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Abstract

Inertial sensors offer the potential for integration into wireless virtual reality systems that

allow the users to walk freely through virtual environments. However, owing to drift errors,

inertial sensors cannot accurately estimate head and body orientations in the long run, and

when walking indoors, this error cannot be corrected by magnetometers, due to the mag-

netic field distortion created by ferromagnetic materials present in buildings. This paper pro-

poses a technique, called EHBD (Equalization of Head and Body Directions), to address

this problem using two head- and shoulder-located magnetometers. Due to their proximity,

their distortions are assumed to be similar and the magnetometer measurements are used

to detect when the user is looking straight forward. Then, the system corrects the discrepan-

cies between the estimated directions of the head and the shoulder, which are provided by

gyroscopes and consequently are affected by drift errors. An experiment is conducted to

evaluate the performance of this technique in two tasks (navigation and navigation plus

exploration) and using two different locomotion techniques: (1) gaze-directed mode (GD) in

which the walking direction is forced to be the same as the head direction, and (2) decoupled

direction mode (DD) in which the walking direction can be different from the viewing direc-

tion. The obtained results show that both locomotion modes show similar matching of the

target path during the navigation task, while DD’s path matches the target path more closely

than GD in the navigation plus exploration task. These results validate the EHBD technique

especially when allowing different walking and viewing directions in the navigation plus

exploration tasks, as expected. While the proposed method does not reach the accuracy of

optical tracking (ideal case), it is an acceptable and satisfactory solution for users and is

much more compact, portable and economical.

PLOS ONE | https://doi.org/10.1371/journal.pone.0195191 April 5, 2018 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: de la Rubia E, Diaz-Estrella A, Reyes-

Lecuona A, Langley A, Brown M, Sharples S (2018)

Natural locomotion based on a reduced set of

inertial sensors: Decoupling body and head

directions indoors. PLoS ONE 13(4): e0195191.

https://doi.org/10.1371/journal.pone.0195191

Editor: Elena Bergamini, University of Rome, ITALY

Received: January 19, 2017

Accepted: March 4, 2018

Published: April 5, 2018

Copyright: © 2018 de la Rubia et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This research has been supported by the

Junta de Andalucia and the project CENIT España
Virtual, within the Ingenio 2010 program,

subcontracted by Elecnor Deimos. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: Although we have received

funding from Elecnor Deimos (a commercial

https://doi.org/10.1371/journal.pone.0195191
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195191&domain=pdf&date_stamp=2018-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195191&domain=pdf&date_stamp=2018-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195191&domain=pdf&date_stamp=2018-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195191&domain=pdf&date_stamp=2018-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195191&domain=pdf&date_stamp=2018-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195191&domain=pdf&date_stamp=2018-04-05
https://doi.org/10.1371/journal.pone.0195191
http://creativecommons.org/licenses/by/4.0/


Introduction

In 1965, Ivan Sutherland presented the concept of The Ultimate Display [1] system that would

control the existence of matter in a way that, for example, would allow us to take a seat in a vir-

tual chair. This work has led to the consideration of the ideal virtual reality (VR) system. This

is a fascinating concept with huge potential. An ideal VR system offers the possibility of

experiencing any sensation, acquiring any knowledge, developing any skill and enjoying what-

ever we are able to imagine without limitations. Natural locomotion is a key to enabling

advancement towards the realization of Ivan Sutherland’s vision. Natural locomotion attempts

to approximate real-world walking and brings important benefits to virtual reality systems

such as better proprioceptive cues, enhanced distance judgment and increased sense of pres-

ence [2]. For this reason, significant efforts and resources have been dedicated to developing

locomotion interfaces during recent decades. Examples include flat treadmills [3–5]; spherical

treadmills [6]; robotic tiles [7]; robotic actuators [8,9]; motorized skates [10]; and sliding disks

[11–13]. These systems are able to let the user walk in a natural way while they are confined

within a restricted space (walking in place systems). However, they all suffer from undesired

effects such as unexpected inertial forces, disturbance when walking across non-planar sur-

faces or other issues derived from each particular approach. A different strategy to include nat-

ural locomotion in virtual reality systems allows the users to freely walk within large areas

while tracking their movements (real walking systems). The main drawback of this approach is

the need for a clear space that must be large enough to ensure that the users are not going to

collide with any object. However, a small area can also be useful and sufficient for the develop-

ment of a number of applications.

