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Hyperspectral imaging (1000e2500 nm) was used for rapid prediction of moisture and total lipid content
in intact green coffee beans on a single bean basis. Arabica and Robusta samples from several growing
locations were scanned using a “push-broom” system. Hypercubes were segmented to select single
beans, and average spectra were measured for each bean. Partial Least Squares regression was used to
build quantitative prediction models on single beans (n¼ 320e350). The models exhibited good per-
formance and acceptable prediction errors of ~0.28% for moisture and ~0.89% for lipids.

This study represents the first time that HSI-based quantitative prediction models have been devel-
oped for coffee, and specifically green coffee beans. In addition, this is the first attempt to build such
models using single intact coffee beans. The composition variability between beans was studied, and fat
and moisture distribution were visualized within individual coffee beans. This rapid, non-destructive
approach could have important applications for research laboratories, breeding programmes, and for
rapid screening for industry.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Coffee composition and quality

Coffee is one of the most popular beverages worldwide, and the
quality of the final product is defined by several factors. Most of
these strictly depend on the green bean composition (Illy and Viani,
2005), including moisture and fat, which are among the main
constituents of green coffee beans. Moisture, in particular, is a
critical quality parameter because it affects coffee bean shelf life.
The determination of coffee bean moisture content is paramount to
ensure safe transport and storage and to avoid the risk of mould
development (fungal growth during storage), since an excessively
dry or excessively wet green coffee bean will not maintain its
quality (Wintgens, 2009). Lipids are another important component
of green coffee beans, with fat content ranging from 7e10% in
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Robusta coffee and up to 15e17% in Arabica. The majority of coffee
lipids are represented by triacylglycerols (75%), diterpene esters
(up to 20%), sterols (2e3%), free fatty acids (1%) and tocopherols
(0.05%) (Farah, 2012). Unsaturated fatty acids are the most abun-
dant fatty acids in coffee beans, and they are relevant not only in
terms of health effects and sensory impact of the final coffee brew,
but also for the shelf life and storage of the raw material. Rancidity
as a food defect comprises oxidative or hydrolytic rancidity, and is
strongly influenced by the fatty acid composition and the total
amount of fat present. Diterpenes, both free and esterified, form
0.2e1.2% of coffee constituents. Fat is primarily located in the
endosperm of coffee seeds. There is also a layer of wax on their
surface, accounting for 0.2e0.3% of the coffee weight (Farah, 2012).

Several methods are available for the measurement of moisture
in coffee, including the oven drying method, Karl-Fischer titration,
conductivity meters and water activity measurement (Reh et al.,
2006). Conductivity meters are relatively rapid and easy to use
but cannot measure a single coffee bean, and so alternative
methods should be applied when focusing on individual coffee
beans. Furthermore, the traditional solvent extraction techniques
applied for fat analysis (e.g. Soxhlet method) are hazardous and
time consuming and can take over 16h (Speer and K€olling-Speer,
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Abbreviations

HSI Hyperspectral Imaging
LDA Linear Discriminant Analysis
LV Latent Variable
MLR Multiple Linear Regression
MSC Multiple Scatter Correction
NIR Near Infrared
NIRS Near Infrared Spectroscopy
NMR Nuclear Magnetic Resonance
PC Principal Component
PLSR Partial Least Squares Regression
RMSEC Root-Mean Square Error of Calibration
RMSECV Root-Mean Square Error of Cross Validation
RPD Ratio of Performance Deviation
SNV Standard Normal Variate
SVM Support Vector Machine
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2006). Rapid analytical techniques are therefore needed for the
quantification of total lipids in foods.

The application of non-destructive techniques such as Near-
Infrared Spectroscopy (NIRS) provides the means to analyse cof-
fee beans rapidly without the need for organic solvents. In addition,
contrary to other techniques, NIRS can be applied to solid samples
without preparation, e.g. grinding, extraction or purification
(Pizarro et al., 2004). Although NIRS is an indirect technique with
high accuracy for moisture prediction in coffee beans, the need for
good calibration has been highlighted (Reh et al., 2006). Despite
being a powerful technique, NIRS does not readily permit detailed
analysis in the spatial domain, which is key to understanding bean-
to-bean variation and the spatial distribution of moisture and lipids
across seeds. In common usage, NIRS is therefore limited to appli-
cation to homogenous food samples.
1.2. Hyperspectral imaging for coffee analysis

