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Homogeneous goods often sell at different prices within the same market. This paper proposes a
theoretical foundation for this phenomenon in the context of a capacity-constrained price game. Sellers
have asymmetric information about the market demand, modelled by a partition of the state space, and
evaluate uncertain profits in a way consistent with ambiguity aversion. We demonstrate that a pure
strategy price equilibrium exists if the market demand is uniformly elastic in each state. Interestingly,
the sellers may choose different prices, violating the law of one price. Moreover, market demand may
be rationed between the sellers, resulting in consumers purchasing at different prices.
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1. Introduction

A persistent challenge for Industrial Economists has been to
redibly explain homogeneous goods selling at different prices
ithin the same market.2 The classical models of Bertrand and
ertrand–Edgeworth price competition struggle to explain pure
trategy price dispersion, especially where consumers purchase
t different prices, because in these models a pure strategy equi-
ibrium would usually occur at the minimum price posted in
he market. Therefore, price dispersion has tended to be ex-
lained as the outcome of sellers following mixed strategies, as
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he Liverpool economic research seminar. We are grateful to Christian Bach,
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ncouragement during the writing of this paper.
2 See Baye et al. (2004) for a large empirical study of this phenomenon
xamining internet prices.
 (

ttps://doi.org/10.1016/j.jmateco.2022.102658
304-4068/© 2022 The Authors. Published by Elsevier B.V. This is an open access art
a consequence of incomplete seller information or non-standard
consumer decision-making procedures.3

The idea that firms randomise their price following a mixed
strategy process has always remained contentious. As Friedman
(1988, p.608) remarked ‘‘it is doubtful that the decision-makers in
firms shoot dice as an aid to selecting output or price’’. In practice,
prices also do not appear to oscillate as frequently as is implied
by the ex post regret associated with the outcome of a mixed
strategy for any firm; a further profitable deviation always exists,
theoretically causing prices to perpetually cycle. Furthermore,
the use of mixed strategies by individuals has been consistently
refuted in experimental examinations of price competition and,
in particular, Bertrand–Edgeworth competition where sellers face
capacity constraints (Buchheit and Feltovich, 2011; Fonseca and
Normann, 2013; Heymann et al., 2014; Kruse et al., 1994). This
motivates our search for a new explanation for non-random
price dispersion in markets with capacity-constrained sellers of
homogeneous goods.

In this paper we present a novel and intuitively appealing
explanation for pure strategy price dispersion arising from sellers

3 Some classic and recent papers using mixed strategies to illustrate price
ispersion include Shilony (1977), Varian (1980), Burdett and Judd (1983), Vives
1986), Baye and Morgan (2001) and Janssen and Rasmusen (2002). See Vives
1999) for a textbook treatment of Bertrand–Edgeworth games.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jmateco.2022.102658
http://www.elsevier.com/locate/jmateco
http://www.elsevier.com/locate/jmateco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmateco.2022.102658&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:Robert.Edwards@Nottingham.ac.uk
mailto:R.R.Routledge@Liverpool.ac.uk
https://doi.org/10.1016/j.jmateco.2022.102658
http://creativecommons.org/licenses/by/4.0/


R.A. Edwards and R.R. Routledge Journal of Mathematical Economics 101 (2022) 102658

h
f

d
e
p
f
g
t
r
c
E
M
e
s
u
s
a
f
r
t
o
u

b
a
t
B
2
p
p
S
a
R
a
h
t
i
I
a
a
f

c
s
S

m
1

m
g

r
y
i

c
(

olding incomplete and asymmetric information regarding the
uture market demand.4 We start with the classical Bertrand–
Edgeworth duopoly, where capacity constrained sellers compete
directly in prices, and we introduce asymmetric information of
the type usually studied in the context of general equilibrium
models.5 The uncertainty that sellers face is modelled by an
information partition. Sellers cannot distinguish between demand
states within the same partition and prices must be measurable
with respect to their private information. Intuitively, this requires
that sellers set the same price for future demand states over
which they are uncertain. The market demand is distributed in
proportion to the sellers’ capacities if prices are tied and efficient
rationing occurs if different prices are posted in the market and
the cheapest seller is unable to satisfy all of their forthcoming
demand.