Another difficulty related to real walking systems is the need for high accuracy tracking

capabilities over a wide area. Any tracking system should at least be able to track the position

and the orientation of the head to ensure that the correct visual scene is displayed. In addition,

a head mounted display (HMD) provides a virtual screen that surrounds the user and is conve-

nient for the development of natural locomotion in virtual reality systems. The cable of the

HMD is an issue that can be solved by carrying a laptop in a backpack or using a wireless video

link that broadcasts images from the main rendering station to the HMD. It is important to

highlight that in virtual reality experiences, there can be significant differences between the

real and virtual movements of the user without these differences being noticeable to the user.

The tolerable limits to this difference in terms of virtual/real travelled distance and turns have

been determined in several studies [14–16]. For instance, it was determined [16] that the vir-

tual distance travelled can be increased by up to 26% and reduced by up to 14% relative to the

real distance without the user noticing this discrepancy. Aiming to relieve the imposed restric-

tions on the available space and the tracking system, Razzaque [17] proposed a technique,

known as redirected walking, that exploits the mentioned discrepancies. According to his

method, the position of the point of view in the virtual environment is manipulated so that the

user, without realizing it, will tend to go to the centre of the tracking region.

However, since the final trajectory of the user cannot be predicted in all cases, it is necessary

to provide a way to handle exceptional situations in which the users are about to collide with

objects or are going to leave the tracked area. Reorienting the users when they reach the limits

of the tracked area is one of these strategies [18,19]. Peck, Fuchs and Whitton [20] used dis-

tractor elements to minimize the impact in the virtual experience that lead to the reorienting

of the user. Some authors propose metaphors that include the limits of the tracking area in the

virtual environment, so that navigation can occur without space constraints [21,22]. Using

overlapping virtual spaces that are not visible simultaneously is another strategy that helps to

enhance virtual experiences when the tracked area is limited [23–25].
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Many virtual reality systems that involve real-walking have been developed [26–30]. Most

of the works cited previously employ optical trackers, and none of them rely on inertial sensors

exclusively to track the movements of the user. Inertial sensors can provide many benefits to

virtual reality, and several motion capture systems have been developed using these sensors

[31–36]. Inertial sensors can be small, light, and inexpensive [37]; additionally, wireless models

are available, which contributes to more comfortable and compact virtual reality systems. One

major advantage is their ability to operate without a surrounding infrastructure that provides

absolute references for taking measures [31]. This contributes to the reduction of the overall

system cost. These sensors can be integrated with HMD and wearable infrastructure to create

portable virtual reality systems that allow the users to freely walk and navigate through virtual

environments. In addition, the user can also use their hands to interact with virtual objects or

other users [38]. Although inertial sensors are usually employed to track orientation, they can

also operate as position trackers [39]. However, position estimations are affected by drift errors

and current estimations are based on previously estimated positions (this procedure is known

as dead reckoning).

Bachmann et al. [40] developed a virtual reality system in which inertial sensors are placed

on each shoe to track the position of the user. To update the orientation of the point of view,

another sensor is attached to the head. Since this is a dead reckoning approach, the estimated

position of the user is affected by drift errors. Nevertheless, this is not problematic because

there is no need to establish a correspondence between the virtual space and physical space.

However, the user could eventually collide with an object. To avoid this, Bachmann et al. [40]

use ultrasonic trackers. Vincent [41] employed a similar system and included redirected walk-

ing to avoid collisions in a multiuser system. The accuracy of the estimated distance in inertial

tracking systems in which the sensor is placed on the foot is approximately 1% of the travelled

distance [42].

Most MIMUs (Magnetic and Inertial Measurements Units) include three axis accelerome-

ters, three axis magnetometers and three axis gyroscopes. The magnetometers are employed to

measure the angle around the vertical axis (yaw angle). However, the magnetic field of the

earth is strongly distorted indoors by ferromagnetic materials present in the structure of the

buildings. For this reason, magnetometers are usually not used indoors, and consequently,

yaw angle estimations are based on gyroscopes, which are prone to drift errors. The use of

gyroscopes is satisfactory for the performance of basic navigation tasks where a single MIMU

is placed on the head and determines the forward direction (GD, gaze directed). However, this

approach does not work for more complex tasks that require the decoupling of the direction of

the head from the body’s direction (DD; Decoupled Direction) because both measures are

independent and can lead to incoherent situations. This is because the yaw angle estimations

of the body and head are affected by different drift errors. For example, after using the system

for some time under the DD mode, the user could attempt to make a step forward and perceive

an unexpected displacement to the right. This problem, that we will define as look forward

error, has an enormous negative impact on the experience and could make the user feel very

confused and disoriented.