Hyperspectral imaging (HSI) combines the non-destructive na-
ture of NIR technology with image analysis, enabling the possibility
of rapid analysis and screening of multiple grains at a time, and
measurement of both physical features and chemical composition.
In particular, “push-broom” sensors offer the potential to imple-
ment HSI both on a laboratory scale and for industrial application.
By exploiting the spatial domain, the amount of information is
dramatically increased with HSI, as each pixel of the image corre-
sponds to a full spectrum in the NIR region (ElMasry et al., 2007).
Consequently, HSI offers the advantage of visualizing the concen-
tration of chemical components inwhole intact food samples at the
single pixel level and single object level (e.g. whole wheat kernels)
once a proper calibration has been established. In this way, infor-
mation on the distribution and variability within and between
kernels is obtained (Caporaso et al., 2018a, 2017). However, the
majority of applications of HSI in the food science sector concern
classification methods rather than quantitative prediction models
of composition. With respect to moisture and fat determination by
HSI, very limited research has been published on grains and seeds,
with the majority of studies reporting on other food products such
as meat (Xiong et al., 2014). There is even less published research
relating to HSI prediction of food constituents at single object level.
Examples of HSI applied to foods for moisture prediction include
the analysis of single strawberry fruits using the spectral range
400e1000 nm (ElMasry et al., 2007), and single peanuts using two
spectral ranges (400e1000 and 1000e2500 nm) (Jin et al., 2015).
Both peanut models return calibration and prediction coefficients
of determination (R2) of about 0.9, with Root Mean Square Error of
Calibration (RMSEC) and of cross validation (RMSECV) of 0.06%, for
a moisture content ranging from 3.5 to 4.5%. A higher error was
reported by Cogdill et al. (2004) for moisture prediction in maize
seed kernels using HSI. Utilizing the 750e1100 nm spectral region,
the reported calibration had R2¼ 0.87 and prediction errors slightly
above 1% for maize kernels with a moisture content between 9.7%
and 30.5% and lipid content of 0.3e12.2% (“as is” basis).

Despite these few applications of HSI for quantitative pre-
dictions in granular food products, very little work has been pub-
lished on coffee, and there is a complete absence of literature
relating to single beans or green coffee bean quantitativemodels by
HSI. Only a single study investigating moisture determination by
HSI on instant granulated coffee has been published (Achata et al.,
2015). The coffee moisture content was artificially changed at
defined levels in the laboratory and scanned by HSI in the spectral
region 880e1720 nm, showing excellent performance.

1.3. Hyperspectral imaging for classification purposes

Coffee species classification (i.e. Arabica and Robusta) is perti-
nent to the coffee industry because of their differing commercial
price; Arabica is considered higher quality and more expensive
than Robusta coffee (Rubayiza and Meurens, 2005). While coffee
bean species identification is a relatively easy task for experts based
on visual inspection of the green coffee, discrimination between
Arabica and Robusta on roasted samples is a more challenging task
(Keidel et al., 2010). Even for green coffee there is the need to assess
individual beans within a whole batch, due to the variability ex-
pected within the population, caused by genetic, environmental
and post-harvest factors. However, this is impractical to undertake
through visual inspection and so rapid, objective methods are
required.

Several analytical approaches have been explored to verify
whether molecular markers exist to discriminate ground and
roasted Arabica and Robusta coffees based on fat composition. For
example, Romano et al. (2014) used fatty acid composition as a
possible indicator to differentiate the two species, but the classifi-
cation and quantification in blends is still a challenge as parameters
such as the roasting degree strongly influence the lipid composition
of the beans (Romano et al., 2014). However, these methods require
grinding, extraction and time-consuming analytical techniques, e.g.
gas-chromatography of volatile compounds, matrix-assisted laser
desorption/ionization mass spectrometry or gas-chromatography-
mass spectrometry (Myles et al., 2006). These methods are rela-
tively complex, time-consuming, expensive, and are not applicable
online (Buratti et al., 2015).

To address this, several authors have assessed the potential of
non-destructive techniques for coffee bean discrimination,
including NIRS (Downey et al., 1995; Myles et al., 2006). Good
performance of NIRS for authenticity purposes of ground coffee has
been demonstrated, e.g. for the quantification of other ground
coffees in Kona coffee blends (Wang et al., 2009), the addition of
barley in roasted coffee (Ebrahimi-Najafabadi et al., 2012), as well
as extraneous materials intentionally added for fraudulent pur-
poses (Barbin et al., 2014). Rubayiza and Meurens (2005) success-
fully classified coffee species using FT-Raman spectroscopy in the
mid-infrared region based on green and roasted ground coffee
beans. Reflectance NIRS in the region 1100e2500 nm was also
successfully applied on ground and roasted coffees for the same
purpose (Esteban-Diez et al., 2007). However, for unground coffee
only a single example has been found in the literature, which used
reflectance NIRS in the spectral region 1100e1800 nm in



N. Caporaso et al. / Journal of Food Engineering 227 (2018) 18e2920
conjunction with Linear Discriminant Analysis (LDA), resulting in
classification errors of 5% to 15% depending on the spectral pre-
treatment applied (Myles et al., 2006). The only existing study to
utilise HSI to discriminate Arabica and Robusta green coffee beans
was recently published by Calvini et al. (2015). In this study, several
classificationmethods were applied on the hypercube, obtaining an
accuracy of 97%. The spectral region 955e1700 nmwas utilised; the
model was not built on a single coffee bean level.

From the above, it is clear that there has been very little atten-
tion on analysing coffee beans without prior grinding, and appar-
ently no previous research dealing with quantitative prediction
models of composition for green coffee based on HSI. In addition,
calibrations for single coffee beans have not been previously re-
ported for moisture and fat content, which can be of interest for
breeders and the industry, to obtain information on the distribution
of these constituents within the population via a non-destructive
approach. Accordingly, the primary aim of the present study is to
assess, for the first time, the application of HSI for total lipid content
and moisture content prediction on green coffee beans on an in-
dividual seed basis. Moreover, a classification exercise to demon-
strate a single-object approach for Arabica-Robusta species
discrimination is also reported.

