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ABSTRACT
The potential of citizens as a source of geographical information has been recognized for many 
years. Such activity has grown recently due to the proliferation of inexpensive location aware 
devices and an ability to share data over the internet. Recently, a series of major projects, often 
cast as citizen observatories, have helped explore and develop this potential for a wide range of 
applications. Here, some of the experiences and learnings gained from part of one such project, 
which aimed to further the role of citizen science within Earth observation and help address 
environmental challenges, LandSense, are shared. The key focus is on quality assurance of 
citizen generated data on land use and land cover especially to support analyses of remotely 
sensed data and products. Particular focus is directed to quality assurance checks on photo
graphic image quality, privacy, polygon overlap, positional accuracy and offset, contributor 
agreement, and categorical accuracy. The discussion aims to provide good practice advice to 
aid future studies and help fulfil the full potential of citizens as a source of volunteered 
geographical information (VGI).
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1. Introduction

Citizen science for the provision of geographical data 
has a long history and is known by a variety of terms 
(See et al. 2016) but has developed rapidly since the 
advent of volunteered geography and volunteered geo
graphical information (VGI) pioneered by Goodchild 
(2007). The term VGI is taken here to relate to geo
graphical information provided by the public for little 
reward if any. Developments such as Web 2.0 and the 
proliferation of inexpensive location aware devices has 
greatly eased the acquisition of VGI and resulted in 
a considerable growth of the subject (Capineri et al. 
2016; Foody et al. 2017a). A range of fundamental 
issues that are central to the acquisition, storage, man
agement, distribution and use of VGI can be encoun
tered in citizen science projects (Bastin, Schade, and 
Schill 2017; Demetriou et al. 2017). Here, the focus is 
on the quality of VGI on land use and land cover.

Citizen observatories offer a potential revolution 
in the field of land use and land cover monitoring. 
Citizens can greatly increase the capacity and fre
quency of data collection, enabling, for example, 
near real-time response to emerging environmental 
hazards (Ostermann, and Granell 2017) as well as 
facilitating conventional activities such as map 
updating (Olteanu Raimond et al. 2017a; Olteanu- 
Raimond et al. 2017b). The growing potential of 
VGI to augment or even replace authoritative geo
graphical data on land cover and land use, which 

can be expensive to acquire or have restrictions on 
access and use, has been recognized widely (Fonte 
et al. 2015a; Stehman et al. 2018). Indeed, citizens 
can be an attractive source of data on land cover 
and land use, addressing concerns such as the 
amount, spatial distribution and timeliness of 
authoritative data. For example, the use of citizen- 
based contributions is one effective way to increase 
the ground data available to support analyses of 
remotely sensed data (See et al. 2022). However, 
concerns have been raised about the quality of VGI 
when compared to the traditional land surveying 
techniques and methods employed by bodies such 
as national mapping agencies.

There are many concerns about the quality of citi
zen-derived data such as its accuracy, trustworthiness, 
distribution, and heterogeneity (Flanagin, and Metzer 
2008; Elwood, Goodchild, and Sui 2012; Fonte et al. 
2015a; Fogliaroni, D’Antonio, and Clementini 2018; 
Vahidi, Klinkenberg, and Yan 2018; Severinsen et al. 
2019). Quality assurance (QA) and assessment are, 
therefore, important, and methods to ensure that the 
quality of VGI can be characterized so that they are 
effective for user needs are required if the full potential 
of VGI is to be realized. A range of approaches are 
available for the assessment of VGI quality 
(Goodchild, and Li 2012; Senaratne et al. 2017) and 
can be impacted by the source of reference data 
(Mocnik et al. 2018).
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Issues of QA have been a major issue in citizen 
science projects such as LandSense. LandSense was 
a European Union (EU) funded project that sought 
to develop the use of citizen observations to enhance 
Earth observation studies (Moorthy et al. 2017; 
Wannemacher et al. 2018).

The underlying need for the LandSense project was 
to help achieve the full potential of remote sensing for 
Earth observation in environmental monitoring. The 
ground data requirements needed to support a remote 
sensing study can be demanding and difficult to 
satisfy, especially if the spatial and temporal dimen
sions of the study are large. However, citizen science 
offers a means to help address key challenges with 
ground data. The LandSense project linked Earth 
observation with contemporary citizen science to 
help deliver quality-assured ground data to comple
ment and support environmental monitoring systems 
that use remotely sensed data (Moorthy et al. 2017). 
The core motivations of the project were to enhance 
the quality of land use and land cover products gen
erated from remote sensing, to transform the 
approach to satellite monitoring and to increase the 
engagement of citizens in environmental monitoring 
activity (Moorthy 2020). In LandSense, citizens were 
encouraged to collect ground data which could be 
useful support to environmental monitoring systems 
and, if appropriate, integrated with authoritative data 
sets. The activity, thus, enhanced the role of citizen 
science in Earth observation, increasing the involve
ment of citizens in science as well as providing 
a means to generate accurate, timely and low cost 
ground data to support the use of remote sensing in 
addressing major environmental challenges.

