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Abstract 22 

Change in urban land use and impervious surface cover are valuable sources of information for 23 

determining the environmental impacts of urban development. However, our understanding of 24 

these impacts is limited due to the general lack of historical data beyond the last few decades. 25 

This study presents two methodologies for mapping and revealing long-term change in urban 26 

land use and imperviousness from topographic maps. Method 1 involves the generation of maps 27 

of fractional impervious surface for direct computation of catchment-level imperviousness. 28 

Method 2 generates maps of urban land use for sub-sequent computation of estimates of 29 

catchment imperviousness based on an urban extent index. Both methods are applied to estimate 30 

change in catchment imperviousness in a town in the South of England, at decadal intervals for 31 

the period 1960–2010. The performance of each method is assessed using contemporary 32 

reference data obtained from aerial photographs, with the results indicating that both methods are 33 

capable of providing good estimates of catchment imperviousness. Both methods reveal that 34 

peri-urban developments within the study area have undergone a significant expansion of 35 

impervious cover over the period 1960–2010, which is likely to have resulted in changes to the 36 

hydrological response of the previously rural areas. Overall, results of this study suggest that 37 

topographic maps provide a useful source for determining long-term change in imperviousness in 38 

the absence of suitable data, such as remotely sensed imagery. Potential applications of the two 39 

methods presented here include hydrological modelling, environmental investigations and urban 40 

planning. 41 

 42 

 43 

 44 
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1. Introduction 45 

Accurate estimates of impervious surface coverage (commonly known as 46 

imperviousness) within watersheds (catchments) are required for hydrological modelling and 47 

urban land use planning because increased imperviousness results in decreases in infiltration and 48 

soil storage capacities (Kidd and Lowing, 1979). Furthermore, replacement of natural drainage 49 

with artificial conveyance pathways can also reduce catchment response times (Packman, 1980). 50 

These impacts can subsequently combine to increase the frequency and magnitude of flood 51 

events through increased and more rapid runoff (Huang et al., 2008; Villarini et al., 2009), and 52 

lead to disruption of natural groundwater recharge (Shuster et al., 2005; Im et al., 2012). 53 

Moreover, the hydrological alterations caused by increasing imperviousness typically give rise to 54 

environmental issues, such as degraded water quality, decreased biodiversity in water bodies, 55 

and increased stream-bank erosion (Schueler, 1994; Arnold and Gibbons, 1996; Hurd and Civco, 56 

2004; Amirsalari et al., 2013). Such impacts can be especially pronounced in peri-urban 57 

developments; areas surrounding existing towns, which convert previously permeable rural land 58 

into highly impermeable and artificially drained catchments (Tavares et al., 2012).Understanding 59 

and modelling the long-term hydrological impacts of increased urban development requires 60 

concurrent information on the change in impervious surface coverage. Maps of impervious 61 

surfaces can be produced from either field surveys, manually digitising from hard-copy 62 

topographic maps, or the use of remote sensing (RS) data. Whereas field surveys and manual 63 

digitisation can be time-consuming and laborious, the large continuous areal coverage provided 64 

by RS datasets can be exploited using image processing algorithms to rapidly map impervious 65 

surfaces for only a fraction of the time and cost. Accordingly, RS is becoming increasingly 66 

recognised as a valuable tool for mapping imperviousness. A comprehensive, authoritative 67 
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review of the different methodologies employed to map impervious cover from RS data is 68 

provided by Weng (2012). To summarise, RS-based approaches to mapping imperviousness 69 

generally fall into three broad categories: per-pixel, object-based and sub-pixel. Per-pixel 70 

approaches commonly involve producing a binary map by determining whether individual image 71 

pixels correspond to either pervious or impervious surfaces, typically through aggregating the 72 

classes of an initial land cover classification (Yuan and Bauer, 2006; Im et al., 2012; Amirsalari 73 

et al., 2013). In contrast, object-based approaches involved the classification of groups of 74 

contiguous image pixels (i.e., objects or regions) by also considering various shape, contextual 75 

and neighbourhood information (Benz et al., 2004; Weng, 2012). Classifying an image based on 76 

objects helps to overcome the “speckled” effect often encountered with per-pixel classification in 77 

urban areas (Van de Voorde et al., 2003), thus enabling improved mapping results (Yuan and 78 

Bauer, 2006; Zhou and Wang, 2008). A major limitation of per-pixel approaches is that they 79 

assume each pixel comprises a single land use or land cover type. However, pixels containing a 80 

mixture of land use or cover types are common in low-to-moderate resolution imagery acquired 81 

over complex heterogeneous landscapes such as urban areas (Weng, 2012). Sub-pixel 82 

approaches can be used to overcome this to derive accurate estimates of imperviousness because 83 

they decompose the pixel spectra into their constituent parts, therefore providing fractional 84 

measures of impervious surface area. Popular approaches in this category include unmixing the 85 

pixel spectra to determine the fractional abundance of each constituent end-member surface type 86 

(Lu et al., 2006), or modelling fractional imperviousness through statistical regression and 87 

scaling of spectral vegetation indices (Bauer et al., 2004; Van de Voorde et al., 2011).With the 88 

earliest source of RS data comprising panchromatic aerial photograph lacking in sufficient 89 

spectral information, the mapping of imperviousness using RS is restricted to the last few 90 
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decades since the emergence of spectral satellite imagery (e.g., Landsat). Consequently, few 91 

studies have assessed long-term land cover change using RS data (e.g., Gerard et al., 2010; 92 

Tavares et al., 2012), and even fewer have mapped long-term changes in impervious cover 93 