Beyond providing a new explanation for non-random price
ispersion, our framework also contributes new results on the
xistence of pure strategy equilibria in Bertrand–Edgeworth com-
etition under incomplete information. Even with complete in-
ormation, it is well-known that a pure strategy equilibrium
enerally fails to exist because it can be profitable for a seller
o deviate to a higher price than their rival and sell only to the
esidual demand that their competitor cannot meet due to their
apacity constraint. This induces price cycles, referred to as the
dgeworth paradox (Dasgupta and Maskin, 1986; Dixon, 1992;
askin, 1986). This problem of non-existence of pure strategy
quilibrium is exacerbated by asymmetric information amongst
ellers because we must specify how each seller evaluates ex ante
ncertain profits. To address this, we consider ambiguity averse
ellers with Maximin expected utilities (MEU), following Gilboa
nd Schmeidler (1989). Using this ex ante decision rule, sellers
ocus on the lowest possible ex post profits they know could be
ealised from each partition of the possible demand states. In
his context, we provide conditions that guarantee the existence
f a pure strategy equilibrium, which are straight-forward to
nderstand, interpret and implement.
Our approach for capturing ambiguity aversion is motivated

y experimental and empirical evidence, which has spurred the
doption of Maximin utilities throughout the theoretical litera-
ure (Cerreia-Vioglio et al., 2013; Correia-da-Silva and Hervés-
eloso, 2009, 2012; De Castro et al., 2017; He and Yannelis,
015a, 2016, 2017; Pulford and Colman, 2007). One appealing
roperty of Maximin preferences stems from the ability to ex-
lain classic examples of behaviour that are incompatible with
ubjective Expected Utility (SEU) theory, including the Ellsberg
nd Allais Paradoxes (Ellsberg, 1961; Halpern and Leung, 2016).
ecent empirical evidence includes Giordani et al. (2010), who
nalyse responses to the European Values Survey to understand
ow individuals approach uncertain possibilities. Maximin utili-
ies play a substantive role and underpin the behaviour of 23% of
ndividuals surveyed, with significant geographical variation. In
taly, 46% of individuals exhibit Maximin preferences, whilst 25%
ct as Bayesians. This motivates our inclusion of Maximin utilities
s a legitimate approach to decision-making under uncertainty
or at least some market players and contexts.

The main mechanics of our results operate as follows: In the
omplete information benchmark, the only candidate for a pure
trategy equilibrium is the competitive price (see Dixon, 1992;
hubik, 1959) but the incentive to charge a higher price and

4 Demand uncertainty can also stem from inter-temporal variations in de-
and as identified in domestic electricity markets (see Green and Newbery,
992; Lemus and Moreno, 2017).
5 Glycopantis and Yannelis (2005) contain many papers which analyse asym-
etric information of the type which we introduce in the Bertrand–Edgeworth
ame.
 a
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sell only to the residual demand that their competitor cannot
meet generally destabilises this equilibrium. Therefore, follow-
ing Tasnádi (1999), demand must be sufficiently elastic to shut
down such upward price deviations and sustain a pure strategy
equilibrium at the competitive level. We now develop this line of
argument to a general incomplete information environment.

When sellers possess incomplete but symmetric information,
we show that sellers choose the minimum competitive price for
each of their information partitions. If a seller deviated above the
lowest competitive price and the lowest demand state prevailed,
the firm would have earned higher profit at the competitive price,
violating the Maximin utilities of the sellers. This constitutes
the incomplete information analogue of Shubik’s (1959) well-
known results in the complete information game. Interestingly,
excess demand also arises in equilibrium whenever the realised
demand is not the lowest possible demand from one of the sellers’
(symmetric) information partitions.

When we introduce asymmetric information, sellers can
charge different prices in a pure strategy equilibrium, violating
the law of one price. Interestingly, demand can also be rationed
across sellers charging different prices, which is consistent with
empirical findings but rarely identified in the theoretical lit-
erature. Therefore, we are able to explain pure strategy price
dispersion, consumers purchasing at different prices and equi-
librium excess demand as direct consequences of intuitively
plausible and empirically observed seller uncertainty regarding
market demand.6 These results are also salient for competition
authorities as the Bertrand–Edgeworth framework continues to
act as a benchmark for competition policy analyses.7

Equilibria in Bertrand–Edgeworth games can also be difficult
to find and/or characterise. Our model has an additional advan-
tage that the equilibrium is easy to construct and analyse. One
simply has to find the competitive equilibrium for each state
of the market demand and construct the sellers’ price strate-
gies based upon their information partitions (see the example in
Section 2.4).

Following the literature review, Section 2 outlines the
Bertrand–Edgeworth game. Section 2.1 explores the ex post pay-
offs for sellers and Section 2.2 analyses their ex ante payoffs
under Maximin expected utilities. In Section 2.3 we present our
main results on the existence of pure strategy equilibrium and
we provide precise conditions under which the law of one price
is violated. Section 2.4 provides a simple example that illustrates
the intuitive and analytically tractable nature of our results. We
conclude with a discussion of our findings in Section 3.