A range of application themes were studied in the 
LandSense project, notably urban landscape dynamics, 
agricultural land use and forest and habitat monitor
ing. For each of the aforementioned themes, one or 
more pilot or demonstration studies were undertaken. 
Here, attention focuses on QA of data acquired from 
four pilot studies on urban landscape dynamics 
(OSMlanduse validation, City.Oases, MijnPark.NL 
and Paysages), one agricultural pilot (CropSupport) 
and one forest and habit monitoring (Natura.Alert) 
pilot. As with other studies focused on citizen science 
contributions to environmental research (e.g. Salk 
et al. 2016; Mobasheri, Zipf, and Francis 2018; De 
Marchi, Ficorilli, and Biggeri 2022), attention was 
focused on lessons learnt from these studies. This 
adds to the growing literature on how experiences 
gained in crowdsourcing projects can enhance remote 
sensing research, notably as a source of ground refer
ence data (See et al. 2022), and aid the design of future 
research programs.

There are many dimensions to data quality 
(Hickling Arthurs Low Corporation 2012; Fonte 
et al. 2015a). Here, the focus is entirely in relation to 

the data acquired for the LandSense project and its 
objectives. LandSense QA processes were founded 
upon a review of the literature on quality assessment 
of VGI and the work of two previous EU funded 
projects: COST Action TD1202 (Foody et al. 2017a) 
and the COBWEB project (Higgins et al. 2016). Some 
of the key details are revisited here as they impacted 
the design and execution of QA checks undertaken in 
LandSense.

Building on the foundations provided by the litera
ture and the two prior EU funded projects, a set of QA 
tools to meet the objectives of the LandSense project 
were developed and tested. In the course of this activ
ity, good practices for QA of citizen-contributed data 
emerged and are reported here. Although the discus
sion is focused on LandSense applications, many of the 
practices and lessons learned should have broader 
relevance and could be applicable or adaptable to 
other studies. Good practice guidelines and protocols 
for VGI are emerging (e.g. Fonte et al. 2015b; Mooney 
et al. 2016; Minghini et al. 2017) and some are revis
ited and expanded upon based on the experiences 
gained from the LandSense project. The focus 
throughout is on good practices for projects using 
VGI recognizing that there is a desire to not alienate 
the citizen community by making the acquisition pro
cess too onerous or difficult (Fonte et al. 2015b; Foody 
et al. 2017b; Minghini et al. 2017).

Guidelines are provided for each of the QA tools 
developed and implemented during the LandSense 
project. The latter are checks on photographic image 
quality and privacy, polygon overlap, positional accu
racy and offset, contributor agreement and categorical 
accuracy. Section 2 provides a brief review of the status 
of relevant QA checks. Section 3 reviews some key 
background issues including the LandSense pilot stu
dies that generated VGI. Section 4 summarizes the QA 
checks undertaken and lessons learnt and Section 5 
concludes the paper.

2. Quality assurance of VGI

Here, a brief overview of some key aspects of QA of 
VGI is provided to illustrate the current status of such 
activity before addressing LandSense specific issues. 
The discussion is focused on material relevant to the 
QA checks used in LandSense and structured under 
four general headings: photographic imagery, polygon 
overlap, positional accuracy and label quality.

2.1. Photographic imagery

Photographs, especially if geotagged, are a popular 
form of VGI (Brabyn, and Mark 2011; Elwood, 
Goodchild, and Sui 2012; Feick, and Robertson 
2015; Chesnokova, and Purves 2018). Smartphones 
have, for example, made it effort-free to acquire 
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geotagged photographs, and these can be interpreted 
to yield useful land cover and land use information 
(Antoniou, Morley, and Haklay 2010; Xu et al. 
2017). Photographs could be acquired for a variety 
of purposes and their use as VGI may sometimes 
have been unplanned. This is, for example, the case 
with the photography acquired in the Degree 
Confluence Project (https://confluence.org) where 
the photographs were acquired primarily as 
a leisure activity but which could be interpreted to 
yield land cover information and used as ground 
reference data to support analyses of remotely 
sensed data (Iwao et al. 2006). Critically, it means 
many photographs may have been obtained in an 
unconstrained manner. The photographer will not 
have been working to constraints of, for example, 
lighting, orientation and privacy. Consequently, 
photographs acquired by citizens may be degraded 
by concerns such as poor brightness levels and blur 
and hence be more difficult to use than constrained 
photographs upon which methods for information 
extraction and quality control are relatively 
advanced (Wolf, Hassner, and Maoz 2011; Nada 
et al. 2018).

Photograph quality can be analyzed and expressed 
in a variety of ways (Ke, Tang, and Jing 2006). It is 
often desirable to filter a set of photographs to elim
inate or enhance those unsuitable because of problems 
such as inappropriate brightness levels or blur which 
can hinder interpretation (Lo et al. 2015; Griesbaum, 
Marx, and Höfle 2017; Wu et al. 2021). Indeed, studies 
using VGI have recognized that photographs provided 
by citizens can be improved by image enhancement 
operations (Elia, Balbo, and Boccardo 2018). In 
LandSense, attention was focused on three features: 
the degree of image blurriness, image brightness and 
the presence of privacy features. Other properties such 
as image resolution, bit or color depth, contrast and 
orientation (Szeliski 2010; Shima, Nakashima, and 
Yasuda 2017) could be added to the QA platform if 
required.

