Skip to main content

Research Repository

Advanced Search

All Outputs (7)

Gel-Polymer Electrolytes Based on Poly(Ionic Liquid)/Ionic Liquid Networks (2020)
Journal Article
Sen, S., Goodwin, S. E., Barbará, P. V., Rance, G. A., Wales, D., Cameron, J. M., …Walsh, D. A. (2021). Gel-Polymer Electrolytes Based on Poly(Ionic Liquid)/Ionic Liquid Networks. ACS Applied Polymer Materials, 3(1), 200-208. https://doi.org/10.1021/acsapm.0c01042

The use of electrically charged, polymerized ionic liquids (polyILs) offers opportunities for the development of gel-polymer electrolytes (GPEs), but the rational design of such systems is in its infancy. In this work, we compare the properties of po... Read More about Gel-Polymer Electrolytes Based on Poly(Ionic Liquid)/Ionic Liquid Networks.

Best Practice for Evaluating Electrocatalysts for Hydrogen Economy (2020)
Journal Article
Bird, M. A., Goodwin, S. E., & Walsh, D. A. (2020). Best Practice for Evaluating Electrocatalysts for Hydrogen Economy. ACS Applied Materials and Interfaces, 12(18), 20500-20506. https://doi.org/10.1021/acsami.0c03307

Screening new electrocatalysts is key to the development of new materials for next-generation energy devices such as fuel cells and electrolysers. The counter electrodes used in such tests are often made from materials such as Pt and Au, which can di... Read More about Best Practice for Evaluating Electrocatalysts for Hydrogen Economy.

An ultra-high vacuum electrochemical/mass spectrometry study of anodic decomposition of a protic ionic liquid (2018)
Journal Article
Goodwin, S., Gibson, J., Jones, R., & Walsh, D. A. (2018). An ultra-high vacuum electrochemical/mass spectrometry study of anodic decomposition of a protic ionic liquid. Electrochemistry Communications, 90, https://doi.org/10.1016/j.elecom.2018.04.013

Protic ionic liquids (PILs) are ionic liquids that are formed by proton transfer from Brønsted acids to Brønsted bases, and which are being proposed for use in a wide range of electrochemical devices. In this contribution, we describe electrolysis of... Read More about An ultra-high vacuum electrochemical/mass spectrometry study of anodic decomposition of a protic ionic liquid.

The contrasting effects of diethylmethylamine during reduction of protons and oxidation of formic acid in diethylmethylammonium-based protic ionic liquids (2017)
Journal Article
Goodwin, S., Muhammad, S., Tuan, L., & Walsh, D. (2018). The contrasting effects of diethylmethylamine during reduction of protons and oxidation of formic acid in diethylmethylammonium-based protic ionic liquids. Journal of Electroanalytical Chemistry, 819, https://doi.org/10.1016/j.jelechem.2017.10.021

Ionic liquids are formally defined as liquids that consist entirely of ions, and which are liquid below 100 C. As these liquids are being proposed for use in a range of electrochemical devices and applications, understanding the electrochemical beha... Read More about The contrasting effects of diethylmethylamine during reduction of protons and oxidation of formic acid in diethylmethylammonium-based protic ionic liquids.

Electroanalysis of neutral precursors in protic ionic liquids and synthesis of high-ionicity ionic liquids (2017)
Journal Article
Sean, G., Daniel, S., Joshua, G., Jones, R., & Walsh, D. A. (in press). Electroanalysis of neutral precursors in protic ionic liquids and synthesis of high-ionicity ionic liquids. Langmuir, 33(34), https://doi.org/10.1021/acs.langmuir.7b02294

Protic ionic liquids (PILs) are ionic liquids that are formed by transferring protons from Brønsted acids to Brønsted bases. While they nominally consist entirely of ions, PILs can often behave as though they contain a significant amount of neutral... Read More about Electroanalysis of neutral precursors in protic ionic liquids and synthesis of high-ionicity ionic liquids.

Closed bipolar electrodes for spatial separation of H2 and O2 evolution during water electrolysis and the development of high-voltage fuel cells (2017)
Journal Article
Goodwin, S., & Walsh, D. A. (2017). Closed bipolar electrodes for spatial separation of H2 and O2 evolution during water electrolysis and the development of high-voltage fuel cells. ACS Applied Materials and Interfaces, 9(28), 23654-23661. https://doi.org/10.1021/acsami.7b04226

Electrolytic water splitting could potentially provide clean H2 for a future ‘Hydrogen Economy.’ However, as H2 and O2 are produced in close proximity to each other in water electrolysers, mixing of the gases can occur during electrolysis, with pote... Read More about Closed bipolar electrodes for spatial separation of H2 and O2 evolution during water electrolysis and the development of high-voltage fuel cells.

Hydrogen Electrooxidation under Conditions of High Mass Transport in Room-Temperature Ionic Liquids and the Role of Underpotential-Deposited Hydrogen (2016)
Journal Article
Goodwin, S. E., & Walsh, D. A. (2016). Hydrogen Electrooxidation under Conditions of High Mass Transport in Room-Temperature Ionic Liquids and the Role of Underpotential-Deposited Hydrogen. Journal of Physical Chemistry C, 120(21), 11498-11507. https://doi.org/10.1021/acs.jpcc.6b01592

The hydrogen oxidation reaction (HOR), an electrocatalytic reaction of fundamental and applied interest, was studied in the protic ionic liquid (PIL) diethylmethylammonium trifluoromethanesulfonate, [dema][TfO], at Pt electrodes using rotating disk e... Read More about Hydrogen Electrooxidation under Conditions of High Mass Transport in Room-Temperature Ionic Liquids and the Role of Underpotential-Deposited Hydrogen.