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Abstract

The detection and inactivation of pathogenic strains of bacteria continues to be an important 

therapeutic goal. Hence, there is a need for materials that can bind selectively to specific 

microorganisms, for diagnostic or anti-infective applications, but which can be formed from 

simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a 

copper-mediated radical polymerisation of synthetic monomers at cell surfaces, generating 

polymers in situ that bind strongly to the microorganisms which produced them. This ‘bacteria-

instructed synthesis’ can be carried out with a variety of microbial strains, and we show that the 

polymers produced are self-selective binding agents for the ‘instructing’ cell types. We further 

expand on the bacterial redox chemistries to ‘click’ fluorescent reporters onto polymers directly at 

the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding 

and visualisation of pathogens.

The recognition and inactivation of pathogenic microorganisms remains a scientific 

challenge and a practical problem of enormous significance.1 Conventional antibiotics have 

been extremely successful in combating microbial infections, but the emergence of resistant 

strains of many pathogens is an increasing concern. New approaches to prevent bacterial 
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infections are required that do not invoke the selection of resistant populations.2 Non-lethal 

means for targeting bacteria include inactivating their invasive pathways, for example by 

disrupting cell-cell signalling mechanisms known as Quorum Sensing within microbial 

populations,3-5 or, more simply, by sequestering bacteria away from an infective site.6 The 

latter route is attractive also from a diagnostic perspective,7 as the binding of a specific 

organism may facilitate detection of pathogens7,8 and also aid in choice of therapeutic. 

However, the selective binding of specific bacterial species and/or strains is difficult and in 

current practice requires expensive ‘cold-chain’ reagents such as antibodies and aptamers 

which precludes their use in non-hospital environments or in developing nations. 

Accordingly, we have been interested in developing a route to cell-binding agents that does 

not require delicate and expensive biological affinity agents, and which can be tailored to 

produce sequestrants for a wide range of biological targets with minimal changes in 

methodology.

Approaches to cell-binding agents have included soft-lithography, molecular imprinting, and 

multivalent carbohydrate-receptor mediated cell capture.9-15 While each technique has 

advantages and a key recent paper has shown the application of toxin-binding polymers in 

vivo16 nevertheless, there is no current platform concept which can be used to generate 

materials which might be adapted for different targets as desired. Of particular utility would 

be enhanced methods for generating polymeric agents which are hydrophilic, soluble and 

derived from accessible precursors, as such materials are already widely used in diagnostic 

assays. Hydrophilic polymers are of note too since nearly all bacteria produce complex 

macromolecules in the form of an Extra-Cellular Matrix (ECM). The ECM helps to support 

cell communities and to tailor niche environments to suit the bacterial population as a whole. 

It would be particularly advantageous for targeting bacteria if synthetic mimics of these 

ECM materials could be produced, ideally by a process which exploits natural metabolic 

processes. For example, bacteria adapt to their surroundings with a variety of redox enzyme 

cascades and metal-binding/efflux systems. Consideration of copper-homeostasis 

mechanisms in Escherichia coli (E. coli) and other bacteria17-19 suggested to us that a 

wholly synthetic ECM production process, i.e. free radical polymerisation catalysed by 

copper species, could be induced from cell populations by hijacking the copper-binding and 

redox pathways with synthetic monomers rather than biological precursors. In such a way, 

bacteria might be directed into producing a synthetic ECM rather than a natural one, and at 

the same time entrap themselves in an environment rather different to that intended in their 

normal surroundings,

We report here the first example wherein bacterial metabolic processes have been co-opted 

for the synthesis of acrylic polymers by copper catalysed ATRP, and in such a way that the 

polymers inherently grow from monomers bound at the bacterial cell surface. In this 

manner, the bacteria select their own binding agents, and grow different polymers at their 

surfaces compared to polymers formed in solution, or in the absence of bacteria. We show 

further that monomer composition for the resultant materials is affected by the templating 

process and leads to polymers that can be specific binding agents for the bacteria which 

templated them – a process we denote as “bacteria-instructed synthesis” (Figure 1) as in 

effect the bacteria direct the formation of polymers from their surfaces. The same 
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methodology can be applied to similarly catalysed processes such as azide-alkyne 

cycloadditions, a process that provides a simple in-situ labelling protocol (Figure 1). In 

addition, we have shown that these protocols have application across a range of bacteria, 

including clinically relevant pathogenic strains.