2. Materials and methods

2.1. Coffee samples

A total of 27 batches of green coffee beans were used for the
experiment, and from each batch several coffee beans were
randomly selected and individually analysed, so that the inter- and
intra-batch variability was included. The samples were obtained
from several producing countries, comprising Brazil, Colombia,
Costa Rica, Ethiopia, India, Mexico, Honduras, Kenya, Nicaragua,
Uganda, Rwanda and Vietnam. Both post-harvesting processing
techniques were included, with approximately 60% wet processed
and 40% dry processed. Twenty batches belonged to the Arabica
species, while seven were Robusta. Approximately six beans were
randomly selected from each batch for moisture and fat determi-
nation, while ten were selected for the species classification
experiment. As the observed moisture range was relatively narrow,
an extended moisture content range was also created artificially by
treating two sub-batches of a Mexican Arabica coffee to obtain
more dry and wet coffee beans. One sub-batch was placed in an
oven at 50 �C, while a second one was placed in a chamber at
saturated humidity, for 3 to 12 h.

To build Arabica-Robusta classification models, HSI was applied
on both sides of beans both before and after roasting. The coffee
beans were roasted using a Roastilino (Fracino, Birmingham, UK)
roaster at 210 �C for 3min, which resulted in a medium-high
roasting degree.

2.2. Reference analyses for moisture and fat

Moisture content was analysed by oven drying using an adap-
tion of the method ISO 11294:1994 (1994), which involved using a
slightly lower temperature and longer time to avoid excessive
sample degradation. This is because the analysis of moisture con-
tent through the official ISO method could result in a partial
degradation of the product when analysing the coffee beans, which
will influence the overall weight loss (Reh et al., 2006). The indi-
vidual samples of green coffee beans were placed on an aluminium
tray and dried in a Sanyo 112-F (San Diego, CA, USA) oven at 95 �C
for about 24h. The water content was then expressed as percentage
of coffee bean weight.

Nuclear Magnetic Resonance (NMR) was used for reference lipid
analysis, due to its advantages in terms of rapidity and accuracy,
and because the required sample size makes it feasible to analyse
the single coffee beans. The single coffee beans were ground using a
Retsch PM 200 Planetary Ball Mill grinder (Retsch, GmbH, Ger-
many), by first cooling the sample using liquid nitrogen (cryomil-
ling) and then grinding for 30 s at 25 min�1. The NMR-based fat
analysis includes a complete drying of the sample ground material,
followed by measurement of total lipid content using a CEM Smart
Trac II Moisture and Fat analyzer (CEM Microwave Technology Ltd.
Buckingham, UK). The instrument has a resolution of 0.01%, a fat
range from 0.01% to 99.99% and a balance with 0.1mg readability.
The repeatability of the method was 0.24%.

2.3. Hyperspectral imaging and data treatment

Datawas acquired using a laboratory-scale HSI system described
by Caporaso et al. (2018a). The hyperspectral instrument was
supplied by Gilden Photonics Ltd. (Glasgow, U.K.) and includes a
SWIR spectral camera (Specim Ltd. Oulu, Finland) containing a
cooled 14-bit 320� 256 pixel HgCdTe detector and N25E spectro-
graph providing 256 spectral bands over a wavelength range of
980e2500 nm with a spectral resolution of ~6 nm. Samples (intact
beans) were presented on a movable sample stage illuminated
using two 500W incandescent lamps, and imaged using a push-
broom approach. SpectralCube 3.0041 software (Specim) was
used to control the camera and translation stage. A black reference
measurement was obtained by recording approximately 100
frames after closing the camera shutter at the end of each scan, and
a white reference was obtained using a white PTFE reference ma-
terial (Caporaso et al., 2017; Millar et al., 2008). Hyperspectral
images were acquired for the dorsal and ventral sides of the coffee
beans, and were analysed using ENVI 5.2-IDL 8.4 (Harris Geospatial
Solutions). Bad pixels and spikes in the images were first removed,
and then object segmentation was carried out to select pixels cor-
responding to each of the coffee beans by thresholding the hyper-
cube according to log10 (1/R1186)< 1, where R1186 is the reflectance
at 1186 nm. The pixels belonging to each coffee bean were identi-
fied and an unweighted mean absorbance spectrum for each coffee
bean was computed from the component pixel absorbance spectra
and exported for subsequent statistical analysis.

2.4. Statistical analysis

Moisture and fat prediction in green coffee beans was carried
out by Partial Least Squares regression (PLSR) analysis using The
Unscrambler X 10.3 software (Camo, Norway). The log (1/R) spectra
were processed to reduce scattering effects, using Standard Normal
Variate (SNV), first or second derivatives using the Savitzky-Golay
smoothing process, Multiplicative Scatter Correction (MSC), or
de-trending and normalization (Rinnan et al., 2009).

Species classification models for green and roasted coffee beans
were built using Linear Discriminant Analysis (LDA) and Support
Vector Machine (SVM). The C-SVC SVM type was used for the
classification, with several kernel types tested, including radial
basis function and polynomial. To choose the best gamma and C
values, a grid search was performed before calculating the SVM
model, and a cross-validation was applied using 10 random
segments.