1.1. Related literature

The literature on capacity-constrained price competition has
primarily focused on a complete information environment, where
several remedies to the non-existence of pure strategy equilib-
ria have been proposed. Tasnádi (1999) provides conditions on
the elasticity of the demand function that restore pure strategy
equilibrium by ensuring that upward price deviations, which gen-
erally destabilise the equilibrium, decrease revenue. In Section 2.3
we show that our model nests Tasnádi’s (1999) restrictions as a
special case when firms hold complete information. However, we
go further by permitting incomplete information and we show

6 For example, The Wall Street Journal note CEO Tim Cook’s statement in
eference to iPhone sales: ‘‘It’s very hard to gauge demand, as you know, when
ou’re selling everything you’re making’’ (Mims, 2017). Moreover, this statement
s consistent with the excess demand that we observe in equilibrium.
7 For example, see the European Commission’s merger appraisals of Hol-

im/Cemex West (COMP/M.7009) and, in particular, Outokumpu/INOXUM
COMP/M.6471) where the Bertrand–Edgeworth framework ‘‘provides the best
pproximation to important industry features’’ (p. 166).
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hat the resulting pure strategy equilibrium can involve price
ispersion, rationing of demand and excess demand.
Bade (2005) resolves the non-existence of pure strategy equi-

ibrium by introducing incomplete preferences amongst sellers
ith multiple objectives, such as sales and profit maximisation.

n contrast, incomplete information in our setting creates fur-
her challenges, rather than resolving the non-existence of pure
trategy equilibrium. Iskakov et al. (2018) consider cautious sell-
rs, where any profitable deviation must not induce a counter-
eviation by another player that leaves the initial deviator worse
ff than their original position. Their solution of equilibrium in
table strategies is similar to the Von-Neumann Morgenstern
table strategies used in cooperative game theory.
Alternative methods of delivering pure strategy equilibria

nclude modifying the timing of the game (Deneckere and
ovenock, 1992; Deneckere and Peck, 2012; Dudey, 1992), allow-
ng sellers to choose list prices and subsequent discount prices
Garcìa Díaz et al., 2009; Myatt and Ronayne, 2019), requiring
nteger pricing (Chowdhury, 2008), imposing a cost on firms that
urn customers away (Dixon, 1990) and introducing a public
ocial-surplus maximising seller (Rácz and Tasnádi, 2016).
More recently, Bos et al. (2021) remedy the non-existence

f pure strategy Nash equilibria by considering Myopic sellers
ho seek improvements on their current position, rather than
ore stringent Nash best responses. Using the Myopic Stable Set

MSS) solution concept, due to Demuynck et al. (2019), they show
hat MSS prices are equivalent to pure strategy Nash equilibria
hen the latter exist. When no pure strategy Nash equilibria
xist, MSS offers a solution in the form of a (pure strategy)
rice range that contains the mixed strategy interval and can
nvolve sellers pricing below the competitive level, leading to
ationing. In contrast, our approach focuses on pure strategy Nash
quilibria under incomplete information with ambiguity averse
ellers, where rationing can arise as a consequence of demand
ncertainty.
Hunold and Muthers (2019) show that spatial differentiation

an drive price dispersion in a capacity-constrained price game.
hao et al. (2018, 2019) identify price dispersion when a capacity
onstrained seller competes against an unconstrained seller with
equential pricing and scope for ‘all-unit-discounts’ (AUD).8 Our
model features symmetric cost structures and captures both sym-
metric and asymmetric capacities, but price dispersion is driven
only by asymmetric information.

A related literature analyses Bertrand–Edgeworth competition
with demand uncertainty. Dana (1999) considers identical sellers
who know the probability of each demand state. The pure strat-
egy equilibrium involves intra-firm price dispersion, where sell-
ers specify the output available at each price. Price schemes are
identical across sellers and the price of each specific unit is given
by the marginal cost divided by the probability that it will be sold.
In contrast, we do not require that sellers can attach probabilities
to demand states that they are unable to distinguish between
and we consider asymmetric sellers in terms of information and
capacities. This generates our novel pure strategy equilibrium
with inter-firm price dispersion, where consumers are rationed
across firms charging different prices. The two frameworks pro-
vide complementary but distinct explanations for non-random
price dispersion.

Other papers consider demand uncertainty when sellers
choose their capacities before price competition. In that literature,
however, demand is usually realised before price competition
(De Frutos and Fabra, 2011; Lepore, 2012; Reynolds and Wil-
son, 2000) and there generally exists no pure strategy price

8 All-unit-discounts involve a reduction in the price for all purchased units
nce total quantity crosses a threshold (Chao et al., 2018).
 w
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equilibrium (Hviid, 1991). Our model abstracts from preceding
capacity investment decisions to zoom in on the existence and
nature of pure strategy price dispersion in Bertrand–Edgeworth
markets. Recent research has also explored the consequences of
asymmetric information across sellers on other dimensions, such
as the number of firms a consumer considers (Bergemann et al.,
2020).