The first part of our strategy involved development of a novel bacteria-mediated Atom 

Transfer Radical Polymerisation (b-ATRP) process. Key papers describing the mechanisms 

of ATRP and SET-LRP have shown that reduction of copper (II) species is critical in 

controlling the radical generation and regeneration processes that lead to pseudo-living 

polymerisations.20-25 It has also been established that certain bacterial strains ensure safe 

copper handling under varying environmental conditions by binding and redox cascades. For 

example, the Cu(I)-translocating P-type ATPase CopA, the central component in copper 

homeostasis, is responsible for removing excess Cu(I) from the cytoplasm.26 The multi-

copper oxidase CueO and the multi-component copper transport system CusCFBA act to 

safeguard the periplasmic space from copper-induced toxicity. We reasoned therefore that 

the reducing activity of certain bacteria via respiratory chain components, for example in E. 

coli by quinones and, to a lesser degree, NADH dehydrogenase might be sufficient to 

generate the Cu(I) catalytic species required to initiate an ATRP-type polymerization.26,27

We chose two specific monomers for bacterial templating, a permanent cation, ([2-

(methacryloyloxy)-N,N,N-trimethylethanaminium chloride-(TMAEMA), which we 

expected would bind strongly to negatively charged cell surfaces, and a zwitterionic 

sulfobetaine, [2-(N-3-Sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate, (MEDSA) 

which was intended to aid polymer solubility as well as act as a ‘spacer’ between binding 

cationic sections. Long-chain quaternised amines are toxic to bacteria, but polymers 

prepared from the shorter chain TMAEMA as well as the sulfobetaine derivative were found 

not to cause significant cell death during preliminary experiments (data not shown). Poly(2-

TMAEMA) was found to be a potent sequestrant for a range of bacteria, while 

poly(MEDSA) showed a much lower ability to cluster the same cell types (ESI). These 

experiments thus defined the intended boundary conditions of polymer space, i.e. a highly 

potent binder for all bacteria (pTMAEMA) at one extreme, and a low-binding affinity, 

highly cell compatible polymer (pMEDSA) at the other.

Investigations into the redox potential of bacterial growth suspensions confirmed the 

presence of a highly reductive environment suitable for activating ATRP-type reactions 

across a range of cell types, including model strains of the clinically important species E. 

coli and P. aeruginosa (MG1655 and PAO1, respectively). In typical experiments with E. 

coli strains, the redox potential in suspensions after washing and concentrating the cells was 

Eh = −244 mV. We therefore considered that adaptations of the Activators Generated by 

Electron Transfer (AGET) ATRP and Single Electron Transfer methodologies, in which 

catalytically active Cu(I) catalytic species are continually regenerated under reducing 

conditions, should enable polymers to be prepared with very low amounts of added copper. 

Polymerisations were carried out with the TMAEMA and MEDSA monomers both in the 

absence and in the presence of bacteria, Cu(II)Br2, ATRP ligands and an ATRP-initiator and 

the resultant polymers recovered by successive wash and filter steps. As apparent from 

Figure 2, good control over polymerisation kinetics could be achieved through tailoring 
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ratios of ATRP initiator: copper (II): ligand. The total Cu content in these reactions was 4.42 

ng/mL, well below concentrations causing cytotoxic effects.