LDA is a powerful tool that performs dimensionality reduction
and automatic object classification. It is based on finding the
optimal boundaries among classes, by maximising the between-
class variance while minimizing the within-class variance. SVM is
a non-linearmodelling technique that finds the optimal hyperplane
as a surface able to separate the largest fraction of datapoints, and it
maximises the margins among classes. Detailed explanation on
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SVM classifiers, with examples applied to HSI, has been reported by
Jiang et al. (2007). In the present case, LDA was performed using a
linear method, assuming equal prior probability and applying a
previous Principal Component Analysis (PCA). SVM classification
was performed using a C-SVC type classifier with several kernel
types tested, including radial basis function and polynomial.

The evaluation of PLS regression models for moisture and fat
determination was performed by considering the coefficient of
correlation (R2), and root mean square error for the calibration
(RMSEC) and cross-validation (RMSECV) datasets. In addition, the
Ratio of Performance to Deviation (RPD) was used to give an indi-
cation of the goodness of fit. This parameter is defined as the ratio
between the standard deviation of the reference values and the
RMSECV. Cross-validation was applied to evaluate the accuracy of
the model, as RMSECV gives the uncertainty that can be expected
for future prediction of unknown samples, based on the following
equation:

RMSEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pnp

i¼1
ðŷ i � yiÞ2

np

vuuuut

ŷi being the predicted value for the sample i, yi its measured
value, and np the number of validated cases. The number of latent
variables (LV) was chosen to minimize the RMSECV, by leaving the
software to select the optimal number. The sample outliers were
identified and removed according to the sample residuals and
leverage, as well as on the Hotelling's T2 values (Fearn, 2002).
3. Results and discussion

3.1. Descriptive statistics for reference measurements

The average moisture content for green coffee beans at their
natural moisture range was 10.8%, while the average total fat con-
tent was 14.7% and 16.4%, expressed on a “as is” basis and dry
matter basis (dmb), respectively (Table 1). The values in Table 1a are
derived from a single set of samples, whereas Table 1b reports the
moisture content assessed by oven drying for samples in a “natural
state” as well as for the batch of samples that was treated to
consider a wider range of moisture content. As mentioned above,
this was done to build a calibration with a moisture content
extended beyond the narrow range of the samples received
(SD¼ 0.8%). This is particularly important for considering cases
where batches of coffee beans are stored in improper humidity
conditions that can result in lower quality, and even be at risk from
mould development. Generally a moisture content of between 8.0%
and 12.5% is regarded as suitable for the storage of green coffee
beans in order to avoid microbial growth and altered sensory
quality.

The average total fat content in green coffee beans of Arabica
and Robusta species was 17.51± 2.21% (average content
dmb± standard deviation) and 12.63± 1.85%, respectively; there
Table 1
Descriptive statistics for reference measurements on green coffee beans for (a) fat predi

Parameter Mean

a Moisture by NMR (%) 10.28
Fat (% "as is") 14.66
Fat (% dry matter basis) 16.41
Weight (mg) 119.00

b Moisture (oven drying) - natural 10.80
Moisture (oven drying) - laboratory treated 14.86
was a statistically significant difference (p< 0.01, Student's t-test)
between the two groups. Literature data for bulk measurements of
green coffee report a range from 7% to 17% dmb, with strong dif-
ferences depending on the species, i.e. 15% on average for Arabica
and 10% for Robusta coffee (Speer and K€olling-Speer, 2006).

As expected, for the reference measurements no statistically
significant difference was observed in moisture content of Arabica
coffee batches compared to Robusta ones, despite obvious and
statistically significant differences for total lipids, with Robusta
having lower fat content than Arabica samples.
3.2. Moisture and total fat prediction models in single green coffee
beans by HSI

The average reflectance spectra obtained for each coffee bean
and the second derivative of these spectra are shown in Fig. 1, with
the most characteristic spectral features indicated.

The performance of the PLS regression models for moisture
prediction by HSI built on individual green coffee beans was
calculated using several spectral pre-treatment methods, which
slightly influenced the final prediction error (Table 2). The first
derivative treatment resulted in the best calibration performance
for both sets of samples, with a calibration R2 (Rc

2)¼ 0.90 and cross-
validation R2 (Rcv

2 )¼ 0.86 in the case of natural moisture content,
and Rc

2¼ 0.97 and Rcv
2 ¼ 0.96 for the laboratory treated beans.

Considering the range of moisture content in both models, the
obtained prediction errors are acceptable for quantification pur-
poses, depending on the desired application: for natural moisture
the prediction error was always much below 0.3% for a range of
4.2%, whereas for laboratory treated beans the cross-validation
error was 2.0% for a moisture range of 47.6%. Plots of the four cal-
ibrations obtained are shown in Fig. 2.