2. The Bertrand–Edgeworth game

The model consists of a finite set of sellers N = {1, 2}, who are
producing a single perfectly homogeneous good. The uncertainty
will be modelled by a finite set Ω = {ω1, . . . , ωm}, which is
the set of possible states of the world. There is a probability
distribution, µ, over the set Ω which describes the probability
of each state occurring. It shall be assumed that µ(ω) > 0 for
every ω ∈ Ω so no state of the world is redundant. Each seller
is endowed with a fixed quantity qi > 0 of the good.9 The
total quantity of the good which can be traded in the market is
q1 + q2. There is a state-contingent market demand function
for the homogeneous good given by D : ℜ++ × Ω → ℜ+.
The following conditions are imposed upon the demand function,
where x denotes price.

Assumption 1. For every ω ∈ Ω and every x ∈ (0, ∞), D(x, ω) >

. The function D(·, ω) is C1 and D′(x, ω) < 0 for every ω ∈ Ω

nd every x ∈ (0, ∞).

The private information of seller i is modelled by a partition,
i, of the set Ω . Whenever two states of the world are in the
ame element of the partition Pi, it means that seller i is unable to
istinguish between those two states. The information partitions
re fixed as a primitive of the game and they are common knowl-
dge amongst the players. This means that a player can know
hether their rival has more information than they hold. If the
artitions are symmetric, the sellers have identical information
egarding the future market demand. If the partitions are asym-
etric, the sellers possess asymmetric information regarding the

uture market demand. The probability distribution (µ) over each
f the possible realised states of the market demand, however, is
ot common knowledge.
A function f : Ω → ℜ+ will be called Pi-measurable if,

whenever ωp ∈ E and ωq ∈ E for some E ∈ Pi, then f (ωp) = f (ωq).
acing these information restrictions, the strategy set of seller i in
he game is:

i = {f : Ω → ℜ++ : f is Pi − measurable}.

et L = L1 × L2 be the joint strategy set. The primitives of a
ertrand–Edgeworth game with asymmetric information can
e summarised as G = {N, Ω, (Pi, qi)i∈N ,D, µ}. The price elastic-
ty of the market demand in state ω ∈ Ω is:

(x, ω) = D′(x, ω)
x

D(x, ω)
.

he market demand will be called uniformly elastic if ϵ(x, ω) ≤

−1 for every x ∈ (0, ∞) and every ω ∈ Ω . Let R(x, ω) =

xD(x, ω) so R(x, ω) is the total revenue available in the market
at price x in state ω ∈ Ω . The uniform elasticity condition on
the market demand curve requires that a proportional increase in
price results in a more than proportional decrease in the quantity
demanded. Therefore, increases in price will reduce revenue.

9 We are assuming that each seller has zero marginal cost to supply the good.
owever, one could easily add a constant marginal cost of production and this
ould make no difference to the results.
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.1. The Ex post payoffs

After fixing a set of strategies f ∈ L, to specify the payoffs
hich a seller receives ex post, a rationing rule is required be-
ause a seller may not set the lowest price, but the other seller
ay not be able to serve all the market demand.10 We consider

he most widely used rationing rule in the literature: efficient, or
‘surplus-maximising’’, rationing which is consistent with those
uyers with the highest valuation of the good being served first.11
nder this rule, the demand which the higher-priced seller faces
s a horizontal displacement of the market demand. If the sellers
ie at the same price, we shall make the standard assumption that
hey split the market demand in proportion to the quantities of
he good they are endowed with.

Given a set of strategies f ∈ L, let Dj = min{D(fj(ω), ω), qj}.
he demand which seller i faces under efficient rationing is:

E
i (f , ω) =

⎧⎪⎨⎪⎩
max{0,D(fi(ω), ω) − Dj}, if fi(ω) > fj(ω);

qi
q1+q2

D(fi(ω), ω), if fi(ω) = fj(ω);
D(fi(ω), ω) if fi(ω) < fj(ω).

If seller i has the highest price, then seller i receives only the
residual demand that seller j cannot meet due to their capacity
constraint, or zero if seller j satisfies the market demand. If both
sellers have the same price, they share the forthcoming demand
in proportion to their capacities. If seller i has the lowest price,
the demand they face is the entire market demand forthcoming
at that price.

As seller i is only endowed with qi units of the good, the
demand which seller i actually meets in state ω ∈ Ω is given
by DA

i (f , ω) = min{qi,DE
i (f , ω)}. Therefore, the ex post payoff of

seller i in state ω ∈ Ω is:

ui(f , ω) = fi(ω)DA
i (f , ω).