Having established that the bacteria could indeed promote polymerisation, polymers were 

isolated and subsequently analysed in terms of monomer composition and their ability to 

cluster bacteria. Our working hypothesis was that monomers in closest proximity to the cell 

surface, i.e. those bound or closest to the bacterial outer membranes, should polymerise first, 

while those less strongly associated could form polymers also when they diffused into the 

‘reductive zone’ nearest the bacteria, where a favourable ratio between Cu(I)/Cu(II) 

activating/deactivating catalytic species can be achieved. We thus expected that two 

predominant populations of polymers would be produced: the first population being 

polymers grown at and templated by the bacterial surface, and a second more random-

sequenced polymer formed in the solution away from the cell surface. In turn, we expected 

the strongly-templated polymers (denoted hereafter as STPs) to have a sequence of 

monomers encoded in their structure that mirrored components of the bacterial surface, and 

hence a higher propensity to bind the cells that templated them, compared to those of the 

polymers formed more extensively in solution (denoted as Weakly-Templated Polymers, or 

WTPs). Furthermore, the polymers grown in the presence of bacteria were expected to 

differ from control polymers (CPs) grown under the same conditions using ascorbic acid as 

the reducing agent but in the absence of cells.

Initial experiments indicated that, as hypothesised, two populations of polymers could be 

recovered from polymerisations carried out in the presence of bacteria. Weakly bound 

WTPs, dissolved in the supernatant, were isolated by removal of the bacterial clusters by 

centrifugation. A second fraction of polymers (STP) was recovered by resuspension of the 

centrifuged bacteria in high ionic strength buffer NaCl (0.15M, aq) followed by a second 

centrifugation step. The polymers recovered from the higher ionic strength salt solution, i.e. 

the strongly-templated fraction showed much enhanced cell binding (as denoted by cluster 

formation, Figure 2D) than fractions of polymers obtained from bacterial culture 

supernatants after centrifugation (the WTP fraction). Not only were cell clusters formed to a 

greater extent with templated polymers, but also aggregation and sequestration of cells took 

place more quickly than with WTPs or CPs in the same concentrations and under the same 

experimental conditions (Fig 2D and E).

The ability of templated polymers to exhibit specificity for the cell surfaces on which they 

were grown immediately suggested that polymers templated by different bacteria might 

show different selectivities for the different cell types, even if the same monomers were 

utilised in the b-ATRP synthesis. Accordingly, polymers were grown in the presence of both 

E. coli MG1655 (mCherry) and P. aeruginosa PAO1 (pyocyanin-negative mutant ΔphzAG1 

ΔphzAG2 of the Nottingham PAO1 strain (PAKR76)). Following the synthesis steps, 

bacteria were washed sequentially with water and NaCl (0.15M, aq) to yield distinct STP 
and WTP polymer populations which varied in their composition (Table 1). Marked 

differences were observed in co-monomer ratios in the templated polymer fractions and 

those in the control polymers, and these differences in composition were outside the range 

based on reactivity ratios of the monomers (Table 1 and Table S02, ESI).
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The interaction between polymers and the bacteria was probed using microscopy, light 

scattering measurements of cell-polymer suspensions and turbidimetry assays. The ability of 

polymers to bind to particular cell types was extrapolated from their ability to form bacterial 

aggregates. The link between binding affinity and aggregate formation is not always 

quantitative as it includes a kinetic component which can vary with cell concentration. 

However, for the constant experimental conditions in our assays, aggregate quantitation via 

light scattering provided a rapid and convenient readout most closely analogous to the 

intended diagnostic microbiology setting. The aggregate size distribution and microscopy 

assays which illustrate the binding /cell clustering process are shown in Figure 3.

As apparent from Figure 3, the E. coli-templated polymers rapidly generated larger 

aggregates with their ‘matched’ bacteria i.e. E coli than with the ‘mis-matched’ cells P. 

aeruginosa. In addition, the P. aeruginosa-templated polymers formed larger P. aeruginosa 

clusters than E. coli clusters i.e. the “matched” template (STP) polymer pairs in each case 

(Figure 3C(i) and (iv)). Significantly, the bacterial templating effect was confirmed through 

quantification of the NMR integrals, which indicated there were marked differences in 

overall monomer composition across the sets of polymers, with increased incorporation of 

the quaternary ammonium TMAEMA monomer in the STPs compared to the WTP and 

control polymers (Table 1). Intriguingly, although the proportion of the cationic TMAEMA 

units was higher overall in the P. aeruginosa-templated polymers than in the E. coli-

templated polymers, the polymers formed in the presence of E. coli were better overall at 

cluster formation for both bacteria than those synthesised in the presence of P. aeruginosa 

(ESI).