This article proposes an original technique called EHBD (Equalization of Head and Body

Directions) based exclusively on MIMUs that solves the above-mentioned problem by detect-

ing when the direction of the head and the direction of the body match. It is based on the

difference in the yaw angles that provides two magnetometers located at the head and the

shoulder. Both sensors are close to each other and far from the ground. Consequently, both

magnetometers are affected by the distortion of the magnetic field in a similar way.

The EHBD technique is applied in a wireless virtual reality system with natural locomotion

based on 4 MIMUs that track both feet, the head and the shoulder. To evaluate the performance
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of EHBD, an experiment is carried out in which two navigation tasks are considered (naviga-

tion only and navigation plus exploration). The experiment compares the gaze-directed and

decoupled direction modes. In the remainder of this paper, the natural locomotion virtual real-

ity system we have developed together with the technique proposed for addressing the drift

errors in yaw angle are described in the Materials and methods section, which also provides a

detailed description of the conducted experiments. The experimental results are discussed in

the Results and Discussion section, and finally, conclusions and future work are stated.

Materials and methods

EHBD technique

The EHBD (Equalization of head and body directions) technique corrects the look forward

error described in the Introduction section. Although we do not use the magnetometers to

estimate the absolute orientation of the sensors indoors, the EHBD technique uses them to

detect when the user is facing forward. Specifically, the EHBD technique compares the mag-

netometer measurement results from the sensors on the head and the shoulder in each sam-

ple interval. When both magnetometers provide approximately the same magnetic yaw angle

(Fig 1), the user is considered to look forward and the correction of the look forward error is

then initiated. We refer to this correction process as equalization because it is a way to ensure

that the body and head yaw angles of the gyroscopes are equal to each other. Since the user is

more likely to notice any manipulation of the point of view rather than the changes in the

forward direction, the equalization is carried out by modifying the forward direction only.

For this, the inertial yaw angle of the body (provided by a gyroscope) is approximated pro-

gressively step by step to the value of the inertial yaw angle of the head at the beginning of

the equalization.

Fig 1. Body and head directions. Range of comparison of magnetic yaw angles to detect when the user is looking forward.

https://doi.org/10.1371/journal.pone.0195191.g001
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Fig 2 shows the EHBD algorithm in detail. For each sampling interval, we calculate the

increase/decrease that must be applied in a progressive manner to the estimated inertial yaw

angle of the body in order to eliminate the look forward error. First, the difference d between

the magnetic head yaw angle, b̂h, and the magnetic shoulder yaw angle, b̂b, is calculated. If the

absolute value of this difference is less than a certain threshold value BT, it is considered that a

look forward state has occurred. In this case, the look forward error, defined as ε ¼ ŷh � ŷb,

where ŷh and ŷb are the estimated inertial yaw angles of the head and body, respectively, is cal-

culated. Next, the increment/decrement value (step) Δθ is determined. If the absolute value of

the look forward error ε is greater than a certain threshold value ;T, the value sign(ε) × ;T is

assigned to the step Δθ, where sign(x) is the sign function of x (1, 0, -1 if x is greater than, equal

to or less than 0, respectively) and the error value ε is updated by subtracting ;T. Otherwise,

when ε is not zero, the value of ε is assigned to step Δθ and then updated to 0. Finally, the cor-

rected value of the estimated inertial yaw angle of body ~yb is set as ŷb þ Dy.

According to this procedure, if the equalization takes place when the user is not walking, he

or she will not notice any manipulation of the forward direction. On the other hand, if the

equalization takes place when the user is walking, he or she may notice a slight change in the

forward direction. However, according to our observations, these changes are typically unno-

ticeable. This is because equalization events occur frequently while the drift error in the inertial

yaw angles increases very slowly. When the EHBD technique is applied, the drift error of the

inertial yaw angles persists but does not cause any problem for the real-walking system because

this drift error affects the estimations of inertial yaw angles for the head and the body in the

same way.

A simulation (S1 File) has been carried out using a basic calibration error model [43] for a

gyroscope where the estimated angular velocity bw½k� of the sensor at time kΔt is defined as:

bw½k� ¼ aþ bw½k� ð1Þ

where w[k] is the true value and a and b are the offset and scaling errors, respectively. The esti-

mated angle ŷ ½k� is obtained by integrating the estimated angular velocity bw½k�:

ŷ ½k� ¼ bw½k�Dt þ ŷ ½k � 1�; ŷ ½0� ¼ 0 ð2Þ

where Δt is the sampling interval. The true angular velocity w[k] can be modelled as a half-

cycle of a sinusoidal signal with amplitude ; pDt
T , where T is the period of the signal and ; is the

angle reached in a half cycle.