2.2. The Ex ante payoffs

Before each seller has received the information regarding
which element in Pi the state of the world is in, how should the
sellers evaluate their expected payoff? Given we are assuming
that sellers cannot distinguish between different states of the
world contained in the same element in Pi, it is not unreason-
able to assume that sellers cannot assign probabilities to those
states. In this context, it is not possible for sellers to calculate
standard Bayesian expected utilities because they do not know
the probabilities of each demand state being realised.

We consider a well-known alternative to Bayesian expected
utilities: Maximin expected utilities (MEU). If a seller knows that
the state of the world is contained in E ∈ Pi, we consider the
case where the seller is pessimistic and assigns all the probability
associated with event E, which is µ(E), to the minimum ex post
payoff in E. Formally, µ(E) =

∑
ω∈E µ(ω). Let H be the set of

probability distributions over Ω:

H = {h ∈ ℜ
Ω

: h(ω) ≥ 0 for every ω ∈ Ω and
∑
ω∈Ω

h(ω) = 1}

Let Mi be the set of probability distributions which agree with
seller i’s private information:

Mi = {h ∈ H : h(E) = µ(E) for every E ∈ Pi}.

10 See Bos and Vermeulen (2021) for a study of price-quantity competition
hen not all excess demand for the lowest priced seller spills over to another
eller.
11 An alternative interpretation of the efficient rationing rule is that buyers
re served randomly at first, but are then able to retrade the good amongst
hemselves, which then results in the same allocation of the good. See, amongst
thers, Vives (1999), pp. 124–5).
4

Therefore, h(E) = µ(E). Given a set of strategies f ∈ L, the ex
nte payoff of seller i is:

i(f ) = min
h∈Mi

[

∑
ω∈Ω

h(ω)ui(f , ω)].

n alternative, but equivalent expression, is:

i(f ) =

∑
E∈Pi

µ(E)[min
ω∈E

ui(f , ω)].

emark 1. The most prominent early application of Maximin ex-
ected utilities was in Gilboa and Schmeidler (1989) who charac-
erised this type of decision rule and noted that it can explain the
llsberg (1961) violations of subjective expected utility theory.
ecently, Maximin expected utilities have been used in a wide
ange of papers, including Correia-da-Silva and Hervés-Beloso
2009), He and Yannelis (2015a) and De Castro and Yannelis
2018).

emark 2. This model of a Bertrand–Edgeworth game with
symmetric information contains, as a special case, the standard
omplete information game. If one specifies the information par-
itions of the sellers to be Pi = {{ω1}, {ω2}, . . . , {ωm}} for every
∈ N then each seller can distinguish every state of the world
nd the model is a complete information game. Moreover, the
alculation of Maximin expected utilities then coincides with
tandard Bayesian utilities.

.3. Existence of pure strategy equilibrium and the law of one price

Now that the ex ante and ex post payoffs have been defined,
e can introduce the equilibrium concept. A set of strategies f ∈ L

s a pure strategy price equilibrium if, for every i ∈ N;

i(f ) ≥ Ui(f ′

i , f−i) for every f ′

i ∈ Li.

e shall say that a pure strategy price equilibrium, f ∈ L, violates
he law of one price if f1(ω) ̸= f2(ω) for some ω ∈ Ω . That
s to say, a pure strategy price equilibrium violates the law of
ne price if there is at least one state of the world when the
ellers post different prices in the market. The first result gives
ome useful properties of the market demand function, where
(x, ω) = xD(x, ω) is the total revenue available in the market
t price x in state ω ∈ Ω .

roposition 1. Fix a Bertrand–Edgeworth game with asymmetric
nformation G = {N, Ω, (Pi, qi)i∈N ,D, µ}. If D(x, ω) is uniformly
lastic then the following are true:
(i) R′(x, ω) ≤ 0 for every x ∈ (0, ∞).
(ii) limx→0 D(x, ω) = ∞ and limx→∞ D(x, ω) = 0.
(iii) For each ω ∈ Ω there exist unique prices pc(ω) such that

(pc(ω), ω) = q1 + q2.

roof.
(i) From the definition R(x, ω) = xD(x, ω), therefore:

′(x, ω) = D(x, ω) + xD′(x, ω) = D(x, ω)(1 + ϵ(x, ω)).