The usability of a photograph is in part a function 
of the degree of blurring present and hence, as in 
other studies (e.g. Havlik et al. 2013), blur checking 
was included in the QA checks. A blurred photo
graph could be acceptable if it is to be used for the 
estimation of something very general and easy to 
identify such as building height via the number of 
floors but of little or no value if identifying something 
very detailed and specific such as crop species type. 
Similarly, the brightness of a photograph affects its 
interpretability with extremely dark and bright 
photographs often problematic. The checks for 
image blur and brightness sought to identify poten
tially unsuitable photographs so that they could be 
excluded or subjected to enhancement operations to 
improve interpretability.

The aim of photograph privacy checks is to ensure 
the anonymity of people who appear, perhaps uninten
tionally, in photographs acquired as part of the pilot 
campaigns. While the photographs may have been 
acquired to act as a source of land cover and use infor
mation, they may, especially in urban areas, include 
people and individually identifiable features (e.g. vehicle 
license plates). This situation can be a major limitation 
especially in the context of ensuing compliance with the 
General Data Protection Regulation (GDPR), which 
may require that such features to be masked out in 
some way to ensure anonymity. Thus, features such as 
faces and vehicle license plates which can be linked to an 
individual must be identified and obscured.

There is a large literature on automatic face and 
license plate detection and considerable success has 
been achieved with constrained photographs. 
Photographs acquired by citizens are, however, typi
cally unconstrained images, which present greater chal
lenge and consequently are associated with less 
accurate detection of privacy features (Yang et al. 
2016; Silva, and Jung 2018). Thus, while very high (90 
+%) detection rates may be obtained from constrained 
images lower rates are expected from unconstrained 
images. For example, Yang et al. (2016) observe an 
accuracy of approximately 70% for detecting faces in 
images and this might be considered a reasonable per
formance target for a nonspecialist VGI project. Full 
GDPR compliance may, therefore, require some 
further action such as manual interpretation in addi
tion to the use of an automated feature detector.

2.2. Polygon overlap

Some VGI takes the form of polygons (e.g. field 
boundaries) which can be especially useful in, for 
example, object-based analyses of remotely sensed 
data where the object may be a feature such as an 
agricultural field. A common concern with such data 
are features such as overlapping polygons. This type 
of problem can be readily addressed using conven
tional intersect functions in basic geographical infor
mation systems (Burrough et al. 2015). 
Consequently, VGI projects may make use of basic 
tools to identify overlaps and potentially remove 
these errors through operations such as the clipping 
of overlapping polygons (Wadembere, and Ogao 
2010). There are also a range of open-source 
resources with functions to allow polygon topology 
correction that could be implemented to correct 
overlaps (Obe, and Hsu 2011).

2.3. Positional accuracy

Positional accuracy is a fundamental issue with geo
graphic information. The topic is well established with 
methods of measurement and standards available 
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(Congalton, and Green 2009). Positional accuracy will 
impact on VGI in many ways. Positional errors could, 
for example, be a source of error with polygon data. 
Positional error is also a major issue with geotagged 
photographs. Indeed, popular sources of geotagged 
photographs may differ substantially in terms of the 
magnitude of positional error present (Zielstra, and 
Hochmair 2013). Such error is, however, often a major 
concern, especially, for example, in site-specific 
approaches to accuracy assessment used in remote 
sensing (Congalton and Green 2009). Studies on loca
tion tracking using mobile devices of the sort citizens 
may use in acquiring VGI have shown horizontal 
accuracies typically in the range 5–15 m (Merry, and 
Bettinger 2019; Menard et al. 2011). Newer devices 
tend to demonstrate higher positional accuracy. For 
example, Zandbergen (2009) found an average hori
zontal position error of 10 m for the iPhone 3 G. This 
was reduced to 6.5 m for the iPhone 4S according to 
Garnett and Stewart (2015). The technical capability of 
typical mobile devices that will be used in data collec
tion should be considered when assessing the degree 
of positional accuracy that can be achieved. This may 
influence the design of any data collection exercise.

2.4. Label quality

In many studies, the VGI acquisition involves labeling 
cases (e.g. allocating a land cover class to a field). The 
quality of the labels may be assessed in a variety of 
ways. Of relevance to LandSense is an interest in the 
quality of the labeling by different citizens, thus deter
mining the extent to which they agree in their labeling, 
but also in the accuracy of labeling, thus determining 
the amount of error in the labeling by comparison to 
reality; note it is possible for citizens to agree in label
ing but be incorrect. In both the assessment of con
tributor agreement and of accuracy, the core QA task 
involves comparing a set of labels. A basis for both 
types of assessment is similar to that suggested for 
accuracy assessment in remote sensing (Congalton, 
and Green 2009) and for which good practices exist 
(Olofsson et al. 2014). Recently, methods that account 
for spatial autocorrelation commonly encountered 
with geographic information have been promoted for 
accuracy assessment (Ploton et al. 2020). Such 
approaches are, however, unsuitable for the task and 
the conventional approach based on design-based 
inference upon which established good practice gui
dance (Olofsson et al. 2014) is based should still be 
used (Wadoux et al. 2021; Meyer, and Pebesma 2022). 
The latter has three main components: response 
design, sampling design and analysis (Stehman, and 
Czaplewski 1998). Some of the main issues in this 
good practice advice presented by (Olofsson et al. 
2014) are restated and revisited in this Section to 
encourage their use in other VGI studies.