The capability of NIRS for moisture analysis in foodstuffs is
widely known to be due to water molecules corresponding to
strong absorbance at specific wavelengths in the near-infrared re-
gion. The application of NIRS has been reported by Osborne (1987)
for moisture determination in flour, ground wheat and whole
wheat, demonstrating a good performance of a multiple regression
calibration built on the wavelengths of 1940 nm and 2310 nm. It
was noted that whole kernels showed worse performance than
ground material, with 0.29% prediction error in a moisture range
12.3e17.8%. The performance of our HSI moisture calibration is
consistent with previous studies reporting HSI moisture calibra-
tion, when taking into consideration the prediction error and the
range of reference moisture analysed (Cogdill et al., 2004; Jin et al.,
2015). However, a direct comparison with these studies is not
possible as they involve different granular foods and not coffee.

The results for total fat calibration in intact single green coffee
beans are reported in Table 3. The second derivative pre-treatment
gave the best model performance on an “as is” basis, obtaining a R2

value of 0.89 and 0.88 for the calibration and cross-validation
datasets. When the lipid content was expressed on a dry matter
basis, the R2 value was slightly better, being 0.90 and 0.89 for the
ction model and for (b) moisture models.

SD Max Min Sample no.

1.33 17.23 7.35 352
2.64 20.32 7.91
3.10 22.74 8.13
37.10 252.40 32.60

0.79 12.10 7.20 320
10.77 52.10 4.50 480



Fig. 1. Mean reflectance spectra obtained from single green coffee beans: a) log (1/R); b) second derivative treatment. Red lines: Robusta; blue: Arabica. Numbers indicate the
wavelength as nm.

Table 2
Performance of the PLS regression model for moisture content in single green coffee beans.

Parameter Pre-processing LV R2 Cal RMSEC Slope R2 Val RMSECV Slope RPD

Natural moisture content Log (1/R) 8 0.842 0.291 0.815 0.819 0.312 0.828 2.53
Mean centered 8 0.844 0.289 0.844 0.825 0.307 0.834 2.57
First derivative 11 0.899 0.233 0.899 0.858 0.276 0.879 2.86
Second derivative 12 0.898 0.237 0.898 0.813 0.322 0.852 2.45
SNV 12 0.897 0.235 0.897 0.850 0.285 0.872 2.77

Laboratory-treated beans Log (1/R) 5 0.951 2.234 0.951 0.950 2.279 0.949 4.73
Mean centered 5 0.947 2.314 0.947 0.947 2.372 0.946 4.54
First derivative 5 0.966 1.916 0.966 0.963 1.999 0.965 5.39
Second derivative 4 0.957 2.209 0.957 0.955 2.266 0.955 4.75
SNV 3 0.962 2.041 0.963 0.912 2.074 0.962 5.19

Spectral range used: 980-2480 nm. LV: latent variable. SNV: standard normal variate spectral treatment. Error is indicated as %. RPD: ratio of performance deviation. Sample
size (n): 320.
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calibration and validation datasets. The prediction error was
approximately 1% in all cases, whether expressed on an “as is” or
dry matter basis. In both cases, the cross validation error was below
1.0%, and thus perfectly suitable for quantitative purposes,
considering the range of total fat (13.2% on “as is” basis). The second
derivative treatment has also been successfully applied by other
authors to analyse fat content and oxidation in food products
through NIRS (Khodabux et al., 2007).

The loading plots for the best PLS regression models for mois-
ture and total fat content are shown in Fig. 3. The strongest features



Fig. 2. Prediction of coffee constituents in single green coffee beans using PLSR models based on HSI. a) Total fat content expressed as dry matter basis (dmb) (n¼ 345); b) Fat
content expressed on “as is” basis (n¼ 345); c) Moisture content at the natural moisture range (n¼ 314); d) Moisture content on the extended moisture range (laboratory treated
beans) (n¼ 463). The dotted line shows the ideal prediction.

Table 3
Performance of the PLS regression model for total lipid content in green coffee beans expressed on an “as is” or dry matter basis.

Pre-processing LV R2 Cal RMSEC Slope R2 Val RMSECV Slope RPD

As-is Log (1/R) 6 0.850 1.019 0.850 0.837 1.062 0.843 2.49
First derivative 4 0.866 0.961 0.866 0.860 0.985 0.857 2.68
Second derivative 6 0.893 0.861 0.893 0.883 0.904 0.885 2.92
SNV 5 0.859 0.990 0.859 0.849 1.028 0.857 2.57
Baseline 6 0.852 1.010 0.852 0.841 1.050 0.847 2.51

Dry matter basis Log (1/R) 6 0.864 1.087 0.864 0.855 1.125 0.862 2.76
First derivative 4 0.871 1.062 0.871 0.866 1.091 0.864 2.84
Second derivative 6 0.900 0.935 0.900 0.890 0.985 0.890 3.15
SNV 5 0.864 1.081 0.864 0.855 1.117 0.860 2.78
Baseline 6 0.857 1.116 0.857 0.845 1.169 0.853 2.65

