Skip to main content

Research Repository

Advanced Search

All Outputs (8)

Quantum nature of charge transport in inkjet-printed graphene revealed in high magnetic fields up to 60T (2024)
Journal Article
Cottam, N. D., Wang, F., Austin, J. S., Tuck, C. J., Hague, R., Fromhold, M., …Turyanska, L. (2024). Quantum nature of charge transport in inkjet-printed graphene revealed in high magnetic fields up to 60T. Small, Article 2311416. https://doi.org/10.1002/smll.202311416

Inkjet‐printing of graphene, iGr, provides an alternative route for the fabrication of highly conductive and flexible graphene films for use in devices. However, the contribution of quantum phenomena associated with 2D single layer graphene, SLG, to... Read More about Quantum nature of charge transport in inkjet-printed graphene revealed in high magnetic fields up to 60T.

Lattice strain enhanced phase transformation of NaYbF4: 2% Er3+ upconverting nanoparticles by tuning the molar ratio of Na+/Yb3+ (2024)
Journal Article
Xiao, W., Chen, J., Wang, F., Luan, W., Wu, Y., & Turyanska, L. (2024). Lattice strain enhanced phase transformation of NaYbF4: 2% Er3+ upconverting nanoparticles by tuning the molar ratio of Na+/Yb3+. Advanced Optical Materials, https://doi.org/10.1002/adom.202303132

NaYbF4 upconverting nanoparticles (UCNPs) have enhanced optical properties compared to the NaYF4 UCNPs. However, synthesis of monodisperse NaYbF4 with controllable size and optical properties poses challenges, and the mechanism of phase transformatio... Read More about Lattice strain enhanced phase transformation of NaYbF4: 2% Er3+ upconverting nanoparticles by tuning the molar ratio of Na+/Yb3+.

Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics (2023)
Journal Article
Bastola, A., He, Y., Im, J., Rivers, G., Wang, F., Worsley, R., …Turyanska, L. (2023). Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics. Materials Today Electronics, 6, Article 100058. https://doi.org/10.1016/j.mtelec.2023.100058

Inkjet printing offers a facile route for manufacturing the next generation of electronic devices, by combining the design freedom of additive manufacturing technologies with tuneable properties of functional materials and opportunities for their int... Read More about Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics.

Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals (2022)
Journal Article
Austin, J. S., Cottam, N. D., Zhang, C., Wang, F., Gosling, J. H., Nelson-Dummet, O., …Turyanska, L. (2023). Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals. Nanoscale, 15(5), 2134–2142. https://doi.org/10.1039/d2nr06429d

All-inorganic perovskite nanocrystals (NCs) with enhanced environmental stability are of particular interest for optoelectronic applications. Here we report on the formulation of CsPbX3 (X is Br or I) inks for inkjet deposition and utilise these NCs... Read More about Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals.

Functionalized Gold Nanoparticles with a Cohesion Enhancer for Robust Flexible Electrodes (2022)
Journal Article
Im, J., Trindade, G. F., Quach, T. T., Sohaib, A., Wang, F., Austin, J., …Tuck, C. (2022). Functionalized Gold Nanoparticles with a Cohesion Enhancer for Robust Flexible Electrodes. ACS Applied Nano Materials, 5(5), 6708-6716. https://doi.org/10.1021/acsanm.2c00742

The development of conductive inks is required to enable additive manufacturing of electronic components and devices. A gold nanoparticle (AuNP) ink is of particular interest due to its high electrical conductivity, chemical stability, and biocompati... Read More about Functionalized Gold Nanoparticles with a Cohesion Enhancer for Robust Flexible Electrodes.

Residual polymer stabiliser causes anisotropic electrical conductivity during inkjet printing of metal nanoparticles (2021)
Journal Article
Trindade, G. F., Wang, F., Im, J., He, Y., Balogh, A., Scurr, D., …Roberts, C. J. (2021). Residual polymer stabiliser causes anisotropic electrical conductivity during inkjet printing of metal nanoparticles. Communications Materials, 2(1), Article 47. https://doi.org/10.1038/s43246-021-00151-0

Inkjet printing of metal nanoparticles allows for design flexibility, rapid processing and enables the 3D printing of functional electronic devices through co-deposition of multiple materials. However, the performance of printed devices, especially t... Read More about Residual polymer stabiliser causes anisotropic electrical conductivity during inkjet printing of metal nanoparticles.

Universal mobility characteristics of graphene originating from charge scattering by ionised impurities (2021)
Journal Article
Gosling, J. H., Makarovsky, O., Wang, F., Cottam, N. D., Greenaway, M. T., Patanè, A., …Fromhold, T. M. (2021). Universal mobility characteristics of graphene originating from charge scattering by ionised impurities. Communications Physics, 4(1), Article 30. https://doi.org/10.1038/s42005-021-00518-2

Pristine graphene and graphene-based heterostructures can exhibit exceptionally high electron mobility if their surface contains few electron-scattering impurities. Mobility directly influences electrical conductivity and its dependence on the carrie... Read More about Universal mobility characteristics of graphene originating from charge scattering by ionised impurities.

Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices (2020)
Journal Article
Wang, F., Gosling, J. H., Rance, G. A., Trindade, G. F., Makarovsky, O., Cottam, N. D., …Turyanska, L. (2021). Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices. Advanced Functional Materials, 31(5), Article 2007478. https://doi.org/10.1002/adfm.202007478

© 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH 2D materials have unique structural and electronic properties with potential for transformative device applications. However, such devices are usually bespoke structures ma... Read More about Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices.