Skip to main content

Research Repository

Advanced Search

All Outputs (11)

Cellular Responses and Targets in Food Spoilage Yeasts Exposed to Antifungal Prenylated Isoflavonoids (2023)
Journal Article
Kalli, S., Vallieres, C., Violet, J., Sanders, J., Chapman, J., Vincken, J., …Araya-Cloutier, C. (2023). Cellular Responses and Targets in Food Spoilage Yeasts Exposed to Antifungal Prenylated Isoflavonoids. Microbiology Spectrum, 11(4), Article e0132723. https://doi.org/10.1128/spectrum.01327-23

Prenylated isoflavonoids are phytochemicals with promising antifungal properties. Recently, it was shown that glabridin and wighteone disrupted the plasma membrane (PM) of the food spoilage yeast Zygosaccharomyces parabailii in distinct ways, which l... Read More about Cellular Responses and Targets in Food Spoilage Yeasts Exposed to Antifungal Prenylated Isoflavonoids.

Inkjet 3D Printing of Polymers Resistant to Fungal Attachment (2021)
Journal Article
He, Y., Vallières, C., Alexander, M. R., Wildman, R. D., & Avery, S. V. (2021). Inkjet 3D Printing of Polymers Resistant to Fungal Attachment. Bio-protocol, 11(9), Article e4016. https://doi.org/10.21769/BioProtoc.4016

Inkjet 3D printing is an additive manufacturing method that allows the user to produce a small batch of customized devices for comparative study versus commercial products. Here, we describe the use of a commercial 2D ink development system (Dimatix... Read More about Inkjet 3D Printing of Polymers Resistant to Fungal Attachment.

Potentiated inhibition of Trichoderma virens and other environmental fungi by new biocide combinations (2021)
Journal Article
Vallières, C., Alexander, C., & Avery, S. V. (2021). Potentiated inhibition of Trichoderma virens and other environmental fungi by new biocide combinations. Applied Microbiology and Biotechnology, 105, 2867-2875. https://doi.org/10.1007/s00253-021-11211-3

Fungi cause diverse, serious socio-economic problems, including biodeterioration of valuable products and materials that spawns a biocides industry worth ~$11 billion globally. To help combat environmental fungi that commonly colonise material produc... Read More about Potentiated inhibition of Trichoderma virens and other environmental fungi by new biocide combinations.

Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration (2020)
Journal Article
Vallieres, C., Hook, A. L., He, Y., Crucitti, V. C., Figueredo, G., Davies, C. R., …Avery, S. V. (2020). Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration. Science Advances, 6(23), Article eaba6574. https://doi.org/10.1126/sciadv.aba6574

© 2020 The Authors. Fungi have major, negative socioeconomic impacts, but control with bioactive agents is increasingly restricted, while resistance is growing. Here, we describe an alternative fungal control strategy via materials operating passivel... Read More about Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration.

The Preservative Sorbic Acid Targets Respiration, Explaining the Resistance of Fermentative Spoilage Yeast Species (2020)
Journal Article
Stratford, M., Vallières, C., Geoghegan, I. A., Archer, D. B., & Avery, S. V. (2020). The Preservative Sorbic Acid Targets Respiration, Explaining the Resistance of Fermentative Spoilage Yeast Species. mSphere, 5(3), https://doi.org/10.1128/mSphere.00273-20

Copyright © 2020 Stratford et al. A small number (10 to 20) of yeast species cause major spoilage in foods. Spoilage yeasts of soft drinks are resistant to preservatives like sorbic acid, and they are highly fermentative, generating large amounts of... Read More about The Preservative Sorbic Acid Targets Respiration, Explaining the Resistance of Fermentative Spoilage Yeast Species.

Epoxy–amine oligomers from terpenes with applications in synergistic antifungal treatments (2019)
Journal Article
O’Brien, D. M., Vallieres, C., Alexander, C., Howdle, S. M., Stockman, R. A., & Avery, S. V. (2019). Epoxy–amine oligomers from terpenes with applications in synergistic antifungal treatments. Journal of Materials Chemistry B, 7(34), 5222-5229. https://doi.org/10.1039/c9tb00878k

A bis-epoxide monomer was synthesised in two steps from (R)-carvone, a terpenoid renewable feedstock derived from spearmint oil, and used to prepare ?-aminoalcohol oligomers in polyaddition reactions with bis-amines without requiring solvent or catal... Read More about Epoxy–amine oligomers from terpenes with applications in synergistic antifungal treatments.

Novel combinations of agents targeting translation that synergistically inhibit fungal pathogens (2018)
Journal Article
Vallières, C., Raulo, R., Dickinson, M., & Avery, S. V. (2018). Novel combinations of agents targeting translation that synergistically inhibit fungal pathogens. Frontiers in Microbiology, 9, Article 2355. https://doi.org/10.3389/fmicb.2018.02355

A range of fungicides or antifungals are currently deployed to control fungi in agriculture or medicine, but resistance to current agents is growing so new approaches and molecular targets are urgently needed. Recently, different aminoglycoside antib... Read More about Novel combinations of agents targeting translation that synergistically inhibit fungal pathogens.

The candidate antimalarial drug MMV665909 causes oxygen-dependent mRNA mistranslation and synergises with quinoline-derived antimalarials (2017)
Journal Article
Vallieres, C., & Avery, S. V. (2017). The candidate antimalarial drug MMV665909 causes oxygen-dependent mRNA mistranslation and synergises with quinoline-derived antimalarials. Antimicrobial Agents and Chemotherapy, 61(9), Article e00459-17. https://doi.org/10.1128/AAC.00459-17

To cope with growing resistance to current antimalarials, new drugs with novel modes of action are urgently needed. Molecules targeting protein synthesis appear to be promising candidates. We identified a compound (MMV665909) from the MMV Malaria Box... Read More about The candidate antimalarial drug MMV665909 causes oxygen-dependent mRNA mistranslation and synergises with quinoline-derived antimalarials.

Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond (2016)
Journal Article
Phillips, M. A., Van Voorhis, W. C., Adams, J. H., Adelfio, R., Ahyong, V., Akabas, M. H., …Willis, P. A. (2016). Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathogens, 12(7), Article e1005763. https://doi.org/10.1371/journal.ppat.1005763

A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still larg... Read More about Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond.

The antimalarial drug primaquine targets Fe–S cluster proteins and yeast respiratory growth (2015)
Journal Article
Lalève, A., Vallieres, C., Golinelli-Cohen, M., Bouton, C., Song, Z., Pawlik, G., …Meunier, B. (2016). The antimalarial drug primaquine targets Fe–S cluster proteins and yeast respiratory growth. Redox Biology, 7, https://doi.org/10.1016/j.redox.2015.10.008

Malaria is a major health burden in tropical and subtropical countries. The antimalarial drug primaquine is extremely useful for killing the transmissible gametocyte forms of Plasmodium falciparum and the hepatic quiescent forms of P. vivax. Yet its... Read More about The antimalarial drug primaquine targets Fe–S cluster proteins and yeast respiratory growth.

Novel, synergistic antifungal combinations that target translation fidelity (2015)
Journal Article
Moreno-Martinez, E., Vallieres, C., Holland, S. L., & Avery, S. V. (in press). Novel, synergistic antifungal combinations that target translation fidelity. Scientific Reports, 5(16700), https://doi.org/10.1038/srep16700

There is an unmet need for new antifungal or fungicide treatments, as resistance to existing treatments grows. Combination treatments help to combat resistance. Here we develop a novel, effective target for combination antifungal therapy. Different a... Read More about Novel, synergistic antifungal combinations that target translation fidelity.