s ϵ(x, ω) ≤ −1 for every x ∈ (0, ∞), R′(x, ω) ≤ 0 for every
∈ (0, ∞).
(ii) Suppose a contradiction: that limx→0 D(x, ω) = y > 0. Then

imx→0 xD(x, ω) = 0. As R′(x, ω) ≤ 0, this implies R(x, ω) ≤ 0
or every x ∈ (0, ∞) and contradicts xD(x, ω) > 0 for every
∈ (0, ∞). Hence, limx→0 D(x, ω) = ∞. Suppose a contradiction:

imx→∞ D(x, ω) = y > 0. Then limx→∞ xD(x, ω) = ∞ and contra-
icts R′(x, ω) ≤ 0 for every x ∈ (0, ∞). Hence, limx→∞ D(x, ω) =

.
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(iii) It follows from (ii) that the range of D(·, ω) is (0, ∞).
Therefore, for each ω ∈ Ω there exists a pc(ω) such that
D(pc(ω), ω) = q1+q2. The uniqueness of such prices follows from
D(·, ω) being decreasing on (0, ∞). ■

The pc(ω) prices correspond to the competitive price for each
state of the market demand. Using the pc(ω) prices defined in part
(iii) of the previous result, define the strategies of the sellers to
be as follows. For each E ∈ Pi let:

f ∗

i (E) = min
ω∈E

pc(ω).

By construction these strategies are Pi-measurable, so f ∗
∈ L. The

following result gives some of the properties of these strategies.

Proposition 2. Fix a Bertrand–Edgeworth game with asymmetric
information G = {N, Ω, (Pi, qi)i∈N ,D, µ}. Suppose the demand
D(x, ω) is uniformly elastic and the sellers play the strategies f ∗

∈ L.
Then:

(i) DA
i (f

∗, ω) = qi for every ω ∈ Ω .
(ii) Ui(f ∗) =

∑
E∈Pi

µ(E)f ∗

i (E)qi.

Proof.
(i) If the sellers use strategies f ∗

∈ L then f ∗

i (ω) ≤ pc(ω) for
every ω ∈ Ω . Therefore D(f ∗

i (ω), ω) ≥ q1 + q2, DE
i (f

∗, ω) ≥ qi,
and consequently, DA

i (f
∗, ω) = qi for every ω ∈ Ω .

(ii) Follows from (i) and the definition of the ex ante utilities.
■

The next result demonstrates that the strategies f ∗
∈ L are a

pure strategy price equilibrium of the Bertrand–Edgeworth game.

Proposition 3. Fix a Bertrand–Edgeworth game with asymmet-
ric information G = {N, Ω, (Pi, qi)i∈N ,D, µ}. If D(x, ω) is uni-
formly elastic, then the strategies f ∗

∈ L are a pure strategy price
equilibrium.

Proof. Suppose the sellers play the strategies f ∗
∈ L. It follows

from part (i) of Proposition 2 that using these strategies each
seller is able to sell all their quantity of the good they are en-
dowed with. If for some E ∈ Pi seller i were to deviate and play
fi(E) < f ∗

i (E), then ui((fi, f ∗

j ), ω) = fi(E)qi < f ∗

i (E)qi = ui(f ∗, ω) for
every ω ∈ E. This is not a profitable deviation.

Suppose for some E ∈ Pi seller i were to deviate and play
fi(E) > f ∗

i (E). From part (i) of Proposition 2 we know that using
strategies f ∗

∈ L seller i obtains the same payoff f ∗(E)qi across
all states in E. To show that deviating to fi(E) > f ∗

i (E) is not a
profitable deviation, given the Maximin ex ante utilities, we only
have to find one state in E where the payoff does not increase
above f ∗(E)qi. Consider the state ωE = {ω ∈ E : pc(ω) ≤

pc(ω′) ∀ ω′
∈ E}. In state ωE , using strategies f ∗, seller i either

ties at price pc(ωE) with seller j, or seller j posts a strictly lower
price. Hence:

ui(f ∗, ωE) = pc(ωE)qi = pc(ωE)(D(pc(ωE), ωE) − qj)

where the second equality follows from D(pc(ωE), ωE) = q1 +

q2. To show that deviating to fi(E) > f ∗

i (E) is not a profitable
deviation, we need to demonstrate that the function g(x) =

x(D(x, ωE) − qj) is decreasing in x. The derivative is:

g ′(x) = D(x, ωE) − qj + xD′(x, ωE)
= D(x, ωE)(1 − qj/D(x, ωE) + ϵ(x, ωE)).

As ϵ(x, ωE) ≤ −1 for every x ∈ (0, ∞) it follows that g ′(x) ≤ 0.
Therefore, deviating to fi(E) > f ∗

i (E) is not a profitable deviation
in state ω . ■
E

5

At this point, it is helpful to clarify that we are applying the
standard Nash equilibrium solution concept. The key difference
from Bayesian Nash equilibrium is that we are considering an
alternative expected utility of the players in the form of Maximin
expected utility due to the ambiguity that players face (He and
Yannelis, 2015b, 2016).