The steps that lead to a decision regarding agree
ment between the two or more sets of labeled data lie 
within the response design. This includes a labeling 
protocol that provides specification on exactly what is 
being labeled and the definition of agreement to be 
used (Stehman, and Czaplewski 1998; Olofsson et al. 
2014). Thus, for example, it is important that there is 
clear and unambiguous guidance on the task so that 
the contributors understand exactly what the task is, 
the options open to them, and that a suitable method 
is used to assess their agreement. These various issues 
can be non-trivial and hence clear guidance and 
supporting documentation may be required. For 
example, in the seemingly simple task of allocating 
a land use class label to a building it must be clear 
what an individual building is. For example, is it 
a discrete detached feature or can there be spatially 
joined buildings? The latter distinction can be sig
nificant, for instance, in residential areas where the 
distinction between detached and terraced housing 
may be important. The classes to be used should also 
normally be clear, discrete, mutually exclusive and 
exhaustively defined. Although the latter may seem 
straightforward, it can be easy to fail to fully satisfy 
the assumed condition. For example, in a study 
focused on agricultural crops it may be possible to 
exhaustively define every crop type that could occur 
but fail to include classes such as water, urban or 
woodland that could form part of the entire land
scape. There should also be means to address com
mon problems such as what to do for cases that may 
involve a mixture of classes (e.g. contributors could 
be instructed to label to the dominant class). Finally, 
an appropriate analysis is required to provide mean
ingful information on the level of agreement that 
exists between the data provided by the contributors. 
Issues such as sampling design which determines the 
locations where labels are acquired for should be 
considered especially if seeking to generalize the 
results which is often the case in the assessment of 
the accuracy of land use and land cover maps. In 
some studies, especially those focused on contributor 
agreement, sampling issues may not be critical as 
attention may simply be directed at the degree of 
agreement in labeling of a specific set of data.

A key part of the response design for the assessment 
of both contributor agreement and accuracy is the 
labeling protocol, and this can be challenging as 
many class definitions often exist (e.g. Comber, 
Fisher, and Wadsworth 2005; Comber, Wadsworth, 
and Fisher 2008; Ahlqvist 2008). In LandSense, this 
challenge was also sometimes magnified as highly 
subjective phenomena related to perceptions of place 
were studied. It is critical that a clear and unambig
uous set of classes are defined and that all of the 
contributors can use these labels effectively. To help 
achieve this situation, the response design should 
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include means to enhance the consistency in labeling 
(Olofsson et al. 2014) perhaps by provision of support
ing documentation (e.g. classification keys and exam
ples) and training in labeling. It may also be useful to 
acquire self-confidence ratings in labeling (e.g. 
Comber, See, and Fritz 2014) to help filter a data set, 
although these can be problematic as poor contribu
tors may over-estimate their abilities (Ehrlinger et al. 
2008). It is also important to ensure that the contribu
tors are labeling the same geographical feature. In 
LandSense, a key aid to this is to ensure geolocation 
and hence checks on positional accuracy can usefully 
aid the QA of labeled data.

A fundamental issue is the need to define clearly 
and unambiguously what is being labeled. In some 
LandSense applications, the focus was on the labeling 
of remotely sensed imagery, often obtained via an 
image classification analysis to yield a thematic map. 
In such circumstances, there is a need to define the 
minimum mapping unit and a spatial unit for the 
accuracy assessment (Olofsson et al. 2014). The for
mer may vary from application to application but can 
have important impacts on a map and its accuracy 
which are often influenced by the size and spatial 
distribution of the land cover patches (Saura 2002; 
Knight, and Lunetta 2003). The spatial unit for accu
racy assessment is a central feature in popular site- 
specific approach to accuracy assessment (Congalton, 
and Green 2009). In this approach to accuracy assess
ment, the analysis is based upon a comparison of the 
contributed class label and that which exists in reality 
and shown in the reference data set. It may be helpful, 
but is not essential, that the same spatial unit is used in 
both data sets. The latter highlights the importance of 
ensuring accurate geolocation and hence the potential 
value of the positional accuracy checks.

A commonly encountered problem in analyses of 
remotely sensed data is that the pixel is an arbitrary 
spatial unit and it may sometimes be preferable to use 
something else such as a land parcel or field which can 
be easier to locate. Differences in the spatial unit can 
be accommodated, but the analysis should recognize 
the issue. Land parcels are typically polygonal features 
and may be obtained in some practical applications via 
an image segmentation analysis. There are many 
methods and challenges in segmenting an image opti
mally (Costa, Foody, and Boyd 2018) and it may be 
helpful to ensure that the reference data and polygon 
of interest spatially overlap using a polygon overlap 
check. Regardless of the specific spatial unit used, it is 
common to find that class mixing occurs. For example, 
mixed pixels may be common as it is an artificial unit 
that may not provide a realistic representation of the 
land mosaic but mixed objects are also commonly 
encountered (Costa, Foody, and Boyd 2017). A way 
to accommodate such mixed cases in the analysis is 
required. For example, a mixed unit could be allocated 

the dominant class label and the accuracy assessment 
proceeds as normal; although this is an imperfect 
approach as it essentially degrades the data. 
Alternatively, a fuzzy approach to accuracy assessment 
could be adopted when mixed units occur (Gopal, and 
Woodcock 1994; Stehman, and Foody 2019).