Spectral range used: 980-2480 nm. LV: latent variable. SNV: standard normal variate spectral treatment. Error is indicated as %. Sample size (n): 350.
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observed for the moisture model are at 1416, 1900, 2038 and
2257 nm for PC1, and 1403, 1699 and 1881 nm for PC2 (Fig. 3a). For
total fat, the highest loadings were for 1208, 1384, 1422, 1724, 1756,
1894, 2307 and 2344 nm (Fig. 3b). Previous research on water loss
for green coffee under drying conditions described a major peak at
1940 nm (Reh et al., 2006), related to the 2nd overtone of O-H
(Esteban-Diez et al., 2004). Morgano et al. (2008) reported that the
most important wavelengths for NIR moisture prediction in green
coffee were 1975, 1852, 2040 and 2150 nm, and their regression
model allowedmoisture quantificationwith a validation R2 of 0.818
and RMSECV 0.298%. Our results show comparable, but even better
performance (Rcv

2 ¼ 0.858 and RMSECV¼ 0.276%) despite
employing a HSI approach on intact coffee beans, as opposed to
using a NIR instrument on ground coffee material as in Morgano
et al. (2008). In comparison, Cogdill et al. (2004) reported a
poorer performance for moisture prediction model, with their best
PLS regressionmodel having R2 of 0.56 and a prediction error above
1%. The authors commented that this poor performance may be
attributed to error both in the hyperspectral imager and the higher
error obtained for the reference measurement, due to the fact that
when single kernels/beans are analysed, they are destroyedwith no
possibility of averaging repeated measurements to decrease noise
and to detect anomalies. They also analysed oil content but sug-
gested using more accurate reference methods than traditional



Fig. 3. Loading of the first two PLS components for the (a) moisture (natural water content) and (b) fat (“as is” basis) PLS models showing the best performances for average spectra
on a single green coffee bean basis obtained by HSI. The first (a) and second (b) derivatives were applied, respectively. Continuous blue line: PC1; dotted red line: PC2.
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solvent extraction e specifically NMR e when analysing single
seeds.

The peaks at 1210, 1360, 1700e1760 and 2275e2300 nm have
been reported to arise from the first and second overtone of C-H,
and stretching of the -CH2 groups. Absorption peaks around 1160
and 2130 nmwere attributed to -HC¼CH-, while the bands around
1200, 1400,1750, 2310 and 2340 nm are usually associated to the C-
H bond. The region between 2083 and 2222 nm is considered to be
the combination of C-H stretching related to cis double bonds in the
molecules, which exist due to the unsaturation of fatty acids
(Khodabux et al., 2007).

The Ratio of Performance to Deviation (RPD) provides an indi-
cation of the quality of calibration equations for PLS regression
models. Values above 2 are indicative of excellent models, whereas
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an RPD of between 1.4 and 2 is fair, and values below 1.4 indicative
of non-reliable models (Ncama et al., 2017). In our case, the RPD
was 2.9 for moisture with the natural content and 5.4 for the model
with extended moisture range (see Table 2). This dramatic
improvement for the laboratory treated beans was attributed to the
very large range of moisture content, although the performance of
the natural moisture content model suggests that it can be used for
standardisation of the batch in order to detect single beans with
excessive or very low moisture content.

The RPD value was 2.92 for lipids expressed on an “as is” basis,
but the dry matter basis (dmb) model was more accurate with an
RPD of 3.15. It is higher than the RPD values recently reported in our
previous work for the prediction of sucrose, trigonelline and
caffeine, where the latter compound showed RPD of 2.7 (Caporaso
et al., 2018b). The performance of our model is comparable to other
calibrations built using traditional NIR instruments, even for
ground coffee beans. For instance, Pizarro et al. (2004) reported R2

calibration values of 0.763e0.987 for a PLS regression calibration
for total fat in roasted and ground coffee using NIR data in the re-
gion 1100e2500 nm for a variety of spectral pre-treatments.
However, it should be noted that roasted and green coffees have
very different spectra, with also a dramatic change of the lipid
content. The two species overlap in terms of fat content in the
middle region of the distribution, for this reason a general model
was proposed, which can be usefully applied to any coffee species.
In addition, multivariate prediction models were separately built
for the Arabica and the Robusta samples, obtaining a general
improvement of the prediction error of approximately 0.15%.
However, this slightly better prediction might not compensate for
the disadvantage to have separate models, especially when blends
are analysed.
3.3. Wavelength selection

For practical applications, data reduction strategies are of in-
terest as they may reduce computer processing demands or enable
cheaper multispectral sensors to be used to target fewer specific
diagnostic wavelengths. To evaluate this, a wavelength reduction
strategy was applied to the best models for moisture and fat pre-
diction. The selection of the most important wavelengths was
carried out based on thresholding the b-coefficients for these PLS
regression prediction models. This approach assumes that only
those wavelengths with large b-coefficients are useful for the pre-
diction. Therefore, by setting a cut-off value, those bands with low
influence on the full PLS regression model are removed and a new
model is then built on a reduced number of spectral variables
(Osborne, 1987). The threshold on the b-coefficients was varied to
first determine the minimum number of wavebands that could be
utilised without significant loss of prediction capability; resulting
in selection of 42 bands for moisture and 22 for fat. Subsequently,
the threshold was increased further in order to select only the six
Table 4
Multiple Linear Regression (MLR) models for moisture and fat content (% “as is” basis) in g
values with no spectral pre-treatment.