This suggested that the cell-binding effects of templated polymers were due to subtle 

variations in monomer sequence and spacing across polymer chains grown from different 

cell surfaces compared to those formed extending further into solution. Indeed, while we 

concentrated our cell binding studies on zwitterionic and quaternary ammonium-functional 

monomers, this difference in final monomer composition through carrying out a 

polymerisation in the presence of bacteria was also observed for polymers incorporating 

non-charged diol-functionalised monomers (glycerol methacrylate) as well as the 

zwitterionic components (Table S01, ESI). The diol-functionalised polymers also displayed 

a templating effect, with enhanced binding of bacteria by polymers grown in the presence of 

cells compared to polymers with the same overall monomer composition but grown in the 

absence of bacteria (Figure S22, ESI). In turn, this implied that some bacterial surface 

properties such as charge and receptor spacing were encoded into the monomer sequences in 

the templated polymer structures, although sensitivity of detection in NMR of block 

sequences did not allow unambiguous confirmation of sequence effects. In gram-negative 

bacteria the outer membrane is composed of tightly packed lipopolysaccharides (LPS),28 

which, for E. coli, occupy ~75% of the surface.29,30 The polysaccharides are directed 

outwards, extending up to 10 nm from the surface, while the presence of phosphate groups 

and anionic carbohydrates gives the bacterial membranes an overall negative charge. The 

density of these charges tends to be significantly higher than in mammalian cells, a feature 

that has been exploited in selective antimicrobial polymers.31 For the degrees of 

polymerisation for both control and templated polymers calculated from NMR, and the 
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corresponding predicted chain lengths of the polymers (5-15 nm, dependent on local charge 

content near the bacterial surface, Table S03, ESI), it is quite plausible that charged 

monomers in the templated polymers spanned complementary functional groups at the 

bacterial surfaces. We also found that while the strongly-templated (STP) fraction 

represented no more than 22 % of the total yield of polymer in a ‘b-ATRP’ synthesis, the 

WTP fraction was nevertheless different in co-monomer ratio compared to polymers grown 

in the absence of bacteria (CPs) for all the monomer combinations tried. This indicated that 

b-ATRP was the dominant polymerisation process in these experiments, and that the 

templating process generated an inherently different polymer population than in the cell-free 

controls. Estimated molar masses from NMR, based on overall monomer conversion 

indicated small differences in calculated chain lengths for WTP and STP fractions (Table 

S03, ESI), and GPC indicated essentially similar Mw/Mn ratios. Further experiments showed 

that the change in monomer composition observed in templated co-polymers compared to 

control polymers was not due to selective adsorption of sub-compositions from within the 

total fraction of polymers grown in solution. Incubation of control polymers with E coli or 

P. aeruginosa and subsequent water and salt washes yielded identical monomer 

compositions within the adsorbed fractions to those of the parent control polymer, and no 

co-monomer compositions matching those of the templated polymers were observed.

Having demonstrated that two different species of bacteria could template the synthesis of 

polymeric sequestrants, we sought to expand the b-ATRP and ‘bacteria-instructed synthesis’ 

approach to more challenging and clinically important outcomes. Specifically, we aimed to 

template polymer growth from wild-type bacteria or clinical isolates, which exhibit rather 

different and variable cell surface components compared to laboratory strains.32 Preparation 

of polymers by this method might be an important platform method for generating cell 

binding or detecting agents as bacterial surface structures and capsules vary widely across 

clinical isolates, and sequestrants optimised to bind a lab strain might be ineffective against 

a newly emerging pathogenic strain.