A fundamental assumption made in an accuracy 
assessment is that the reference data set represents 
reality or ground truth (i.e. a “gold standard” refer
ence data set). However, this is rarely the case and the 
source of reference data has implications to the 
assessment of data quality (Mocnik et al. 2018). 
Error inevitably exists, and it is important to recog
nize that error in the reference data set, even at small 
amounts, can substantially degrade an analysis 
(Foody 2013). A common error source is spatial mis- 
registration (Pontius 2000), and this could be 
reduced using positional accuracy tools. Sometimes 
the reference data come from multiple contributors 
(Wulder et al. 2007; Wickham et al. 2013). In such 
situations, it is common to focus on only a subset of 
the cases. For example, sometimes it may be appro
priate to use only the cases upon which all of the 
contributors agree on labels (Scepan 1999). In other 
instances, it may be appropriate to use a consensus 
label for each case. Some VGI-based projects have 
suggested that a set of between 3 and 15 contributors 
is often sufficient for some common applications 
(Haklay et al. 2010; Foody et al. 2015). Care must be 
taken to ensure an appropriate approach is adopted. 
For example, by focusing on only cases of complete 
agreement, a data set may be limited to relatively 
unrepresentative sample locations of simple homo
geneous composition. It is also common for disagree
ments to be largest and most important for rare 
classes (Wulder et al. 2007; Stehman, and Foody 
2019; Xing et al. 2021) and so by ignoring such 
cases a study may end up excluding rare classes by 
accident. Furthermore, in projects such as 
LandSense, the reference data may often arise from 
volunteers (Laso Bayas et al. 2017; Waldner et al. 
2019) as well as experts (Xing et al. 2021) and often 
involves either fieldwork or the interpretation of aer
ial photography or satellite imagery of the region 
mapped. Irrespective of the source of the reference 
data, some variation in labeling is often observed (e.g. 
Xing et al. 2021). Good practice advice (Olofsson 
et al. 2014) urges that the reference data be of higher 
quality than the map being evaluated.

In many scenarios, the sampling design used to 
acquire the data for an accuracy assessment is of 
critical importance. If the aim is to not merely con
sider the accuracy with which a particular testing set 
has been classified and there is a desire to generalize, 
such as to an entire map, then good practice guidelines 
call for the use of a probability sample design 
(Olofsson et al. 2014). The latter include popular 
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approaches such as simple random, stratified, cluster 
and systematic sampling (Stehman 1999) and gui
dance on the selection for different study objectives 
is provided in the literature (Stehman 2009). Of key 
concern for typical LandSense type application is that 
if there is a desire to assess the accuracy of a land use 
or land cover map a probability sample should be used 
and its properties considered in the estimation of 
accuracy (Olofsson et al. 2014). Thus, for example, if 
a stratified sample design is used, the size of the strata 
should be accommodated in the estimation of map 
accuracy or phenomena such as class areal extent 
(Olofsson et al. 2013). The required sample size can 
be estimated from sampling theory and is important in 
influencing the width of the confidence interval that 
may be fitted to estimates. Alternatively, simple heur
istics, such as a minimum of 50 cases per class (Hay 
1979), may be adopted if appropriate. Note that data 
from a non-probability sample, as may occur with 
some VGI, can be usefully integrated with such data 
to enhance analyses (Stehman et al. 2018).

Finally, the cross-tabulation of the labels from two 
sources being evaluated yields a confusion matrix from 
which a set of quantitative measures of labeling quality 
can be estimated (Olofsson et al. 2014). In the case of an 
accuracy assessment the matrix is often termed an error 
matrix as the reference data set represents reality. In the 
matrix, the cases lying on the main diagonal are those 
on which both data sources agree while the cases in off- 
diagonal elements represent disagreements. There are 
many measures of agreement and accuracy that can be 
calculated from the confusion or error matrix (Card 
1982; Fielding, and Bell 1997; Olofsson et al. 2014). 
Some of the measures may be used in assessments of 
both contributor agreement and accuracy, but care may 
be needed in interpretation. Note, for example, that the 
kappa coefficient which is widely used in QA is suited 
for use in measuring contributor agreement but not in 
accuracy assessment (Pontius, and Millones 2011; 
Foody 2020). Other widely used quality measures 
include the proportion of all cases that were correctly 
classified based on the reference data as well as mea
sures for individual classes (i.e. measures the proportion 
of correct classifications of a given class based on the 
reference data). As the assessment is typically based 
upon a sample of cases, good practice would be to fit 
confidence limits to the estimate to indicate the degree 
of uncertainty present (Olofsson et al. 2014).

There are many challenges in accuracy assessment, 
and other approaches may sometimes be suitable. For 
example, if the map and reference data legends do not 
match or perhaps contain a different number of classes 
then alternative methods, such as those based on 
entropy, may be undertaken (Finn 1993; Stehman, 
and Foody 2019). Similarly, there are also measures 
to address deviations from the standard scenario based 
on a comparison of a pair of labels for each case. For 

example, in situations when agreement by more than 
two contributors is being assessed it may be possible to 
use a measure such as Fleiss’s kappa (Fleiss 1971).