The simulated trajectory is as follows (Fig 3): the user starts to walk straight looking to the

front (look forward state) and a few seconds later turns 90 degrees to the right (turn right

state). Then, the user continues to walk straight but for a few seconds turns his or her head

about 45 degrees to the right (look right state). Then, he or she goes back to the look forward

state. Later, he or she turns again by 90 degrees, goes straight and turns right again.

Fig 3 shows the estimated (solid lines) and true values (dashed lines) of the yaw angles for

the head and body sensors. The drift errors of each sensor (dashed lines) and the difference

between the estimated yaw angles of the head and body (dotted line) are also shown. Note that

the head and body sensors have different displacement error values (a) and scale (b) and that

they have been set to very large values to be able to observe the drift error well. The actual val-

ues are usually an order of magnitude smaller [44]. If the yaw values are true (ideal case), there

are no drift errors and the head and body yaw angles differ only in two cases: in the turn right

state because the head begins to rotate before the body, and in the look right state because the

user turns the head but not the body. However, if the values are estimated (real case), drift

Natural locomotion based on a reduced set of inertial sensors
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Fig 2. EHBD algorithm.

https://doi.org/10.1371/journal.pone.0195191.g002
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errors are also different for each sensor. Therefore, in the look forward state, there is an unde-

sired difference between the yaw angles of the head and body that disorients the user and that

should be corrected. We refer to this undesirable difference as the look forward error.

The simulation shown in Fig 3 is repeated but with the EHBD algorithm activated, as

shown in Fig 4. Note that when the look forward state is detected, the estimated yaw angle of

the body is corrected progressively (step by step) until it reaches the value of the estimated yaw

angle of the head at the beginning of the equalization. We note that this procedure does not

eliminate the drift error but rather only the difference between the two inertial estimated

angles when the user looks ahead.

The EHBD technique requires that the magnetic field gradient of the workspace be low so

that the difference in the measurements of the magnetometers on the head and the shoulder is

kept within a certain margin in order to correctly determine the look forward state. To achieve

this, the workspace must be free of obstacles and the magnetometers must be at least 1.5 m

[45] away from the elements (walls, floors and ceilings and any object or equipment) that can

introduce hard and soft iron distortions, which increase the gradient of the magnetic field. In

the tests performed in our laboratory, these conditions are fulfilled with the magnetic field

differences between both magnetometers not exceeding 2 degrees. Before using the system, a

calibration process must be performed in order to avoid the effect of misalignments of the

Fig 3. Simulation of a virtual walk. Evolution of head and body yaw angles and the generated drift errors.

https://doi.org/10.1371/journal.pone.0195191.g003
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magnetometers and possible distortions of the magnetic field caused by the equipment (HMD

and back pack) that the user is wearing. For this purpose, the user must turn by 45˚ up to eight

times to complete a lap. After each turn, the user must look forward and two samples are taken

from the magnetic yaw angles: one for the head and another one for the shoulder. As a result

of this procedure, a calibration table is obtained. Given the magnetic yaw angle of the body,

this table provides the magnetic yaw angle of the head at which the user would be facing for-

ward. The system applies this table continuously to determine when the user is facing forward,

and the equalization of head and body directions is then applied.

Experimental design

We have conducted an experiment to evaluate the EHBD technique that equalizes the direc-

tions of the head and the body. For this purpose, the DD mode in which this technique is

applied is compared to the GD mode in this study. When GD is active, the walking and head

Fig 4. Simulation of a virtual walk with EHBD. Evolution of head and body yaw angles and drift errors when the EHBD technique has been applied.

https://doi.org/10.1371/journal.pone.0195191.g004
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directions are the same. Consequently, when the user walks, he advances in the direction of

the head. On the other hand, the DD mode considers different directions for the body and the

head. Thus, users can turn their head while walking without affecting the trajectory. GD is suit-

able for simple navigation tasks but not for complex tasks such as simultaneous navigation and

exploration tasks, or curved trajectories (for example, entering through a doorway). In this

case, the DD mode is more appropriate. Our hypothesis leads us to expect that users will

match the target trajectory during the navigation task (NAV) under DD and GD conditions in

a similar way. Furthermore, we expect that the DD configuration will outperform GD when

exploration is taken into account in the navigation plus exploration task (NEX). Prior to the

experiment, the ethics committee of Nottingham University’s Engineering Faculty reviewed

and approved the experiment.