(Weng, 2012). Therefore, our understanding of the hydrological impact and non-stationary 94 

flooding trends in relation to impervious surface change is somewhat limited (Ogden et al., 2011; 95 

Vogel et al., 2011; Dams et al., 2013). Linking imperviousness to alternative sources of digital 96 

geo-information could provide a means of mapping long-term changes in impervious cover. 97 

However, such datasets are not usually available at the national scale or comparable over long 98 

periods of time. National land cover mapping products such as the UK Land Cover Map (LCM) 99 

1990, 2000 and 2007 (Centre for Ecology and Hydrology) cover only a short time period and are 100 

inconsistent due to the different processing algorithms applied to derive each product from the 101 

RS data (Morton et al., 2011). While methods such as land use trajectory analysis (Verbeiren et 102 

al., 2013) could be applied to help improve the consistency of the time-series somewhat, there 103 

will still likely be a residual error arising from the use of contrasting algorithms for generating 104 

each data product. Physical settlement boundaries and land use change statistics may be a useful 105 

alternative source of information (e.g., Bibby, 2009) but can only be loosely regarded as proxies 106 

for imperviousness. In most cases, the only consistent and long-term sources are topographic 107 

maps produced by national agencies. Within the UK topographic maps have been produced by 108 

the Ordnance Survey — the national mapping agency for Great Britain — since the mid-19th 109 

century. Despite representing a potentially valuable source for deriving long-term change in land 110 

use or land cover, studies assessing the use of such information are scarce (e.g., Hooftman and 111 

Bullock, 2012). The aim of this study is to utilise historical topographic maps for semi-112 

automated mapping of urban land use change and change in impervious cover. Two novel 113 
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methods are presented that utilise topographic maps to: (i) derive maps of fractional impervious 114 

surface for direct computation of catchment-level imperviousness; (ii) derive maps of urban land 115 

use for subsequent computation of estimates of catchment-level imperviousness based on an 116 

urban extent index. Impervious surface cover estimates computed using these two methods are 117 

validated using reference data generated through a RS-based image classification of high-118 

resolution aerial photographs. The methods presented herein are employed in an attempt to 119 

determine their suitability for indicating change in urban land use and imperviousness — here 120 

throughout a 50-year period from 1960 to 2010 in a number of hydrological catchments 121 

surrounding a UK town that exemplifies rapid peri-urban development. 122 

 123 

 124 

2. Study area 125 

The study area (Fig. 1) encompasses two adjacent small urban stream catchments located 126 

to the north of Swindon in the south of England; comprising the Haydon Wick brook and 127 

Rodbourne stream, both tributaries of the River Thames (Fig. 1 inset). Swindon was designated 128 

as an Expanded Town under the Town Development Act in 1952 which encouraged town 129 

development in county districts to relieve over-population elsewhere. The Rodbourne stream 130 

catchment has been highly urbanised since the 1950s and comprises a large area of commerce 131 

and industry on the northern edge of Swindon town, along with highly urbanised housing 132 

developments. The Haydon Wick brook catchment is located further to the north of Swindon and 133 

has undergone widespread development since the 1990s, prior to which it was a predominantly 134 

agricultural landscape. Within the Haydon Wick catchment a number of distinct catchments (1–135 

5) have been selected (Fig. 1) that capture and reflect the diversity and age of different 136 
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developments within the area. The Rodbourne catchment, in which development has 137 

incrementally expanded since the 1950s, remains one single catchment unit (6) for this study. 138 

The focus of this study is to test two methodologies for mapping changes in urban land use and 139 

associated imperviousness in each of these six catchments during the period 1960 to 2010.3. 140 

 141 

Fig. 1. Map of the study area showing catchment boundaries and location of the study area within 142 
the Thames Basin (inset). RGB aerial photography – © UK Perspectives: License Number 143 
UKP2006/01. 144 

 145 

 146 
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 147 

Fig. 2. Overview of methodological approach used to assess the utility of traditional topographic 148 
maps for long-term, historical mapping of urban extent and estimation of catchment 149 
imperviousness. 150 

 151 

 152 

3. Material and methods     153 

The ability to utilise traditional topographic maps for long-term, historical mapping of 154 

urban extent and estimation of catchment imperviousness is assessed using a three-pronged 155 

approach (Fig. 2). The approach involves first estimating contemporary catchment fractional 156 

impervious surface area directly from aerial photographs for use as reference data. These 157 

reference data are then used to validate the two methods presented in this paper for mapping 158 
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historical change in impervious cover topographic maps. Following validation, a comparison of 159 

the two methods is undertaken to assess their relative performance revealing long-term change in 160 

catchment impervious cover between 1960 and 2010. More detailed information regarding the 161 

methodological approach is provided in the following sub-sections. 162 

 163 

3.1 Deriving catchment imperviousness from aerial photographs 164 

Reference data for quantifying the catchment fractional impervious cover were obtained 165 

from aerial photographs for three decadal time-slices within the 50-year period of interest — 166 

namely 1991, 1999 and 2010 (herein referred to as 1990, 2000 and 2010, respectively). The 167 

reference data were generated by first classifying 0.5 m true-colour aerial photographs into 168 

pervious land cover classes: grass, trees, bare soil and water; and impervious land cover classes: 169 

roads/pavements, commercial buildings and residential buildings. It was anticipated that land 170 

cover classes such as bare soil and roofing tiles could be particularly difficult to discriminate 171 

using the limited spectral information contained in only the red, green, blue bands of the aerial 172 

photographs. Therefore, textural information was also incorporated in the form of the Grey-Level 173 