3. Background details and the LandSense 
pilot studies

The LandSense pilot studies differed in a number of 
ways, which impacted on QA tasks. For example, pilot 
studies used dissimilar scripting languages, version 
control systems and deployment platforms. However, 
a federated approach was used to accommodate for 
these differences in terms of accessibility and use. The 
latter included a common quality control entity to 
identify, assess and potentially correct data quality 
concerns across these multiple applications, themes 
and pilot studies.

Data standards for LandSense, and how these inter
act with QA procedures, included essential and 
recommended Data Collection Requirements 
(DCRs). DCRs define the nature of the data collected 
and how it relates to the QA functions. Essential DCRs 
relate to mandatory data requirements, such as privacy 
checks on photographic imagery and time stamps on 
data. Recommended DCRs are not mandatory 
requirements but relate to data protocols aimed at 
promoting good data quality. For example, the latter 
include checking photographs for blurring and appro
priate brightness levels as well as the level of positional 
accuracy for contributed data.

Throughout the evolution of the LandSense project, 
all pilot studies were open to change and adaptation 
throughout their development regarding their concept, 
audience, content, and technicalities. This enabled 
them to focus better on user needs and to take into 
account lessons learnt during initial data collection 
campaigns. As a result, data protocols evolved and 
were subjected to reconsideration and reframing. 
Hence, a key aspect for good practice of the 
LandSense data protocols was the ability to accommo
date these dynamics to ensure that ongoing operational 
use and development could occur simultaneously.

The pilot studies focused on the urban landscape 
dynamics theme witnessed changes to the data collec
tion protocol and data schema to take better account 
of user’s needs as well as development of more citizen- 
friendly tasks such as validation to take into account 
the lessons learned from initial data collection cam
paigns. This resulted in the simplification of the data 
collection protocol and data model. In contrast, the 
pilot studies for of the agricultural (CropSupport) and 
Forest Monitoring (Natura.Alert) themes evolved 
more gradually without any fundamental changes 
within their foci, content, or data schema.

Balancing the need for each pilot study to develop 
its own bespoke methods whilst maintaining some 
standardization across the LandSense project was 
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a challenge throughout the project. This is not surpris
ing given the diversity of the pilot studies. In addition, 
the differing requirements of the various stakeholders 
to the LandSense project (e.g. users, government, 
commercial and academic) should also be considered. 
For example, commercial partners may be reluctant to 
release their intellectual property under open access 
conditions whereas funding organizations (e.g. the 
EU, national funding bodies, etc.) may require open 
access as part of the funding conditions. The concepts 
of cohesion, adaptability, and accessibility governed 
the design of data structures for the LandSense pilot 
studies.

Cohesion is the capacity to use the pilot studies in 
a combined manner such that they each could benefit 
from the others and may reuse parts where appropri
ate. Cohesion was aided by agreeing on shared stan
dards. The adoption of established geodata standards 
acted to simplify access and reduce friction for data 
access, particularly with an interlinked federation 
environment. For LandSense, geojson was used for 
vector data since it is robust, adaptable, and suited 
for web applications. In addition, the World 
Geodetic System, which is the default projection of 
geojson, was used as it supports deployment scalability 
which is important for integrating data collection over 
the world. Furthermore, coding in R and Python was 
encouraged as they can be installed at no cost, are 
human readable and understandable by a broader aca
demic and non-academic public. The code was main
tained within a project managed git (gitLab, gitHub) 
environment allowing multiple access.

Adaptability is the capacity to keep a citizen 
science project flexible in terms of the requirements 
dictated by commercial, technical, scientific or policy 
constraints. Advances in technology may offer new, 
unanticipated, opportunities to which a project 
should be able to adapt to. Similarly, the aims and 
scope of a study may change and hence the ability to 
adapt can be important. For example, the app data 
protocol should support a rapid upscale or down
scaling capacity depending on the intensity of use. 
Containerized deployment chunks through Docker 
containers (Merkel 2014) and eventually Docker 

swarms (Freeman 2017) or similar were recom
mended for use in parts of LandSense such as in 
the photograph privacy checks. These can be 
extended as needed and can be deployed within 
cloud platforms and as such adapt elastically to 
usage intensity.

Accessibility, particularly in relation to privacy 
and openness is important in the collection and use 
of VGI (Mooney et al. 2017). Privacy is an impor
tant part of the broader issue of ensuring compli
ance with the GDPR. In some instances, privacy 
may be waived by contributors at the outset of 
a project when giving free, informed and willing 
consent for their contributions to be linked to their 
identity. Additionally, a key aspect of accessibility is 
the degree to which both data and any associated 
code and/or applications is openly available for 
access for both contributors and wider public 
access. Complete openness may not always be pos
sible. Privacy concerns will limit some access, and 
open availability of code developed may sometimes 
be difficult due to licensing issues. However, good 
practice should be to reduce such complications 
wherever possible by avoiding where possible the 
use of licensed code and/or data.

4. QA checks and suggested good practices

The experiences and lessons learned from undertaking 
the QA checks on VGI acquired during LandSense are 
briefly summarized below. The QA checks focused on 
photographic quality and privacy, polygon overlap, 
positional accuracy and offset, contributor agreement 
and categorical accuracy. Table 1 shows the various 
LandSense QA checks undertaken and the number of 
checks performed across the various LandSense 
themes and pilot studies.