Parameter Pre-treatment Spectral variables nr. Calibra

R2

Moisture log (1/R) 6a 0.615
42 0.887

Fat 6a 0.693
6b 0.841
22 0.860

a Variable selection was performed based on the b-coefficients of the PLS model (filte
b Model built by PLS regression (LV¼ 6).
most important bands, to enable the prediction capability of a
lower-cost multispectral sensor to be assessed.

Table 4 shows the performance of Multiple Linear Regression
(MLR) models built using the selected wavelengths. The use of 42
bands led to a good performance compared to the PLS regression
model reported in the previous section for moisture using the full
spectra range. In fact, it had a RMSE of 0.242% and RMSECV of
0.286%, which is comparable to the PLS regression model. A further
reduction of the number of selected wavelengths down to six still
led to an R2 value of 0.615 and 0.596 for calibration and cross-
validation, respectively, along with a marked increase in predic-
tion error. It should be noted that this prediction is made on the
reflectance data with no spectral pre-treatment, as derivatives
cannot be applied in such circumstances, which brings a larger
prediction error when using filter instruments with few selected
wavelengths. Considering the fewer number of wavelengths uti-
lised and the consequent advantages in terms of computational
capacity required, the six band model could be still considered as
acceptable for some practical applications for rapid screening of
higher or lower moisture beans, and when lower cost sensors are
needed.

The fat prediction models were similarly affected by the number
of variables selected, and the statistics applied. The use of 22
wavelength variables resulted in a performance almost identical to
the PLSR model built using the full spectral range. This finding is in
agreement with other studies (Xu et al., 2016), and suggests that
most bands exhibit redundant information due to collinearity, and
that waveband reduction techniques could be advantageous for the
implementation of HSI technology for practical applications, e.g.
screening of coffee bean fat content in the food industry. Reduced
bands resulted in similar prediction error when using PLS regres-
sion, while the poorest overall performance was obtained using 6
wavelengths and MLRmodel. However, even in this case, the cross-
validation error was 1.5%, which might be acceptable for some
practical application and screening.

Despite water having characteristic absorption features in spe-
cific regions of the NIR spectrum (i.e. mostly where the O-H water
bands absorb), the sole use of those wavelengths does not lead to
good predictive models and so additional wavelengths are
required. This is in agreement with the findings of Zhao et al.
(2017), who recently applied HSI to predict fat and moisture con-
tent in ground beef using a limited number of wavelengths. They
selected a higher number of variables for the moisture model, i.e.
from 11 to 43, than the one to describe fat content (from 7 to 40),
depending on the spectral pre-treatment applied.

In certain cases, wavelength reduction can even lead to higher
prediction performance compared to the use of full spectra, prob-
ably because the uninformative bands are removed therefore
reducing the noise in the prediction model. It should be also noted
that using a PLS regression model with fewer bands can also allow
more rapid prediction for the lower computation time required.
reen coffee beans obtained by selecting the most important variables using log (1/R)

tion Cross-validation Validation Offset

RMSE R2 RMSECV

0.459 0.596 0.471 0.61
0.242 0.842 0.286 0.29
1.464 0.676 1.503 4.57
1.053 0.834 1.078 2.36
0.988 0.832 1.081 2.17

r method).
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3.4. Application of the PLS calibrations and visualisation of
compound distribution

The devised PLS regression models for the prediction of mois-
ture and total fat in green coffee beans were applied to HSI hy-
percubes to visualize the moisture and lipid distribution and
content both between coffee beans and within individual beans.
Fig. 4 shows the distribution and content of moisture in a batch of
Mexican Arabica green coffee beans. By applying the calibration
coefficients at a single pixel level, it was possible to both predict the
average moisture content for a single coffee bean, and even visu-
alize the water content within the beans. For some beans the dis-
tribution of moisture appears to vary somewhat throughout.
However, there are practical difficulties in validating such differ-
ences at a single pixel level with the aid of analytical reference
measurements.
Fig. 4. HSI calibration applied for moisture content in green coffee beans on a batch of Me
continuous moving stage, at one spectral band; b) reconstructed image showing predicted m
rotation of the coffee beans on the other face; d) batch subdivided into an aliquot placed
indicate the average predicted moisture expressed as %.
Fig. 5 shows two batches of coffee beans, one Arabica and one
Robusta, which clearly reveals the interspecies variation when
visualizing the lipid distribution on a single pixel level. As expected,
the Arabica and Robusta coffee batches had significant differences
in their lipid content; the latter containingmuch lower fat. Minimal
effects of coffee bean orientation were found during imaging. The
six coffee beans belonging to the Arabica batch had lipid content
ranging from approximately 17% to more than 22% (dmb). The
Robusta batch ranged from approximately 11% to 16%. A calibration
for fat such as this would be interesting not just for visualizing the
distribution within individual coffee beans, but also for application
to botanical and plant physiology studies related to lipid accumu-
lation and especially the changes of lipid content at the outer layer
in the post-harvest processing.
xican Arabica. a) grayscale images showing the reflectance hypercube obtained from a
oisture content visualized at single pixel level; c) predicted moisture obtained after the
under humid conditions (upper beans) or partially dried in an oven (lower). Numbers



Fig. 5. Application of HSI calibration (chemical imaging) for total lipid content visualisation in green coffee beans: example for Arabica (top) and Robusta (bottom) batches. The left
and right halves of the figure show the same coffee beans placed on the opposite surface (inverted 180� about the y-axis). The numbers shown are the predicted average lipid
content calculated from the pixel values for each bean, expressed as % (dmb).
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3.5. Coffee bean species classification

In addition to quantitative models, HSI is also applicable for
rapid classification of intact granular food commodities, through
the building of classification models. Both green and roasted beans
(treated using the same time-temperature profile during roasting)
were analysed individually. As reported in Table 5, for green coffee
Table 5
Coffee bean classification models for species identification (Arabica-Robusta) based on Li
roasted whole coffee beans. Sample size¼ 510 for green; 340 for roasted coffee.