A uropathogenic bacterium, the clinical isolate E. coli 539 (GFP-labelled), was selected and 

evaluated for b-ATRP polymer synthesis. The same set of template monomers was used as 

before, and polymers were formed rapidly in the presence of E coli 536 GFP. As apparent 

from Figure 4, polymers grown in the presence of the clinical strain were successful 

sequestrants of E coli 536 GFP, despite the presence of capsule surface components on this 

bacterium that were not present in the lab strains originally used to select monomers for cell 

binding.32,33 Thus even for the unoptimised monomer set for this cell type, the b-ATRP 

approach generated polymers able to bind strongly their templating bacteria.

The culminating experiments sought to demonstrate not only a cell capture application for 

the b-ATRP but also a diagnostic component. The widely-utilised copper-catalysed Huisgen 

cycloaddition,34 an important member of the ‘click chemistry’ family of chemical 

transformations, was an obvious choice for further exploiting the bacterial redox cascades. 

We therefore prepared a pro-fluorescent marker compound, with a terminal azide, and a 

bacterial-binding cationic polymer with pendant acetylenic groups. Incubation of a non-

labelled non-fluorescent E. coli MG1655 strain with mixtures of individual polymer, azide 

or copper(II) species yielded no fluorescence. By contrast, within 5 minutes of 
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administration of E. coli suspensions to a mixture of the cell-binding acetylenic polymer, a 

highly fluorescent suspension resulted (Figure 4). These experiments also showed 

aggregation of the bacteria into large fluorescent clusters, indicating an experimentally 

simple dual sequestration and in-situ (‘b-click’) labelling of bacteria in a single step. For 

practical applications, the ability to label a range of cell types in a non cold-chain low-tech 

environment is advantageous, thus we used the same ‘b-click’ approach to label bacterial 

cultures directly in the plates. The strains used ranged across known pathogens such as 

Clostridium difficile, Yersinia pseudotuberculosis, Helicobacter pylori and Campylobacter 

jejuni, and fluorescence was apparent immediately on addition of labelling reagent. We 

deliberately did not optimise conditions for these tests to establish the feasibility of a simple 

diagnostic test, but noted that varying intensities of fluorescent output were obtained across 

the range of bacteria, suggesting that different polymers and in situ labelling species could 

be adopted to fine tune this assay for cell selectivity. Finally, we used a simple mobile phone 

camera to record the fluorescence output directly from the 96-well plates (Figure 4 C iii) in 

ambient conditions thus demonstrating the flexibility of the ‘b-click’ labelling methodology.

Taken together, the experiments show that bacterial metabolic processes are versatile 

enough not only to grow synthetic polymers by a controlled radical mechanism, but also to 

label polymer side-chains in situ via azide-alkyne chemistry. The analogies between the b-

ATRP process and ‘click’ chemistries were readily demonstrated by the ‘b-click’ reactions 

of the pro-fluorescent markers at the surfaces of a range of cells. The implications of this 

work are therefore apparent in a detection setting wherein selective binding of one cell type 

be a specific polymer could be further amplified by a labelling reaction which can only 

occur at the surface of the desired bacterium to be detected. It is important to note that the 

cell-mediated chemistries employ readily-available materials which do not require cold-

chain storage, and thus are adaptable for less-specialised laboratory settings. We also used a 

fractional sub-set of the many possible monomers for the b-ATRP reactions, suggesting that 

further refinement of binding specificity should be possible through judicious choice and 

variation of polymer components. We therefore believe this method could, if developed 

further, define a new platform of materials that can be adapted for a range of cell-specific 

diagnostic and therapeutic applications as desired.

Methods

Materials

Monomers were prepared according to literature procedures as detailed in Supporting 

Information. All other chemicals were purchased from Sigma-Aldrich® or Acros® and used 

without further purification. All solvents were HPLC grade, purchased from Sigma-

Aldrich® or Fisher Scientific®, and used without further purification.

Escherichia coli MG1655 was obtained from stocks held within Nottingham University. 

Fluorescent E. coli MG1655 was generated using a plasmid obtained from the Tsien 

laboratories35 and the plasmid inserted using electroporation, before selecting the mutants 

which had taken up the plasmid using 100 μg/mL ampicillin LB plates and media. 