4.1. Photograph quality checks

The checks aim to ensure that the photographs 
used and stored are of appropriate quality for the 
application in-hand. The checks on blur and 

Table 1. The data quality analyses applied to different LandSense pilots. The numbers in each cell indicate the number of checks 
carried out for that QA service and pilot. Gray cells indicate that that particular QA service was not applicable to the pilot study.

QA check

Urban landscape dynamics
Agricultural land 

use
Forest and habitat 

monitoring

OSMlanduse 
validation

City. 
Oases MijnPark.NL Paysages CropSupport Natura.Alert

Photograph brightness & 
blur

- 197 372 260 210 512

Photograph privacy - 197 372 260 210 512
Polygon topology - - - 202 -
Positional accuracy - 878 377 - 207 -
Positional offset - 443 361 - 211 -
Categorical accuracy 10,806 - - 467 - 571
Contributor agreement 150 sites/points - 30 sites/ 

points
650 sites/ 

points
- -
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brightness aimed mainly to filter out low-quality 
images. In relation to privacy, a key concern was 
to detect features that could identify an individual, 
such as faces or vehicle license plates, so that they 
could be masked out.

General good practice for photograph blur and 
brightness would require there to be a quality scale 
with a predefined threshold value (or values) 
against which the check is performed. If the result 
falls outside the set of acceptable values for an 
image, then the check should return a failure result 
for it. In addition to recording the pass/failure 
state, it was found that the quantified result from 
the quality check (e.g. brightness level and blur 
level) should also be recorded. Retaining the result 
enables users of the QA system to rerun the quality 
checks as a post process with a range of differing 
thresholds to examine the impacts of variations to 
the quality procedures and act to meet the particu
lar needs of the study in-hand. This is important as 
users may differ greatly in needs and hence 
a photograph acceptable to one may be unsuitable 
for another.

4.1.1. Blur check
The blur check QA analysis was based on an assess
ment of the degree of blurriness obtained through the 
application of a Laplace filter to the image (Pech- 
Pacheco et al. 2000). Specifically, blurriness was deter
mined through convolving the image with a 3 × 3 
Laplace kernel and calculating the variance on the 
resulting image. The LandSense QA platform imple
mentation of blur checking calculated an image’s blur
riness on an eight-bit radiometric scale producing 
a result in the 0–255 range (where 0 indicates fully 
blurred and 255 is no blur present).

The photographs acquired in the LandSense pilot 
studies were generally of a high quality. Less than 3% 
of the 1549 images processed by the LandSense QA 
service (Table 1) had blur levels below 251 and only 
these appeared problematic. A blur threshold of 250 
was used in LandSense. Examples of photographs over 
a range of blur levels are shown in Figure 1 and a 
summary of the degree of blurring from each pilot 
study is provided in Table 2. Note that a photograph 
may pass this check but still be of limited value 
because of other concerns such as brightness.

Figure 1. Examples of 4 photographic images acquired during the LandSense project and the calculated blur level. (a) paysages 
pilot, blur level 162, (b) paysages pilot, blur level 216, (c) natura pilot blur level 248 and (d) MijnPark.Nl pilot blur level 249. Note 
these all fail to meet the blur threshold used in LandSense but could still be useful to other studies.

Table 2. Summary of the photograph blur and brightness check results for the pilot studies. Numbers indicate the actual number 
of photographs (and as a % of the relevant total).

Statistic All Pilots MijnPark.NL Paysages CropSupport Natura Alert City.Oases

Number of blurred images (%) 41 (2.6%) 5 (1.3%) 11 (4.2%) 0 (0%) 0 (0%) 25 (12.7%)
Average blur level 249.2 251.7 252.1 254.0 253.9 223
Number of dark images (%) 431 (27.7%) 187 (50.3%) 84 (32.3%) 7 (3.3%) 72 (14.1%) 81 (41%)
Average brightness 111.4 99.3 108.5 122.7 123.0 95.5
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In addition to identifying good practice for ascertain
ing whether an image is blurred, it is also important to 
consider what options are available once a blurred 
image has been detected. For the purposes of 
LandSense, and given the low number of blurred images 
that were found, it was determined either to exclude 
blurred images from the pilot study datasets or to 
include them with metadata highlighting their quality 
issues. Another option that could be considered is to 
apply a sharpening algorithm to reduce the blurriness of 
an image. To illustrate the potential of this approach, 
examples of blurred images were sharpened manually 
using Photoshop (Figure 2). As shown, minor levels of 
blurring can be addressed using standard sharpening 
functions in image processing software but significant 
blurring, especially when combined with an already 
dark image, was difficult to correct.

4.1.2. Brightness check
For the brightness QA check, the relative luminance of 
contributed photographs was calculated and expressed 
on an 8-bit scale. In the latter, the pixel DN values 
ranged from 0 (completely dark) to 255 (completely 
white). The choice of an appropriate threshold to 
identify unsuitable images is highly dependent on the 

data collection context, and the specific image quality 
requirements of the project but from experience with 
the photographs acquired a threshold of 100 was 
selected for general applications in LandSense. 
However, a threshold may need to be adapted for 
particular needs and hence the desirability of storing 
the brightness check score for each photograph along 
with the photograph. For example, in terms of context, 
if images are likely to be taken in poorly lit environ
ments (e.g. at night or indoors) then it may be wise to 
lower the quality threshold for brightness to increase 
the likelihood of image submissions passing the check. 
Conversely, if the project requirements specify that 
only high-quality image submissions are acceptable 
then the threshold may need to be increased. 
Although brightness checking may seem rather basic, 
a large proportion of photographs acquired were dark. 
Indeed, the proportion of photographs failing the 
brightness check varied greatly in the pilots with up 
to half of the acquired images acquired in a pilot study 
being viewed as too dark (Table 2). Figure 3 illustrates 
the quality of images that fail to reach the threshold of 
100 used by LandSense. It is evident that images at the 
lower end of the spectrum convey little visual 
information.