In equilibrium, a seller will never earn a lower payoff than
their calculated minimum profit associated with the lowest re-
alisation of the market demand. Furthermore, neither seller has
an incentive to be yet more pessimistic and set a price lower
than the minimum competitive price (i.e. the competitive price
corresponding to the lowest possible realisation of the market
demand for each information partition) because the seller is
already guaranteed to sell their entire capacity at the minimum
competitive price. Therefore, choosing a lower price will gener-
ate no additional sales (as their capacity constraint is binding),
reduce profit and only stimulate excess demand. Moreover, if one
firm (firm 2) were to behave in this way following an out-of-
equilibrium price, the competitor (firm 1) has no incentive to
reduce their price further as they already exhaust their capacity
at their minimum competitive price.

Remark 3. One might reasonably ask whether the uniform
elasticity of the market demand can be relaxed and still guarantee
the existence of a pure strategy price equilibrium. As is well-
known, Nash equilibria in Bertrand–Edgeworth games often only
exist in mixed strategies. However, in the current model, we can
be more precise. Suppose there is a market demand D∗(x, ω) and
ϵ(x, ω) ∈ (−1, 0) for every x ∈ (0, ∞) so demand is always
inelastic in one state of the world. Then, it is possible to find
a Bertrand–Edgeworth game with asymmetric information G =

{N, Ω, (Pi, qi)i∈N ,D, µ} with D = D∗, such that a pure strategy
price equilibrium fails to exist. This result follows directly from
Remark 2, that the current model includes the complete informa-
tion game as a special case, and Proposition 2.3 of Tasnádi (1999).
Therefore, it does not seem possible to significantly weaken the
condition of uniform elasticity and still guarantee the existence
of a pure strategy equilibrium.

We are now able to present our main result which gives
precise conditions under which a Bertrand–Edgeworth game with
asymmetric information possesses a pure strategy price equilib-
rium that violates the law of one price.

Proposition 4. Fix a Bertrand–Edgeworth game with asymmetric
information G = {N, Ω, (Pi, qi)i∈N ,D, µ}. Suppose the following
three conditions are satisfied:

(i) The demand D(x, ω) is uniformly elastic.
(ii) pc(ω) ̸= pc(ω′) whenever ω ̸= ω′.
(iii) P1 ̸= P2.
Then the game possesses a pure strategy price equilibrium which

violates the law of one price.

Proof. Let the sellers play the strategies f ∗
= (f ∗

1 , f ∗

2 ) ∈ L. It
follows from Proposition 3 that these are a pure strategy price
equilibrium of the game. Suppose a contradiction: f ∗

1 (ω) = f ∗

2 (ω)
for every ω ∈ Ω . As f ∗

1 ∈ L1 and f ∗

2 ∈ L2, f ∗

1 (ω) = f ∗

2 (ω) for every
ω ∈ Ω , together with pc(ω) ̸= pc(ω′) whenever ω ̸= ω′ imply
P1 = P2. This contradicts P1 ̸= P2. Hence, there must be at least
one ω ∈ Ω such that f ∗

1 (ω) ̸= f ∗

2 (ω). ■

The conditions (i)–(iii) in Proposition 4 are tight in the follow-
ing sense. If one were to dispense with (i), but retain (ii) and (iii),
it follows from Remark 3 that a game can be found which fails
to possess a pure strategy price equilibrium. More specifically,
when the demand is not uniformly elastic, it can be profitable
for a seller to choose a price above their competitor and sell only
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Fig. 1. State-contingent competitive prices.

o the residual demand that the rival cannot meet. This generates
he classic non-existence of pure strategy price equilibrium in the
ertrand–Edgeworth framework.
If one retains condition (i), and dispenses with either (ii) or

iii), then a game can be found in which the pure strategy price
quilibrium defined by the pc(ω) prices does not violate the law of

one price. More specifically, when (ii) is violated, the competitive
equilibrium prices for multiple demand states coincide. Therefore,
even if players have asymmetric information, the law of one
price need not be violated. For example, consider an extreme
case where the competitive price in every possible demand state
is identical. This leads each seller to choose the same price,
independently of their information partition or the realised state
of the market demand, and the law of one price would not be
violated.

If condition (iii) is violated, the players have the same infor-
mation. Therefore, even if the competitive prices vary between
each demand state and the demand is uniformly elastic, a pure
strategy equilibrium would exist but the law of one price would
not be violated. Therefore, all three conditions in Proposition 4 are
required to ensure that a pure strategy price equilibrium exists,
defined by the pc(ω) prices, which violates the law of one price.

