compared to the BESO solutions, the surface roughness of the X-

FEM solutions are much lower and they need far fewer iteration steps in the Laplacian smoothing. Also it can be 

seen that unlike the BESO solutions, the surface roughness of the X-FEM solutions have little dependency on 

the mesh density. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

 
Figure 16. BESO solutions before/after smoothing. 
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Figure 17. X-FEM solutions before/after smoothing. 
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5. Conclusions 
 

In this study, the X-FEM and Isoline design methods are combined with an evolutionary optimization algorithm 

to determine the topology optimization of 2D continuum structures. Our results suggest that using X-FEM has 

significant advantages, not only does it avoids time consuming remeshing techniques, but also generates 

structures that have smooth boundaries requiring little or no further interpretation or post processing. Using 

simple test geometries, it has been shown that X-FEM based topology optimization has the potential for greater 

accuracy and more robust solutions with less dependence on mesh size than BESO, though this needs to be 

established for more realistic, 3D geometries. It is anticipated however that this method is relatively simple to 

extend. A possible route to achieving this may involve using 8-node brick elements where the solid part of the 

boundary element could be represented by sub-tetrahedrons.  
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