Co-occurrence Matrix (GLCM) parameters of entropy, dissimilarity, second moment and 174 

homogeneity (Haralick et al., 1973; Herold et al., 2003). These parameters were derived from the 175 

green band in the ENVI 4.8 software package (Research Systems, Inc.) for a 3 × 3pixel (i.e. 1.5 176 

m × 1.5 m) window and a co-occurrence window shift of 4 pixels (i.e., 2 m) in both the x- and y-177 

direction. This combination of window size and shift was chosen as it maximised visual 178 

discrimination of the different land cover classes. Classification of the three time-slices 179 

employed a neural network (NN) classification algorithm in conjunction with the seven 180 

associated spectral and textural bands. A NN classifier was chosen because they are capable of 181 
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producing better classification results for complex heterogeneous urban areas than their 182 

conventional counterparts (e.g., Maximum Likelihood), since they are non-parametric and more 183 

robust in handling noisy and non-normally distributed data (Foody, 2002). The NN used in this 184 

case was a Multi-Layered Perceptron NN with a back-propagation learning algorithm for 185 

supervised learning (Richards and Jia, 2006). Using a three-layered NN (i.e., input, output and 186 

one hidden layer), land cover classifications were performed in ENVI 4.8 with the default 187 

training parameters confirmed through a set of trial-and-error experiments. Each classification 188 

was supervised with the aid of a set of training pixels that were carefully selected in the imagery 189 

to represent each of the defined land cover types (∼6000 pixels for each class). Land cover 190 

classifications were converted to binary imperviousness maps by collapsing the classes into just 191 

two corresponding to pervious or impervious surfaces (Yuan and Bauer, 2006; Im et al., 2012; 192 

Amirsalari et al., 2013). The accuracies of the resulting binary imperviousness maps were 193 

determined by comparing the true class identities of a sample of validation pixels to the classes 194 

assigned through classification. Validation pixels were selected from regions of interest (ROIs) 195 

of known pervious or impervious surface class identities that were defined in each time-slice 196 

image based on extensive knowledge of the study area. Validation pixels were then selected from 197 

the ROIs using a random stratified sampling protocol to ensure each class was represented 198 

proportionately, and to avoid spatial autocorrelation within the validation dataset (Chini et al., 199 

2008; Pacifici et al., 2009). The minimum validation sample size required to derive statistically 200 

valid accuracy estimates for the entirety of each binary map was determined from the normal 201 

approximation of the binomial distribution (Fitzpatrick-Lins, 1981). Consequently — based on 202 

an expected accuracy of 50% and a precision of ±0.5% at the 95% confidence level — 203 
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approximately 19,000 validation pixels for each class were selected to determine the accuracy of 204 

each binary imperviousness map.  205 

Binary imperviousness map accuracies were assessed by way of the overall (OA), user’s 206 

(UA) and producer’s (PA) accuracies and the Kappa coefficient (K) derived from a confusion 207 

matrix (Congalton, 1991). The overall accuracy is the percentage of all validation pixels 208 

correctly classified, whereas the user’s and producer’s accuracies provide information regarding 209 

the commission and omission errors associated with the individual classes, respectively. 210 

Following validation, the 0.5 m binary impervious maps were aggregated to 50 m grid cells to 211 

generate fractional impervious surface maps, with the value for each grid cell corresponding to 212 

the proportion of impervious pixels within it. The value of 50 m was selected as it was found to 213 

best represent homogeneous scale of urban land use classification (see Section 3.2.2). The 214 

imperviousness of each of the six catchments (%IMP) was then computed from these fractional 215 

impervious surface maps for use as reference data, using: 216 

 

c

n

i

ii

A

AIMP

IMP

 



%

% ,     (1) 217 

where %IMPi is the fractional impervious cover for grid cell i, Ai is the area of the grid cell, n is 218 

the number of grid cells within the catchment, and Ac is the total catchment area. 219 

 220 

3.2 Deriving estimates of catchment imperviousness using topographic maps 221 

As outlined in Fig. 2, estimates of catchment fractional impervious surface cover were 222 

derived using two methods. In general, these consist of first generating binary imperviousness 223 

maps from the topographic maps and then computing catchment imperviousness from either 224 
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fractional imperviousness maps or urban land use maps — as illustrated in Fig. 3 and described 225 

below. 226 

 227 

3.2.1 Data and pre-processing 228 

Digital historical topographic maps produced by the UK Ordnance Survey (OS) between 229 

1960 and 2010 were obtained in raster format as 25 km × 25 km tiles with a 1 m spatial 230 

resolution. For each decade (1960s to 2010s), the most contemporaneous map tiles produced for 231 

that decadal time-slice were obtained and mosaicked to produce a seamless image for each 232 

decade (Table 1). The primary step for the two methods is to convert the historical topographic 233 

maps into simplified and physically representative binary maps of developed (i.e., impervious) 234 

and undeveloped (i.e., pervious) pixels. To do this, the original pixel values were reclassified so 235 

that a value of 1 was assigned to pixels corresponding to ‘white space’ on the map and a value of 236 

2 to all pixels corresponding to mapped features.  237 

 238 

Table 1. Ordnance Survey mapping data and pre-processing requirements. 239 

Decade and period of 

coverage 
Format 

Spatial 

Resolution 

Pre-aggregation processing 

requirements for binary 

maps 

1960 (1960-1961)          

1970 (1967-1978)  
1980 (1984-1987)          

1990 (1990-1992) 

Scanned and 

geo-referenced 

black & white 

‘colormap’ 

raster  

 
1m 

Mosaicking tiles → 

reclassification to integers → 

removal of forest detail and 

cartographic information → 

infill of industrial areas 

2000 
2010 

Digital geo-

referenced black 

& white integer 

raster 
 

 
1m  

Mosaicking tiles → infill of 

large buildings, commercial 

and industrial areas → 

removal of cartographic 

information  

 240 

 241 
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 242 

Fig. 3. Illustration of the approach applied in both method 1 and 2 to map impervious cover. 243 
Topographic base map – © Crown copyright and Landmark Information Group. 244 