2.4. An illustrative example

Consider a market in which there are three states of the world,
Ω = {ω1, ω2, ω3}, and the prior is µ(ω1) = µ(ω2) = µ(ω3) =

/3. The market demands in the three states are D(x, ω1) = x−1,
D(x, ω2) = x−2 and D(x, ω3) = x−4. The quantities of the good
the sellers are endowed with are q1 = 4 and q2 = 12. The
information partitions of the two sellers are P1 = {{ω1, ω2}, {ω3}}

and P2 = {{ω1}, {ω2, ω3}}. Given these market primitives, the pc
prices are pc(ω1) =

1
16 , p

c(ω2) =
1
4 and pc(ω3) =

1
2 , as illustrated

n Fig. 1.
It follows from Proposition 3 that the strategies:

∗

1 ({ω1, ω2}) =
1
16

and f ∗

1 (ω3) =
1
2

f ∗

2 (ω1) =
1
16

and f ∗

2 ({ω2, ω3}) =
1
4
.

re a pure strategy price equilibrium. The ex ante expected utili-
ies of the sellers at the equilibrium are U1(f ∗) =

5
6 and U2(f ∗) =

1
4 . This example violates the law of one price because f ∗

1 (ω2) ̸=

∗

2 (ω2) and f ∗

1 (ω3) ̸= f ∗

2 (ω3). As µ({ω2, ω3}) = 2/3, the sellers post
ifferent prices in the market with ex ante probability 2/3.
 c

6

3. Discussion and conclusion

This paper provides a theoretical foundation for the commonly
observed phenomenon of perfectly homogeneous goods selling at
different prices within the same market, without resorting to the
usual, but contentious, device of sellers using mixed strategies.
Our main result demonstrates that if the market demand is uni-
formly elastic, the competitive equilibrium prices differ in each
state of the world, and if the sellers have different information
partitions, then a pure strategy price equilibrium exists which
violates the law of one price. Furthermore, given the rationing
rule, even the seller posting a higher price may make positive
sales in equilibrium.

If firms have the same information, the law of one price is
restored but excess demand exists whenever the lowest possible
demand from one of the sellers’ information partitions is not
realised. The intuition is that with Maximin utilities, a seller
cannot increase their price ex ante because they would earn a
lower payoff than at the minimum competitive price if the lowest
demand state occurred.

The advantage of the models of Bertrand and Bertrand–
Edgeworth competition is that they provide a direct foundation
for prices in the marketplace without resorting to the fiction of
the Walrasian auctioneer. The model we have analysed assumed
constant zero marginal costs. Most of the literature indicates that
with more general convex costs an equilibrium only exists in
mixed strategies, and is often difficult to characterise. However,
Dixon (1992) noted that if sellers are permitted to specify both
price and quantity pairs, and provided all but one seller could
supply the whole market demand subject to a no bankruptcy
constraint, then the competitive equilibrium of the market could
be sustained as a pure strategy equilibrium. More recently, Bos
and Vermeulen (2021) demonstrate that the existence of a pure
strategy equilibrium is driven primarily by demand and costs,
rather than whether firms also choose quantities simultaneous to
prices. It would therefore be interesting to explore whether the
framework of sellers posting both price and quantity pairs in the
market could be extended to permit asymmetries of information
of the type studied in this paper, and what the implications are
for the law of one price.

It would also be of interest to explore a deeper degree of
uncertainty, where the capacity of each seller is state depen-
dent. In this case, each seller’s endowment would be a function
qi : Ω → ℜ++. One could impose that qi is measurable with
espect to each seller’s private information so that no seller could
nfer more about the state of the market by observing their
ndowment. In this richer model, it is an open question whether
he strategies defined by the pc(ω) prices still constitute a pure
trategy price equilibrium, and whether conditions, such as those
n Proposition 4, which determine when the law of one price is
iolated could be found.
Whilst Maximin utilities are a standard approach for mod-

lling utilities under ambiguity, it would also be interesting to
xplore the extent to which our results continue to pass through
n models of ambiguity that adopt alternative preferences. One
lternative approach could be to consider the Hurwicz criterion
Eichberger and Kelsey, 2014), where decision-makers adopt a
eighted utility of the best and worst possible outcomes. In this
ontext, Maximin preferences correspond to the case where all
eight is assigned to the worst possible outcome.
The extent to which our results extend to an oligopoly setting

ith n > 2 sellers also remains an interesting direction for
urther research. We suspect that the main insights will continue
o survive in an oligopoly setting. However, in our environment
f asymmetric information, (possibly) asymmetric capacities and
any possible realisations of the market demand, the number of

ase distinctions makes a formal proof more challenging.
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