Fluorescence was increased by growing in the presence of 0.2% arabinose. The GFP-

labelled strain used for fluorescent microscopy and rebinding studies was a P. aeruginosa 
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PAO1 (Nottingham) wild type containing the pmE6032 GFP plasmid. The P. aeruginosa 

strain used for b-ATRP and click chemistry was a pyocyanin-negative mutant (ΔphzAG1 

ΔphzAG2) of the Nottingham PAO1 strain (PAKR76).

Microbial templated polymers

p(TMAEMA-co-MEDSA) (P1)

Control polymer by conventional AGET ATRP

To a reaction flask, 144 mg (0.695 mmol) of TMAEMA, 194 mg (0.695 mmol) of MEDSA, 

1.554 mg (5.6 μmol) of In1, 200 μL of a 0.069 M aqueous solution with CuBr2 and TPA, 

and 50 μL of DMSO were added. This mixture was deoxygenated with gentle nitrogen 

bubbling for 30 minutes over ice after which 270 μL of a degassed 1 mg/mL solution of 

ascorbic acid were added to begin the polymerisation. The polymerisation was monitored 

by 1H-NMR spectroscopy over time and when the desired conversion was reached (Table 

S01) the polymerisation was terminated by exposing to air. The polymers were obtained by 

dialysis against water for 3 days followed by freeze-drying to yield a white amorphous solid 

(CP). 1H-NMR (D2O, 400 MHz) δ (ppm): 1.0-2.0 (m, 6H, CH3), 2.28 (m, 2H, CH2SO3), 

2.98 (m, 2H, CH2CH2SO3), 3.60 (m, 2H, CH2CH2CH2SO3), 3.2 (m, 15H, N(CH3)), 3.78 

(m, 4H, NCH2), 4.49 (m, 4H, COCH2).

Microbial directed polymer synthesis by b-ATRP

To a reaction flask, 144 mg (0.695 mmol) of TMAEMA, 194 mg (0.695 mmol) of MEDSA, 

1.55 mg (5.60 μmol) of the morpholine initiator In1 and 50 μL of DMSO were added. This 

mixture was mixed with bacteria as a 7 mL suspension with an optical density at 600 nm of 

93.6 and deoxygenated for 30 minutes over ice after which 200 μL of a degassed 0.69 mM 

aqueous solution with CuBr2 and TPA were added to begin the polymerisation. The reaction 

was monitored by 1H-NMR spectroscopy when the desired conversion was reached (Table 

S01) the polymerisation was terminated by exposing to air. Polymers were obtained from 

the reaction by first washing the cells with deionised water (WTPs) (3 × 5 mL) followed by 

washing with a saturated solution of sodium chloride (0.15M aq) (STPs) (3 × 5 mL). These 

two separated solutions were then dialysed against water for 3 days followed by freeze 

drying to obtain the polymers as a white amorphous solid.

Details of fluorescent monomer and polymer syntheses for bacterial labelling experiments 

are given in the Electronic Supporting Information (ESI).

Aggregation Experiments

Bacterial aggregation by turbidimetry

The ability of the polymers to aggregate bacteria was initially evaluated by turbidimetry 

experiments. Briefly, polymer solutions were prepared at a concentration of 1 mg/mL in 

sterile deionised water. Bacteria were grown to an optical density at 600 nm (OD600) such 

that they were still in the exponential phase of their growth curve (OD600 around 0.4), at 

which point, they were washed once with PBS and twice with sterile deionised water. The 

cells were finally resuspended to a cell density such that when they were mixed with the 
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polymer solutions the OD600 of the suspension was ≈ 1.9. The polymer solution (0.5 mL) 

was added to a UV cuvette followed by 1 mL of the bacteria suspension. The OD600 was 

quickly recorded (t0) and the change in OD600 was monitored with time.

Polymer-bacteria cluster measurements

Size distributions of bacterial clusters were determined under moderate stirring (default 

speed 5 setting) to the required concentration as indicated by the in-built display software. 