  245 

Due to slight variations in the cartographic style used from 1960 to 2010, a number of 246 

steps were required to further improve the consistency and compatibility of each map. The first 247 

stage involves developing ‘level-1’ binary maps, in which artefacts and key inconsistencies 248 

between maps from each decade are reduced. This was undertaken using the ‘Raster Cleanup’ 249 

tool in ArcMap (ArcGIS 10, ESRI) and included the following steps: 250 

 A rapid ‘clean-up’ of each raster map is undertaken to remove features, such as 251 

place names or symbols relating to widespread forest; 252 

 Reclassifying large concrete or tarmac areas represented by ‘white space’ to 253 

developed areas; 254 
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 Infilling the roofs of large buildings on raster maps for 2000–2010due to the low 255 

density of pixels used to represent such areas on these maps. 256 

 257 

A second pre-processing stage was subsequently applied for the purpose of infilling 258 

developed features such roads and buildings to generate a set of ‘level-2’ binary maps. This was 259 

undertaken in ArcMap by applying the ‘Boundary Clean’ tool to each raster and then converting 260 

them to polygon shapefiles. This conversion enables road segments and buildings to be readily 261 

reattributed to alter them from polygons representing pervious (undeveloped) features to 262 

impervious (developed) features. Once all relevant polygons have been reassigned, the shapefiles 263 

were then converted back to raster format. 264 

 265 

3.2.2 Deriving catchment imperviousness from fractional impervious surface maps 266 

The first method (method 1) for deriving catchment imperviousness for the six 267 

catchments is relatively straightforward to implement, and is focussed on the generation of 268 

fractional impervious surface maps of the study area. To generate these maps, the ‘level-2’ 269 

binary maps derived from the topographic maps were aggregated to 50 m grid cells in a similar 270 

manner to that used to derive fractional impervious surface maps from the aerial photographs. In 271 

this case, the value for each 50 m grid cell is calculated as the proportion of 1 m impervious 272 

pixels contained within it. Although pre-processing steps were implemented to improve the 273 

compatibility and consistency of the topographic map time series (1960–2010), additional 274 

calibration was performed to account for any residual discrepancies between the fractional 275 

impervious surface maps. Adopting the approach outlined by Lu et al. (2011), pseudo-invariant 276 

pixels (i.e., those remained unchanged in terms of imperviousness throughout the time series) 277 
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were selected for pair-wise image calibration via linear regression models. As a result, all 278 

fractional impervious surface maps were calibrated to the most recent map (i.e., 2010). Once 279 

calibrated, the imperviousness of each of the six catchments (OS%IMP) is computed from these 280 

calibrated fractional impervious surface maps using an adaptation of Eq. (1), and compared with 281 

the contemporaneous reference data derived from aerial photography (%IMP). 282 

 283 

3.2.3 Deriving catchment impervious cover from urban land use maps 284 

The second method (method 2) for deriving catchment imperviousness for the six 285 

catchments is based on the generation of urban land use maps from the topographic maps. Maps 286 

of urban land use were generated by aggregating the topographic map-derived binary maps for 287 

each decade to larger grid cells, and then classifying the cells according to the LCM land 288 

use/land cover definitions; mixed development and green space designated as Suburban (e.g., 289 

houses with gardens), areas of near continuous development with little vegetation (e.g., industrial 290 

estates) designated continuous Urban (Fuller et al., 2002), and all other areas of green and 291 

general pervious surfaces referred to as Rural. Following a preliminary evaluation of a number of 292 

different grid cell sizes, a cell size of 50 m was identified as the optimum for generating realistic, 293 

homogeneous urban land use maps; smaller cell sizes produced maps with the aforementioned 294 

‘speckled’ effect that often affects per-pixel classification in urban areas. Additionally, it was 295 

found that application of this approach to the ‘level-2’ binary grids resulted in difficulty devising 296 

a standard classification which can be used to produce coherent land use maps across the time 297 

series. For this reason, the ‘level-1’ binary maps derived from the topographic maps were used to 298 

generate the land use maps. This was achieved using ArcMap through the following steps: 299 

 300 
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 ‘Level-1’ binary maps were aggregated using the ‘Aggregate’ function to generate a 301 

grid that details the mean value of the pixels contained within each 50 m grid cell. 302 

These aggregated values provide an indication of the level of development; 50 m grid 303 

cells with a value close to 1 essentially correspond to ‘white space’ (i.e., a rural 304 

undeveloped area), whereas a value close to 2 corresponds to a high density of 305 

mapped features (i.e., a highly developed area). 306 

 A threshold-based classification scheme was then applied to the grid in order to 307 

assign cells to either the Urban, Suburban or Rural land use class. It was found that 308 

cell values of 1–1.35 represented Rural land use, values of 1.35–1.65 corresponded to 309 

Suburban, and values above 1.65 represented Urban land use. These thresholds were 310 

validated to ensure at least 80% of 50 randomly selected grid cells were correctly 311 

classified in decadal map. The output is set of 50 m maps showing Rural, Suburban, 312 

and Urban land use (shown in Fig. 3).  313 

Potentially erroneous pixel classifications were removed through geospatial proximity 314 

analysis, and by applying an urban land use change trajectory demonstrated by Verbeiren et al. 315 