Participants. Twenty-nine participants participated in the experiment. Five (3 males, 2

females) decided to leave after a few minutes because they started to experience VR-induced

sickness symptoms. Twenty-four participants completed the experiment (18 males, 6 females)

matching the minimum number of subjects recommended by the power analysis (a large effect

size was assumed, 0.4). Their ages range from 20 to 53 (mean (M) = 30, standard deviation

(SD) = 9.1). All participants volunteered without receiving any form of compensation for par-

ticipating in the experiment.

Apparatus. Fig 5 shows the main components of the experimental platform. The user car-

ries an HMD and backpack that contains the video receiver together with its battery and wears

wireless headphones and four InertiaCube 3 sensors from Intersense located on the feet, head

and shoulder. The last two sensors are used to equalize the estimations of the yaw angles of the

head and the body. The rendering station in combination with the receiver of the inertial sen-

sors and the video link transmitter complete the system.

Fig 5. Platform. Main components of the experimental platform.

https://doi.org/10.1371/journal.pone.0195191.g005
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Regarding the technical specifications of the system, the wireless video link manufactured

by Sensics has more than one hour of autonomy. Its operating range is 100 m with an end-to-

end latency of 30 ms. It supports full HD video streams (1920x1080 pixels) at 60 Hz. The back-

pack is rather light. Its weight is around 1 kg, and it includes the video link receiver and its bat-

tery. The employed HMD is Oculus Rift (development kit 1) from Oculus VR. This HMD

supports a resolution of 1280x800 pixels at 60 Hz. Its horizontal field of view is 90 degrees, and

its latency is above 30 ms for a system running at 60 frames per second. This latency includes

all the stages in the process chain including sensing, sending data, sensor fusion, virtual world

simulation, rendering and video output. The HMD is complemented by wireless headphones

to provide audio-visual feedback to the user. The rendering station generates stereoscopic

images at 60 frames per second, which is the maximum frame rate that the HMD supports.

The four InertiaCube 3 sensors are used to track the movements of the user and operate at

110 Hz with a latency of 6 ms corresponding to the time interval between the time at which

the measurement is performed by the sensor and the arrival of the data to the remote com-

puter. Their maximum range is 30 m. These sensors include three axis accelerometers, three

axis magnetometers and three axis gyroscopes. We did not use the raw output of the magne-

tometers. Instead, we use the estimation of the magnetic yaw angle provided by the Inertia-

Cube 3 sensors obtained from the three-axis magnetometer embedded in each sensor. This

magnetic yaw angle is provided by the software development kit of Intersense and is denoted

as CompassYaw.

To track the movements of the feet, an inertial sensor is attached to each shoe. For this pur-

pose, we developed a technique that improves the previous results in terms of accuracy and

smoothness of the trajectory [46]. To estimate the position of the user, we consider relative

increments of the position and orientation from each foot. The inertial sensor placed on the

head provides its orientation. By combining these data, we can replicate the movement of the

point of view in the virtual environment. We also add oscillating movements to enhance the

feeling of walking. More details about the system can be found in de la Rubia and Diaz-Estrella

[47]. We do not use the sensor embedded in the HMD. Rather, we obtain the body and head

orientations from the same type of sensor in order to make them comparable. The EHBD algo-

rithm uses the following values for its parameters: BT = 2 degrees and ;T = 0.5 degrees.

The experiment was conducted in a television studio at the University of Nottingham. The

studio is acoustically isolated, and its dimensions are 26 × 26 m (Fig 6). To perform the experi-

ment, we modified the Tuscany virtual environment created by Oculus VR by removing the

Fig 6. Experiment venue. Perspective view from the television studio where the experiment was performed (left). Subject using the system (right).

https://doi.org/10.1371/journal.pone.0195191.g006
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stairs and some furniture in order to let the participants walk across the entire room (Fig 7).

To assist the participants during the navigation in both tasks (NAV and NEX), four chairs

were placed close to the corners of the room. The target path that the subject followed was

defined by these chairs (Fig 8) and was a rectangle with dimensions of 5.7 × 4.6 m. The trav-

elled distance per lap is 20.6 m.