Particle size ranges were defined using PSS-Duke standards (Polymer Standard Service, 

Kromatek Ltd, Dunmow, UK). Particle size distribution was then determined as a function 

of the particle diffraction using the Coulter software (version 2.11a) and plotted as a 

function of the percentage of distribution volume.

In a typical experiment, 200 μL of a bacterial suspension with an OD600 of 1.9 were added 

to the flow cell (~ 14 mL) to obtain an obscuration of 8-12%. At this point the t0 population 

distribution was recorded with constant mixing. Then 100 μL of a 1 mg/mL polymer 

solution were added, the mixture was allowed to equilibrate and the population distribution 

was recorded after 15 and 30 minutes.

In order to determine the relative populations of individual bacteria, dimers and clusters, 

particle size distributions were deconvoluted using the peakfit.m command (http://

terpconnect.umd.edu/~toh/spectrum/InteractivePeakFitter.htm#command) in MATLAB® 

R2012a package. The size of the clusters was then normalized to a single bacteria size (~ 1.5 

μm), so that the relative population of unimers (~ 1.5 μm), dimers (~ 3 μm) and clusters (≥ 

4.5 μm) could be plotted as a function of time.

Optical Microscopy

Aliquots (10μL) of the samples used to measure average cluster size were collected after 60 

min, mounted on a glass slide with a cover slip on top and examined with an optical 

microscope.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of the ‘bacteria-instructed synthesis’ process
In (a) bacteria induce polymerisation in monomer / catalyst suspensions to generate a 

synthetic extra-cellular matrix of polymers (b). Recovery of polymers from the suspensions 

leads to two fractions (c), with polymer obtained from the aqueous phase suspension around 

the bacteria denoted as ‘non-templated’ and a second fraction obtained from a wash of the 

cell surfaces denoted as ‘templated’. Incubation of polymers with bacteria results in low 

binding of cells for which the polymer is non-templated (d), or where a polymer templated 

with one cell type (shown in orange) is incubated with a cell (shown in green) of another 

type (e). Addition of a polymer, templated by one cell type, with its own ‘matched’ cell 

population results in the formation of large polymer – cell clusters (g), as the templated 

polymers sequester the bacteria which ‘instructed’ their formation with high affinity. The 

same reducing environment at bacterial surfaces which aids the polymer synthesis can also 

be used to label the cells in situ (g) via pro-fluorescent markers, which react with cell-

surface bound polymers containing ‘clickable’ residues.
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Figure 2. Generation of a reductive environment during bacteria-instructed synthesis and 
evaluation of the cell-binding properties of the resultant polymers
Polymers grown in the presence of bacteria (‘templated’) exhibit different properties 

compared to those grown in the same conditions but without the cells (‘control’). In (A) are 

shown (i) the changes in redox potential of suspensions (red line) as E. coli cells proliferate 

and enter stationary phase (optical density at 600 nm, green line), and in (ii) the kinetics of 

polymer growth in E coli suspensions at different ratios of polymerisation initiator: copper 

(II): ligand. In (B) the templating process is shown schematically, while in (C), fluorescence 

microscopy shows clusters of mCherry-labelled bacteria in presence of templated polymer, 
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indicating a high affinity of the polymer for the cell type by which it was templated. This is 

in contrast to the isolated cells observed after incubation with control polymer after 30 min 

(insets show phase contrast images from the selected sections to show depth of clustering). 

In (D) bacterial aggregation is quantified via Coulter counter analysis of polymer-bacteria 

clusters: in D(i) ~ 50 μm clusters are apparent within 15 min for the templated species in 

contrast to the lack of cluster formation (D(ii) for the control polymers. In (E) optical 

density measurements confirm rapid binding and sequestration of E. coli by polymers grown 

in the presence of E. coli and recovered from the cells by a high salt wash step (‘strongly-

templated’ polymers).
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Figure 3. Demonstration of self-selective microbial binding by ‘bacteria-instructed polymers’
In (A) the experimental design for the cell-selective polymer binding assays is shown. 