Classification method Function Pre-treatment Green

Correct (%)

LDA Linear Log (1/R) 98.39
1st derivative 99.29
SNV 98.57
MSC 98.75
2nd derivative 99.61

Quadratic Log (1/R) 100.00
1st derivative 99.80
SNV 99.80
MSC 100.00
2nd derivative 99.80

Classification method Function Pre-treatment Training accuracy

SVM Polynomial Log (1/R) 74.90
1st derivative 72.55
SNV 88.43
MSC 82.75
2nd derivative 72.55

Radial basis function Log (1/R) 84.90
1st derivative 91.18
SNV 97.45
MSC 94.51
2nd derivative 89.02
Linear Discriminant Analysis (LDA) produced better performances
than Support Vector Machine (SVM), achieving up to 100% classi-
fication accuracy. The highest SVM classification accuracy for green
coffee beans was just over 97%. For the roasted coffee beans, SVM
achieved validation accuracies of 91.8 and 97.1% depending on the
function applied, with SNV pre-treatment resulting in the best
performance. For roasted coffee, LDA produced the best results
near Discriminant Analysis (LDA) and Support Vector Machine (SVM) for green and

Roasted

Incorrect (%) Correct (%) Incorrect (%)

1.61 98.53 1.47
0.71 100.00 0.00
1.43 98.53 1.47
1.25 98.53 1.47
0.39 100.00 0.00
0.00 100.00 0.00
0.20 99.12 0.88
0.20 99.71 0.29
0.00 99.41 0.59
0.20 98.82 1.18

(%) Validation accuracy (%) Training accuracy (%) Validation accuracy (%)

74.12 87.06 84.42
72.55 64.71 64.71
87.06 94.12 91.76
82.16 95.00 88.24
72.55 64.71 64.71
83.92 90.29 88.24
91.18 88.24 88.24
97.25 98.23 97.06
94.12 95.00 94.12
88.82 84.71 84.42



Fig. 6. Loading plots from LDA for the Arabica-Robusta classification models, in single (left) green and (right) roasted coffee beans. a,b) log (1/R); a',b') MSC treated spectra.
Continuous line: PC1; Dotted line: PC2.
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with a linear function, achieving 100% correct classification accu-
racy for log (1/R), first and second derivative pre-treatment.

The loadings for the LDA models for Arabica-Robusta discrimi-
nation on green and roasted coffee beans are shown in Fig. 6. The
first PC for green coffee beans does not have particularly strong
loading values at any specific wavelengths, whereas the plots for
PC2 closely resemble the mean absorbance spectra (as seen in
Fig. 1). For the roasted coffee beans, the same effect was observed
for PC1, while PC2 had strong absorbance bands around 2000 nm,
in addition to strong absorbance features around 1750 and
2350 nm where lipids mostly absorb.

This is the first study of Arabica-Robusta classification based on
HSI using the full NIR spectral range. Previous publications reported
on the possibility to group Arabica-Robusta beans by applying
Principal Component Analysis (PCA) and to separate the two sets
using the first two principal components (Esteban-Diez et al., 2007;
Rubayiza and Meurens, 2005). The discrimination reported by
Rubayiza and Meurens (2005) using FT-NIR was claimed to be
mainly based on cafestol and kahweol, which the authors attrib-
uted to wavenumbers of 1567 and 1478 cm�1.

4. Conclusions

Hyperspectral imaging has been applied for the first time for the
prediction of coffee constituents on a single coffee bean basis. The
devised approach uses averaged spectral data from the hypercube
to enable PLS calibrations to be built on a single object (bean) basis.
We also demonstrated the wide distribution of lipid content within
the same batch and between batches, and developed a moisture
calibration that is capable of detecting problematic seeds within
the population. Applying the calibration at a single pixel level
provided the means to visualize compound distribution within
individual coffee beans.

Our approach showed excellent prediction capabilities for both
moisture and total fat content analysed through HSI, and this
technique offers potential as a rapid and non-destructivemethod to
obtain accurate indication of the coffee bean composition and
uniformity in a whole bean dataset. Moreover, once calibrated, HSI
can predict the moisture (and fat) content in a matter of seconds,
compared to several minutes required for convention techniques
such as a Rapid Moisture Analyzer. The potential of HSI for rapid,
non-destructive screening of green coffee has great potential for
research laboratories, plant physiologists and geneticists in plant
breeding programmes, as well as for the food industry for quality
control purposes.
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