(2013) to ensure greater consistency throughout the time series. This is achieved by first 316 

combining the ArcGIS ‘Conditional’ tool in the ‘Raster Calculator’ with the ‘Focal Statistics’ 317 

tool to identify misclassified Urban and Suburban grid cells based on the classes of neighbouring 318 

cells — isolated Suburban or Urban cells were reclassified according to the dominant 319 

surrounding class. Following this, each cell was labelled as either 0 (Rural), 1 (Suburban) or 3 320 

(Urban) and all trajectories of land use change were recorded throughout the time series using 321 

codes (e.g., 00112, 01222, etc.). These were then evaluated according to whether they reflect 322 

realistic changes observed in the catchment over the study period, and subsequently classified 323 
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into 6 rationality classes: ‘urban growth’, ‘suburban growth’, ‘urban regeneration’, ‘urban 324 

stability’, ‘suburban stability’, and ‘inconsistent’. The ‘inconsistent’ class captures grid cells that 325 

do not follow realistic change trajectories — such as a Suburban area changing to Rural then 326 

Suburban and back to Rural. Inconsistent cells were corrected using the most likely trajectory for 327 

that cell over the 50-year period — based upon surrounding cells. The class ‘urban regeneration’ 328 

captures the possibility of Urban areas being demolished and replaced with green space or 329 

subsequent re-development. The land use change trajectory rules were implemented using the 330 

‘Conditional’ tool in the ArcMap ‘Raster Calculator’. The outcome was as set of coherent urban 331 

land use maps revealing the long-term change in land use for the period 1960–2010. 332 

For each land use map, the proportions of Urban and Suburban grid cells within each 333 

catchment were used to calculate a catchment index of urban extent. As well as measuring the 334 

urban extent within a hydrological catchment, the index of urban extent (URBEXT) proposed in 335 

the UK Flood Estimation Handbook (FEH) methodology (Institute of Hydrology, 1999) can also 336 

provide an estimate of the impervious surface cover. Accordingly, the index of urban extent and 337 

estimate of imperviousness for the six catchments (URBEXT) in each land use map is computed 338 

using:  339 

 SuburbanUrbanURBEXT   ,             (2) 340 

where Urban and Suburban are the proportions of Urban and Suburban grid cells within each 341 

catchment, respectively, and β is the Suburban weighting factor. The suitability of URBEXT for 342 

estimating catchment imperviousness is assessed through comparison with the reference data 343 

derived from aerial photography (%IMP). For the purpose of this comparison, URBEXT — the 344 

weighted value of urban extent within a catchment — is considered to provide a direct estimate 345 

of the catchment percentage imperviousness. The Suburban weighting factor (β) is preset to a 346 



Page 18 of 38 

 

18 

 

value of 0.5 to account for the general equal mixture of built-up land and permanent vegetation 347 

(Bayliss et al, 2006; Institute of Hydrology, 1999). Urban land use was assigned a weighting of 1 348 

because such areas generally have negligible green (pervious) space. In an attempt to improve 349 

the accuracy of the catchment imperviousness estimates, an optimal value for β was sought by 350 

applying a linear regression model between reference imperviousness (%IMP) and URBEXT 351 

across the three decadal time-slices. This provides a refined calibrated value of catchment 352 

impervious surface (URBEXTIMP). 353 

 354 

 355 

4. Results and discussion 356 

4.1 Imperviousness maps from aerial photography 357 

The accuracies of the RS-derived high-resolution (0.5 m) maps of binary imperviousness 358 

for 1990, 2000 and 2010 are shown in Fig. 4. High overall accuracies (>86%) were achieved in 359 

all three cases and are also confirmed by the corresponding K values (0.74–0.83); interpreted as 360 

reflecting a “substantial” to “almost perfect” degree of accuracy (Landis and Koch, 1977). 361 

Further corroboration of the classification accuracy is provided by the high user’s (88–99%) and 362 

producer’s (77–89%) accuracies associated with both the pervious and impervious classes in all 363 

binary imperviousness maps; indicating low commission and omission errors, respectively. The 364 

result of this accuracy assessment indicate that the binary imperviousness maps are suitable for 365 

deriving reference data for validating the estimates of catchment imperviousness computed using 366 

the topographic map-based methods. 367 

 368 

 369 
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 370 

 371 

Fig. 4. Classification accuracies of the binary imperviousness maps derived from aerial 372 
photographs for 1990, 2000 and 2010. OA — Overall accuracy; K — Kappa coefficient. 373 

 374 

4.2 Catchment imperviousness from fractional impervious surface maps 375 

Catchment imperviousness obtained from topographic map-derived fractional impervious 376 

surface maps (OS%IMP) — method 1 — was compared with the reference data (%IMP) derived 377 

from the aerial photographs (Fig. 5). A reasonable, but variable level of agreement between 378 

OS%IMP and %IMP is observed throughout the three decadal time-slices. Although the correlation 379 

for 1990 is greatest (R2 = 0.96), the catchment imperviousness measured using OS%IMP is (with 380 

the exception of catchment 3) approximately 10% larger than the reference data. The general 381 

overestimation of OS%IMP is most likely attributable to the larger size depictions of features such 382 

as roads on the 1990 topographic map, compared to equivalent features on the more recent maps. 383 

The correlation between OS%IMP and %IMP is somewhat lower for both 2000 and 2010 (R2 = 384 

0.75 and 0.62, respectively), with the data appearing more widely distributed around the 385 

reference %IMP. This observed decrease in the level of agreement could be due a slight offset in 386 
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the exact instant in time at which the aerial photographs and corresponding topographic maps 387 

capture. Alternatively, this could arise due to the slightly lower accuracies of the 2000 and 2010 388 

aerial photography-derived binary imperviousness maps, in comparison to the 1990 map. 389 