To include visual exploration within the virtual experience, we animated two balloons that

appeared and disappeared through the windows of the cottage (Fig 9). Participants looked for

the balloons during the NEX task. The windows at which the balloons appear follow a random

sequence. The same sequence is applied to every participant so they all perform the experiment

under the same conditions.

Procedure. We consider two tasks. The first one involves navigation only (NAV), and the

second one adds exploration (NEX). Participants were randomly distributed into two groups,

with either the GD or DD conditions. Each person performed both tasks, NAV and NEX

(2 × 2 mixed-subjects design). For counterbalancing the results, half of the participants in each

group performed the tasks in one order and the other half in the opposite order.

Prior to starting the experiment, the participants completed several forms and question-

naires: consent, demographic information, the 29-item version of the simulator sickness ques-

tionnaire (SSQ) proposed by Kennedy, Lane, Berbaum and Lilienthal [48] and a questionnaire

to collect problems or particularities of the subject related to the sense of sight (SQ).

The sensors were attached to the shoes using Velcro straps before the remaining elements

of the system were secured to the participants. Then, misalignment of the sensors on the head

and the shoulder was calibrated by applying the procedure mentioned above in the EHBD

technique section. The sensors on the feet also needed to be calibrated according to the proce-

dure described in de la Rubia and Diaz-Estrella [47].

The participants then began the adaptation phase in which they practiced using the sys-

tem by walking inside the cottage. This phase lasted as long as the participants required.

Once they felt ready to start the experiment, the participants watched a video of a researcher

Fig 7. Employed virtual environment. Tuscany virtual cottage from Oculus VR after modification to perform the

experiment.

https://doi.org/10.1371/journal.pone.0195191.g007
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Fig 8. Target path. Target path that participants followed during the NAV and NEX tasks (lines and arrows are not

displayed in the virtual environment).

https://doi.org/10.1371/journal.pone.0195191.g008

Fig 9. Animated balloons for exploration. Animated balloons that appear through the windows to include

exploration in the experiment.

https://doi.org/10.1371/journal.pone.0195191.g009
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performing the task with the video showing two views from the virtual and real environment

simultaneously.

The participants then performed the task and were asked to go from one chair to the next

without stopping. They were informed that the aim of the NAV task was to “complete as many

laps as possible” and that the aim of the NEX task was “to complete as many laps as possible

and to count aloud as many balloons as possible”. Participants were also told that both goals in

the NEX task were equally important. The order in which each participant performed the tasks

depended on the counterbalance subgroup to which they were allocated.

Each task was composed of three trials lasting 90 seconds each. Between two consecutive

trials, the participants removed the HMD and rested for 2 minutes. Once the participant fin-

ished the third trial of task one, the cybersickness questionnaire was completed. Then, the sec-

ond task was explained, performed and followed by the final completion of the sickness,

usability, presence [49] and general aspects questionnaires (preference, positive and negative

aspects of the system). The usability questionnaire is an adaptation from that employed in the

European Project SATIN (Sound And Tangible Interfaces for Novel product design Project)

and was specifically designed for the evaluation of virtual reality systems [50].

Statistical analysis. Our quality metric is the deviation of the ideal path. The rationale for

this is as follows: if the EHBD technique were not applied, the drift error between the relative

yaw angles estimated for the head and the body will grow. Values of around 45 degrees will

make even walking a few steps difficult. This would be quite disturbing for the users because

rather than advancing straight forward as they expect, they will follow a diagonal direction (45

degrees to the left or to the right). This would typically occur before reaching the 90 seconds

that each session lasts. Therefore, a higher extent of control over the desired direction during

locomotion as well as higher effectiveness of the proposed EHBD technique will be obtained

for lower deviation from the ideal path. To obtain the deviation from the ideal path, we have

calculated the root mean square distance from the estimated position to the closest point of the

ideal path.

Independent-samples t-tests were employed to analyse the data collected in the experiment

(deviation from the ideal path, completed laps and counted balloons) and the questionnaires

(demographic information, SSQ, SQ, presence, usability and general aspects). All data and

details of statistical analysis can be found in the S2 File.

Results and discussion

The analysis showed that the deviation from the ideal path during the NAV task does not differ

significantly between the DD and GD groups (Fig 10). The mean deviation for the three trials

is 22 cm under the GD condition. This is 4% less than the mean of 23 cm measured for the DD

group (t (22) = 1.07, p = 0.297).

This result was expected as the GD mode provides a high degree of control of the trajectory

when the users walk while looking forward. This is what typically occurs during the NAV task

because the participants focus on the chair that is in front of them. The accuracy of the system

during the NAV task is illustrated in Fig 11.