Bacteria (E. coli, depicted in orange, or P. aeruginosa, shown in green) were used to 

template bacterial-mediated synthesis to generate two polymer fractions, shown 

schematically below the cells. ‘Weakly-Templated Polymers’ (WTP) were obtained from 

the supernatant following cell centrifugation while the more tightly-bound ‘Strongly-

Templated Polymers’ (STP), were recovered from the bacteria by a salt solution wash. In 

(B) are shown fluorescence micrographs of experiments where polymers templated with E 

coli MG1655 (expressing mCherry, orange-red) and P aeruginosa PAO1 (expressing GFP, 
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green) were incubated with their ‘matched’ bacteria (i,e. fresh suspension of the cell strains 

used to template synthesis) and with ‘mismatched’ bacteria (i.e. P. aeruginosa suspensions 

added to polymers grown from E. coli and vice versa). Micrographs labelled ‘Control’ refer 

to incubations of cells with polymers grown in the absence of cells. The ‘mix and match’ 

combinations of bacteria, the polymers templated from them and the non-templated 

polymers are shown by connecting red arrows for E coli cells and green arrows for P. 

aeruginosa (images A to B). Cell aggregation by polymers, as shown in (B), is quantified in 

(C), with each graph in (C i-iv) relating to microscopy images of the ‘matched’ and ‘mis-

matched’ combinations of bacteria and polymers shown in (B) above. The distributions of E. 

coli aggregates (C i. ‘matched’) are shifted to higher sizes with E. coli-templated polymers 

compared to P. aeruginosa clusters with the same polymer (C ii, ‘mis-matched’), while (C 

iv, ‘matched’) indicates P. aeruginosa-templated polymers induce greatest cluster sizes with 

P. aeruginosa compared to E. coli (C iii, ‘mis-matched’), confirming the enhanced binding 

of ‘bacteria-instructed polymers’.

Magennis et al. Page 16

Nat Mater. Author manuscript; available in PMC 2015 January 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. Synthesis in presence of pathogen analogue bacterial strains and in situ labelling of 
clinical isolates
Polymers were grown, as shown schematically in (A i), in suspensions of uropathogenic E. 

coli 536 GFP and the resultant polymer fractions were separated with salt washes as before 

to recover templated polymer (STP). Micrographs (A) of subsequent binding experiments 

with E. coli 536 GFP shows pronounced clustering of cells in fluorescence mode (A ii), with 

size and scale of aggregates apparent in the magnified phase contrast image (A iii). In (B) is 

shown schematically in situ labelling of cells via bacterial cell-instructed (“b-click”) 

chemistry. Incubation of non-fluorescent E.coli MG1655 with 3-azido-7-hydroxycoumarin 

(1) maintains dispersed suspension of cells (C i), while addition of cationic polymer (P1) 

results in cell clustering (C ii) Reduction of copper at the cell surface leads to no change in 

cell cluster state, but marked fluorescence in microscopy image (C iii). Efficiency of “b-

click” shown in expanded merged phase contrast and fluorescence images (D i) and in the 

wells of assay plates (D ii). Image capture on a mobile phone camera (D iii) indicates ability 

to detect pathogenic bacteria including Escherichia coli, Clostridium difficile, Yersinia 

pseudotuberculosis, Helicobacter pylori and Campylobacter jejuni even in un-optimised 

conditions. White circles have been added to the image to aid identification of wells, control 

wells containing bacteria but no labelling components are shown above the wells containing 

in situ-labelled bacteria.
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Table 1

Monomer feed composition, conversion and final composition for control and templated polymers

Polymer Feed composition
a Conversion Composition (NMR)

a

CP 1:1 35% 1:0.82 ± 0.04

E. coli MG1655 WTP 1:1 32% 1:0.27 ± 0.16

E. coli MG1655 STP 1:1 32% 1:1.06 ± 0.18

P. aeruginosa PAO1 WTP 1:1 45% 1:0.35 ± 0.18

P. aeruginosa PAO1 STP 1:1 45% 1:1.05 ± 0.60

a
Compositions expressed as MEDSA:TMAEMA molar ratios.
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