Nevertheless, the results suggest that estimating catchment imperviousness using fractional 390 

impervious surface maps derived from topographic maps (i.e., method 1) is feasible. 391 

 392 

 393 

Fig. 5. Comparison of catchment imperviousness estimated from aerial photography (%IMP) and 394 
topographic map-derived fractional impervious surface cover (OS%IMP) within the six catchments, 395 
for years 1990, 2000 and 2010. 396 

 397 

4.3 Mapping urban land use change using topographic maps 398 

Urban land use derived from the topographic maps using method 2 reveals the spatio-399 

temporal change in Urban, Suburban and Rural land use at a decadal intervals from the 1960s to 400 

2010s (Fig. 6). While the highly urban Rodbourne catchment (catchment 6) exhibits a gradual 401 

expansion and infilling of Urban and Suburban land use, the Haydon Wick catchments (1–5) 402 

exhibit a more dramatic and rapid changes in land use over the 50-year study period. The 403 

remarkable change from predominantly Rural (agricultural) land use in all Haydon Wick 404 

catchments (1–5) to predominantly Suburban land use is clearly illustrated in Fig. 7, as is the 405 

impact of one large commercial development in catchment 2 in the 2000s. The relative change 406 
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that occurred in catchment 6, which was already over 50% Suburban in 1960, is significantly less 407 

than in the peri-urban area of the Haydon Wick catchments (Fig. 7). In all cases, the mapped 408 

spatio-temporal changes in Urban land use were found to be consistent with the physical changes 409 

observed in the original OS topographic maps. By the 2010s, the relative proportion of 410 

developed (i.e., Urban or Suburban) land across all catchments is high and the remaining Rural 411 

areas typically represent areas of green space designated for recreation and conservation, along 412 

with areas of significant flood risk. 413 

 414 

 415 

Fig. 6. Decadal change in land use across the study area catchments.  416 
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 417 

 418 

Fig. 7. Spatio-temporal change in urban land use across the study area. 419 

 420 

 421 

 422 

 423 
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Table 2. Change in urban extent index (URBEXT) for the six catchments. 424 

Catchment 1960 1970 1980 1990 2000 2010 
Percentage change 

(1960–2010) 

1 8.2% 8.3% 15.8% 37.6% 41.6% 49.5% 41.3% 
2 7.9% 10.4% 14.9% 17.2% 29.7% 49.2% 41.3% 
3 0.0% 1.1% 1.1% 1.1% 26.8% 36.9% 36.9% 
4 9.2% 44.7% 47.0% 48.0% 48.7% 49.0% 39.8% 
5 17.4% 30.1% 30.8% 32.4% 33.7% 34.9% 17.5% 
6 31.7% 33.7% 35.8% 38.7% 41.0% 45.9% 14.2% 
 425 

Catchment values of URBEXT computed using the land use maps (Table 2) also show 426 

distinct differences between the Haydon Wick catchments (1–5) and Rodbourne catchment (6). 427 

During the period 1960–2010, URBEXT values changed little across the Rodbourne catchment, 428 

with only a 14.2% increase as a result of small, steady incremental change during each decade. 429 

More significant change across the Haydon Wick catchments reflects successive waves of peri-430 

urban development during the study period, with an average overall increase in URBEXT of 431 

35.4% and significant variation between the catchments (17.5–41.3%). Again, the observed 432 

temporal changes in urban extent were found to be consistent with known physical changes that 433 

occurred within the period 1960–2010. Therefore, the results demonstrate that the employed 434 

method is an effective approach for readily mapping long-term basic land use change and 435 

associated catchment-level urban extent from historical topographic maps. A particular important 436 

stage in this methodology is the application of land use trajectory analysis (e.g., Verbeiren et al., 437 

2013), which was crucial in ensuring a reliable time series dataset from which only genuine land 438 

use change is revealed. 439 

 440 

4.4 Catchment imperviousness from urban land use maps 441 

To investigate whether a simple index of urban extent (URBEXT) derived from 442 

topographic maps can provide representative estimates of catchment imperviousness, a 443 
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comparison with reference imperviousness derived from aerial photography (%IMP) was 444 

undertaken (Fig. 8). Overall, a high correlation between URBEXT and %IMP is observed across 445 

most catchments during the three decades (R2 = 0.80–0.96), and also when all data is considered 446 

collectively (R2 = 0.86). Nevertheless, some notable deviations were observed for specific 447 

catchments and time-slices. For example, values of %IMP for catchment 3 were shown to be 448 

much higher than URBEXT in all cases due to significant underestimation of Urban areas of 449 

gravel and tarmac because of their depiction on topographic maps. Also, for 1990, URBEXT 450 

values are clustered around %IMP, while URBEXT consistently underestimates catchment 451 

imperviousness for both 2000 and 2010. The general underestimation of catchment 452 

imperviousness is likely to relate to the use of the ‘level-1’ binary grids, in which buildings and 453 

roads are not infilled. Nonetheless, it is apparent that land use maps generated from topographic 454 

maps can be used in conjunction with the urban index, URBEXT, (i.e., method 2) to generate 455 

feasible estimates of catchment imperviousness. 456 

 457 

 458 

Fig. 8. Comparison of catchment imperviousness estimated from aerial photography (%IMP) and 459 
topographic map-derived index of urban extent (URBEXT) within the six catchments, for years 460 
1990, 2000 and 2010. 461 

 462 
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A linear regression model between URBEXT and %IMP across the three decadal time-463 

slices returned an optimised Suburban weighting factor (β = 0.53). Calibrated values of urban 464 

extent (URBEXTIMP) for each catchment were computed for 1990, 2000 and 2010 by using this 465 

optimised value for β in Eq. (2). Following a comparison, the overall correlation between 466 