Slightly higher deviations for the DD condition were expected and can be observed in the

NAV task. We consider this to be due to small errors in the estimated forward directions that

arise during the equalization of the head and body directions. These errors are related to the

threshold BT (trade-off value), small deviations during the calibration process and the swing

movement of the body in the yaw angle that occurs during walking. However, in spite of these

errors, the deviation under the DD condition in the NAV task is small and the behaviour of

the system is satisfactory in the GD and DD groups.
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When exploration comes into play in the NEX task, the DD mode outperforms GD as

expected [51]. The mean deviation of the three trials increases up to 48 cm under the GD con-

dition. This is 65% higher than the mean of 29 cm obtained in the DD group (Fig 12). This dif-

ference is statistically significant (t(15) = 5.48, p<0.001).

As the participants complete the laps while looking for balloons in the NEX task, the trajec-

tory moves from the ideal path under the GD condition. On the other hand, participants in

the DD group are able to more precisely control the trajectory of the point of view (Fig 13).

This shows that the EHBD technique is working properly, confirming its validity to a certain

extent.

Fig 10. Deviation during the NAV task. Registered deviation from the ideal path during the NAV task across trials

and the global mean.

https://doi.org/10.1371/journal.pone.0195191.g010

Fig 11. Sample trajectories (NAV). Sample trajectories of a trial under GD (left) and DD (right) conditions during

the NAV task.

https://doi.org/10.1371/journal.pone.0195191.g011
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The difference in the number of balloons counted by the participants is not statistically sig-

nificant (Fig 14). The mean value of the total number of balloons reported per participant

under the DD conditions is 37.7. This is 10% higher than the 34.2 for the GD condition

(t(22) = 1.26, p = 0.218).

Although statistical significance is not achieved, a positive and consistent relation across all

trials can be observed in favour of the DD condition.

Higher levels of environmental validity in a navigation interface are likely due to the use

of fewer cognitive resources, and hence, an increase in performance of the secondary task can

be expected. The results suggest that participants felt more comfortable using the DD mode,

which may cause a slight improvement in the performance while counting balloons.

Fig 12. Deviation during the NEX task. Registered deviation from the ideal path during the NEX task across trials

and the global mean.

https://doi.org/10.1371/journal.pone.0195191.g012

Fig 13. Sample trajectories (NEX). Sample trajectories of a trial under GD (left) and DD (right) conditions during the

NEX task.

https://doi.org/10.1371/journal.pone.0195191.g013
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The total number of completed laps per participant was very similar in the NAV task (Fig

15). The mean values were 11.5 and 11.6 for the GD and DD groups.

This result was expected and corresponds with the recorded deviations presented in Fig 10.

The behaviour of the system is quite similar under the GD and DD conditions when the per-

formed task involves navigation only.

During the NEX task, the total number of completed laps per participant was 10 in the GD

group. This is 5.6% less than the 10.59 obtained in the DD group (Fig 16). However, this differ-

ence is not statistically significant (t(22) = 0.83, p = 0.41).

Fig 14. Counted balloons in the NEX. Number of balloons counted by participants during the NEX task across trials

and the total value.

https://doi.org/10.1371/journal.pone.0195191.g014

Fig 15. Completed laps (NAV). Completed laps per participant across trials during the NAV task.

https://doi.org/10.1371/journal.pone.0195191.g015
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We did not expect this result. Because of the higher deviation from the ideal path that

occurs during the NEX task under the GD condition, we expected that the participants would

need to travel longer distances to complete a lap. Consequently, the number of laps under the

GD condition would be lower in the NEX task. However, we observed that because of the devi-

ation that causes the GD mode in the NEX task, some participants tended to go to the centre

of the room. Therefore, they completed shorter laps and this increases the global average of

completed laps per participant in the GD group. However, although statistically significant

results are not obtained, it is worth mentioning that the number of completed laps is higher in

all the trials under the DD condition.

We found that the registered score in the usability questionnaire was higher for the DD

group (GD: M = 64.5, SD = 7.2; DD: M = 66.5, SD = 7.2). However, this difference is not statis-

tically significant (t(22) = 0.671, p = 0.509). This is also the case for the presence questionnaire

(GD: M = 45.3, SD = 6.9; DD: M = 48.1, SD = 6.05; t(22) = 0.907, p = 0.374) and the SSQ (Fig

17) in which all subscales obtained higher post-immersion values under the DD condition,

although none of them is statistically significant (nausea: t(15,5) = 1.72, p = 0.11; oculomotor:

t(22) = 1.52, p = 0.14; disorientation: t(22) = 0.78, p = 0.45; total: t(18.04) = 1.73, p = 0.1).

In the NAV task in which the participants were not affected by any distractions, the average

number of completed laps is almost four. This gives a speed of 0.91 m/s, which still does not

reach the normal walking speed but is closer to the normal speed value. The reason why the

participants do not perform as they would in real life could be because the virtual reality in the

experiments does not have all of the characteristics of a real experience. For example, the users

cannot see their bodies and, as [2] points out, this fact can contribute to a decrease in the walk-

ing speed in the virtual environment.

Although this could strongly depend on the extent of technological development, real walk-

ing has been reported as a navigation technique that is prone to increasing cybersickness [52].

Thus, it is not clear to what extent each of the techniques, real walking and EHBD, contributes

to increasing cybersickness.

We could observe during the experiment how wide the range of human tolerance to cyber-

sickness is. While some people had to leave the study after a few steps, others started to jump

Fig 16. Completed laps (NEX). Completed laps per participant across trials during the NEX task.

https://doi.org/10.1371/journal.pone.0195191.g016
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and run on their own initiative during the adaptation phase. This is consistent with previous

findings reported in [53].

Some participants from the GD group felt as if they were going to collide with the walls

during the NEX task. Their reactions were identical to those expected in a real environment.

Others completely forgot the real world during the study. These observations support the idea

that natural locomotion contributes to an increase in the extent of involvement in the virtual

experience.

Negative aspects collected in the general questionnaire were the latency of the system, reso-

lution of the HMD and cybersickness caused by latency, searching for balloons and the limita-

tion of the system while estimating the position of the head from sensors placed on the feet.

Some of these comments were as follows: the slight display lag caused problems balancing

sometimes; I felt tired of the image (visual fatigue); dizziness caused when moving the head

too much; drift; sickness (at the beginning); gaps between pixels could be seen.

Some of the positive aspects highlighted for the behaviour of the system were how comfort-

able it is and high levels of immersion. Some of these comments were as follows: the system

was very responsive to my movements; couldn’t really feel the equipment I was wearing; I

found that the system is really impressive; it is a fantastic experience; I did feel as if I was there;

I felt I was in another world.

Participants rated the system with an overall score of 7.3 out of 10 points. The GD condition

scored slightly higher (7.7) than the DD condition (7.5) during the NAV task. This tendency

was inverted during the NEX task, where GD achieved 6.9 points and DD 7.1.

The most frequent suggestion to improve the system was to include the avatar of the user in

the experience. Several people tried to see their hands and feet during the study. Tracking of

the hands and the addition of more interaction in the experience were also requested by some

participants.

Conclusions and future work

We have presented a wireless virtual reality system that provides a natural locomotion inter-

face for navigation across virtual environments. The system is based on a reduced set of small

inertial sensors. This approach contributes to reducing the cost of the system while making it

Fig 17. Results of SSQ (pre- and post-immersion).

https://doi.org/10.1371/journal.pone.0195191.g017
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comfortable and portable. We have addressed the difficulties derived from the decoupling of

the body and head directions using inertial sensors indoors where magnetometers are not

effective, leading to the appearance of drift errors in the yaw angle. To solve this problem, we

have developed and presented the EHBD technique that was evaluated experimentally.

The learning effect is not observed across the tasks and the trials. It is found that the system

is natural enough so that a quick adaptation phase is sufficient to make participants feel com-

fortable and obtain good results. According to the results, the EHBD technique allows effective

decoupling in the directions of the body and the head while performing tasks that involve navi-

gation only or navigation together with exploration. Most importantly, the results of the study

are very promising: it fulfils the initial objectives and data traces and valuable feedback from

the participants will contribute to improving the system. Furthermore, according to answers

in the questionnaires, 100% of the participants who completed the experiment recommended

the experience.

Regarding future work, the oscillation of the body around the vertical axis that can be

observed while walking can be considered during the equalization process to improve the

accuracy of the EHBD technique. For this purpose, the percentage of the gait cycle could be

derived from the sensors on the feet [43]. As was suggested by several participants, including

hand interaction and the use of inverse kinematics to display the avatar of the users will also

improve the system.

Supporting information

S1 File. EHBD simulations.

(XLSX)

S2 File. Real walking experiment–results.

(XLSX)
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