URBEXTIMP and %IMP (R2 = 0.84) was actually found to be marginally lower than for URBEXT 467 

(R2 = 0.86), indicating that the original preset β (0.5) was more appropriate in this particular case. 468 

However, in regions where Suburban land use does not comprise equal mixtures of built-up land 469 

and vegetation, the optimal weighting can be determined using the same approach as that used 470 

here.  471 

 472 

4.5 Historical change in imperviousness 473 

The two methods employed in this paper for computing catchment imperviousness from 474 

topographic maps both provide a means of revealing long-term change in imperviousness. As 475 

illustrated by Fig. 9, the overall trend in imperviousness change for 1960–2010 is consistent 476 

between the two methods. With the exception of catchment 6, which was already highly 477 

developed prior to 1960, all catchments experience a somewhat rapid increase in imperviousness 478 

during a specific period between 1960 and 2010. For example, catchment 1 sees its biggest 479 

increase in imperviousness during 1980–1990, while catchment 3 experiences a rapid rise during 480 

1990–2000. The timings of these rapid increases in imperviousness coincide with known 481 

episodes of peri-urban expansion within the study area, and reflect the pattern of continuous 482 

growth and expansion where as one development finishes another one commences. The less 483 

dramatic change observed for catchment 5 can be explained by the fact that it already contained 484 
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suburban housing stock in 1960 and that it also contains a large nature reserve which is protected 485 

from development. 486 

 487 

Fig. 9. Change in impervious cover determined using two methods across the six study catchments 488 
(1960–2010). 489 

 490 

In addition to displaying similar trends, the two methods provide very similar estimates 491 

of the total absolute change in catchment imperviousness between 1960 and 2010. The mean 492 

difference in the total absolute change estimates between the two methods, for all catchments, is 493 

2.9%, with individual catchment estimates varying between a maximum difference of 7.1% and a 494 

minimum of 0.4%. The maximum difference is associated with catchment 6, which is arguably 495 

the most complex in terms of land use change during 1960–2010 because of gradual expansion 496 

of the industrial area in the south-eastern section of the catchment, and regeneration of the 497 

railway network to suburban housing in the south-west. As illustrated by Fig. 9, the more rural 498 

northern catchments (i.e., 1–4) experienced the most significant total absolute change in 499 

catchment impervious across the entire study period, with increases of between 36% and 42%. 500 
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These estimates clearly reflect the rapid expansion of suburban land use into these previously 501 

rural areas as revealed in Fig. 6. 502 

Although Fig. 9 illustrates that the methods reveal similar trends and estimates of change 503 

in imperviousness across the six catchments for 1960–2010, there are differences in the 504 

individual catchment imperviousness estimates. Specifically, all estimates computed using 505 

method 1 (OS%IMP) exceed those produced using method 2 (URBEXT), with a mean absolute 506 

difference of 7.8% (Table 3). With respect to the time intervals, the largest differences between 507 

the methods occurs for the years 1990 and 2000,where OS%IMP estimates are respectively 8.3% 508 

and 9.4% greater than the equivalent URBEXT estimates. With respect to catchments, the largest 509 

differences between methods are observed for catchments 5 and 6, for which OS%IMP estimates 510 

are respectively 9.0% and 9.5% greater than URBEXT estimates. The overall trend of method 1 511 

producing higher estimates than method 2 is explained by a combination of the contrasting 512 

representation of features such as roads and buildings in the different binary maps (i.e., the level 513 

of infilling) incorporated in the two methods, and the somewhat simplistic discrete weighting 514 

system employed in method 2. In particular, the infilling of features such as roads in the level 1 515 

binary maps used in method 1 can lead to overestimation of impervious cover as the symbology 516 

used represent roads does not always reflect the true physical dimensions, and can lead to infill 517 

of isolated areas that are not physically developed. Despite the fundamental differences in the 518 

two methods, both have been demonstrated to be feasible approaches for computing catchment 519 

imperviousness and its historical change from topographic maps. 520 
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Table 3. Absolute difference (OS%IMP – URBEXT) in estimates of imperviousness cover using two 521 
topographic map-based methods. 522 

 523 

 524 

4.6 Considerations in using topographic maps for estimating imperviousness 525 

This paper demonstrates, through two methods, that topographic maps can be used to 526 

compute estimates of catchment imperviousness. When contemplating the use, or evaluating the 527 

performance, of OS%IMP and URBEXT — or any other topographic map-based method — there 528 

are a several aspects that require some consideration:  529 

I. Aerial photographs and topographic maps do not necessarily represent the exact same 530 

instant in time, since whereas aerial photographs provide a snapshot for a specific 531 

date, topographic maps incorporate updates within a given time period (see Table 1).  532 

II. Failure to remove place names and symbols (e.g., to represent forests) from the 533 

topographic maps will translate to the subsequently derived binary maps and lead to a 534 

degree of overestimation of imperviousness – users should ensure some consistent 535 

criteria are outlined for any manual interventions. 536 

III. Topographic maps do not readily discriminate areas of inland bare ground and 537 

concrete/tarmac features, which will subsequently lead to their misrepresentation on 538 

derived binary impervious surface maps and result in a degree of underestimation of 539 

imperviousness. However, infilling of features such as roads can lead to 540 

Year 1 2 3 4 5 6 Mean difference

1960 8.0 8.2 5.5 5.4 9.3 10.4 7.8

1970 4.7 9.1 3.8 6.4 10.2 10.3 7.4

1980 6.3 9.0 4.6 4.3 9.0 11.1 7.4

1990 9.2 8.3 3.4 7.5 9.8 11.6 8.3

2000 12.0 7.4 7.1 11.0 8.7 10.0 9.4

2010 10.3 7.8 3.3 8.3 6.8 3.3 6.6

Mean difference 8.4 8.3 4.6 7.2 9.0 9.5 7.8
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overestimation of impervious cover if the symbology used does not directly reflect 541 

true physical dimensions. 542 

IV. Small-scale features (e.g., minor roads) and minor changes within existing 543 

development boundaries (e.g., infilling or ‘urban creep’) shown on aerial photography 544 

are not always captured using the discrete land use classification and scale employed 545 

in method 2. 546 

V. Calibration of the fractional impervious surface maps (as in method 1) and 547 

implementation of land use trajectory analysis (method 2) are crucial steps in 548 

producing a coherent time series dataset for revealing reliable long-term change in 549 

imperviousness.  550 

With both methods capable of providing good estimates of catchment imperviousness, 551 

the most appropriate method is largely dependent on the purpose of the study and the format of 552 

the topographic maps. In general, method 1 can be more readily implemented and provides maps 553 

of fractional impervious surfaces, thus describing imperviousness on a continuous scale (Fig. 554 

10). On the other hand, despite method 2 providing only a discrete description of imperviousness 555 

(see Fig. 10), it does provide maps of general land use that are informative when interpreting 556 

changes in imperviousness over time. Although method 1 can be readily applied to any study 557 

area, as demonstrated here, method 2 can be calibrated to determine the optimal weighting factor 558 

associated with Suburban land use (β). Additionally, if the available topographic maps depict 559 

roads and building as infilled features (akin to the ‘level-2’ binary maps) then method 1 would be 560 

more suitable. However, if — as in the case of the OS topographic maps used here — such 561 

features are not infilled, then method 2 can be applied without the need of additional pre-562 

processing steps to produce ‘level-2’ binary maps. 563 
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 564 

 565 

Fig. 10. A comparison of impervious surface maps obtained using the two methods. 566 

 567 

5. Conclusions 568 

This paper demonstrates that it is possible to derive robust long-term estimates of 569 

catchment imperviousness from topographic maps using two different contrasting methods. The 570 

first method (method 1) generates fractional impervious surface maps from the topographic maps 571 

and uses these to estimate catchment imperviousness. The second method (method 2) generates 572 

generalised land-use maps from the topographic maps and then computes catchment 573 



Page 31 of 38 

 

31 

 

imperviousness from these using an index of urban extent. Although some degree of manual 574 

intervention is required for both methods, the processing stages employed are largely semi-575 

automatic and require significantly less time than manual delineation of impervious surfaces. 576 

Such manual intervention will rely on some degree of user subjectivity — related to the format 577 

of the topographic maps — that could alter the binary map sand derived impervious cover 578 

products. Such interventions are required to produce more consistent mapping products for 579 

derivation of binary maps, and it is recommended that users employ transparency in the reporting 580 

of such interventions. Through comparison with reference data obtained using aerial 581 

photographs, it is demonstrated that both methods are capable of providing accurate estimates of 582 

catchment imperviousness and its change over time. With both methods capable of providing 583 

good estimates of catchment imperviousness, the most appropriate method beyond this study will 584 

be largely dependent on the purpose of the study and the format of the topographic maps.  585 

This study demonstrates that both methods show the peri-urban Haydon Wick catchment 586 

has undergone a significant change from predominantly rural to highly urban and is now 587 

dominated by suburban areas of housing development. Findings from hydrological studies (e.g. 588 

Braud et al., 2012; Dams et al., 2013) would suggest that this will have led to a faster catchment 589 

response and greater magnitude of flow during storm events — making the area more prone to 590 

flooding. Local reports of more frequent flooding would are consistent with this hypothesis but 591 

hydrological modelling of the change in storm runoff response would be necessary to validate 592 

this assumption. 593 

Several issues that may affect derived estimates of catchment imperviousness using 594 

topographic maps are highlighted for consideration in future applications of this methodology. 595 

For example, catchments containing large areas of concrete, gravel and tarmac (e.g., car parks) 596 
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might not be recognisable as developed surfaces on topographic maps. Conversely, although 597 

such surfaces are typically characterised as impervious, they are not always physically 598 

impervious per se. For example, gravel cover is not inherently impervious and more modern car 599 

parks and roads can employ Sustainable Urban Drainage Systems (SUDS) design principles to 600 

enable infiltration of water to the media below. Furthermore, the presence and spatial distribution 601 

of both traditional drainage systems and SUDS contribute to the effective impervious area (EIA) 602 

— the connectivity to impervious areas — and are shown to be a strong determinant of storm 603 

runoff response (Han and Burian, 2009). This highlights the limitation of using simple 604 

impervious area estimates in hydrological studies. Also, depending on the maps scale, plot-scale 605 

(changes such as housing extensions driving urban creep; Perry and Nawaz, 2008) may not be 606 

captured on topographic maps.  607 

Further research is required to progress to a more realistic scheme which accounts for 608 

varying degrees of imperviousness within individual land use or land cover classes. This would 609 

require better characterisation of urban typologies and land cover classes in terms of their natural 610 

permeability, association with drainage systems, and additional factors which affect the 611 

catchment runoff response. Such information would have to be obtained from auxiliary datasets 612 

as this is not readily available on historical topographic maps. Imperviousness maps 613 

incorporating information on connectivity and features that influence hydrological response to 614 

storm events would be particularly useful in quantifying the impact of historical urbanisation on 615 

flooding. 616 

 617 

 618 

 619 
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