Figure 2. Examples of images before (left) and after (right) correction. (a) paysages pilot, successful image sharpening to correct 
for blur and (b) paysages pilot unsuccessful correction for blur and brightness.
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Unlike the blur check function, where extreme 
image sharpness does not normally cause quality con
cerns, there is potential for reduced quality at each end 
of the brightness scale. Both extremely low and high 
levels of brightness can lead to images where detail is 
lost. This is evident in Figure 4 which shows 
a spectrum of photographs acquired from the 
LandSense pilot studies that passed the basic bright
ness check (i.e. had a score of >100). The majority of 
these images are of good quality, but it is evident that 
the brightest image was of relatively low quality. 
Consequently, for good practice, it may be necessary 
to have both a minimum and maximum threshold 
value set for brightness checks in future work. Across 
the set of pilot studies, only 3 of 1549 photographs 
assessed had a value >200 and this value was used as 
the upper brightness threshold in LandSense

Photographs that fail to pass the brightness check 
could be excluded, marked as being of low quality or 
automatically brightened. The latter option may seem 
an obvious choice, but care should be taken when 
modifying images collected by users. Depending on 
the nature of the intellectual property rights for a VGI 
campaign, it may not be possible to make modifica
tions to user collected images without infringing their 
rights. It may also be ethically questionable to make 
changes to data collected by users. If the need to 
modify user-collected imagery to improve quality is 
a desired goal of a citizen science campaign, 

permission for image modification should be included 
in the data collection agreement with users as part of 
good practice.

Even where permission is given to modify user- 
collected data, automatic brightening of images can 
lead to unforeseen quality issues. For example, parts of 
photograph may become clearer but in others inter
pretability may decline due to issues such as over- 
saturation. It is important that adjustment of photo
graph properties be undertaken in a way that is tai
lored to the specific needs of a study.

Brightening images may also be useful in improving 
the accuracy of privacy checks, discussed below. It may 
be expected that dark images are more likely to generate 
errors in privacy checks as the privacy features are diffi
cult to detect (e.g. faces in a dark part of a photograph). 
However, such features may become detectable after 
brightening. Thus, good practice would be to undertake 
face detection after brightness correction.

4.1.3. Privacy checks on photographs
The photographs acquired as part of the LandSense 
project, as with other citizen science observatories, 
vary greatly in part because of the nature of the pilot 
studies. For example, the majority of CropSupport 
imagery was of agricultural land and fields of growing 
crops, whereas images acquired in the City.Oases pilot 
were primarily of urban scenes. The likelihood of 
privacy concerns arising in the latter is much greater 

Figure 3. Examples of photographic images over a range of brightness levels below the threshold used in LandSense. Brightness 
level of images shown (from left to right) are 2,8,36,46,56,68,81 and 94.

Figure 4. Examples of photographic images acquired that had high brightness levels. Brightness level of images shown (from left 
to right) are 110, 139, 151, 171, and 185.
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than in the former. However, any privacy concerns 
such as faces and/or license plates included in photo
graphs even if in the background and located some 
distance from the camera may need masking.

The definition of success and failure in the con
text of privacy checks is also not as simple and 
discrete as it may initially appear. For example, it 
may seem straightforward to define failure as being 
the presence of any undetected privacy feature after 
the privacy check has been performed. However, if 
the feature was not clearly visible in the original 
image, due to its distance from the camera or being 
partially obscured, then some judgment may be 
required to determine whether the feature needed 
to be removed to maintain the subject’s anonymity. 
A similar, but less critical, issue also applies to errors 
of commission (i.e. photographs where a privacy 
feature was detected but either did not exist or was 
not clearly visible in the original image). For exam
ple, text on the side of a vehicle could be erroneously 
detected as a license plate that requires masking. 
While commission errors indicate a failure of the 
privacy check, some level of commission error is 
likely to be acceptable in order to minimize the 
likelihood of more serious omission errors where 
a privacy feature that should be masked out exists 
but was not detected. However, excessive levels of 
commission error could substantially reduce the 
quantity of the photographs and may potentially 
remove information from photographs. This was 
found to be an issue with the face detection service 
in the CropSupport pilot study and is further 
described below.

It is unlikely that any current automated privacy 
check can consistently achieve 100% accuracy (Liao, 
Jain, and Stan 2014). Therefore, if it is critical (e.g. for 
GDPR requirements) that all privacy features are iden
tified then some further processing, such as manual 
intervention, may be required. For citizen observatories 
like LandSense, one option could be to use citizen con
tributors to provide manual feedback on the presence of 
privacy features in an image as a post-processing step in 
any QA privacy check procedure. A potential model for 
such manual interventions was explored during the 
LandSense project. Using IIASA’s Picture Pile software 
(Danylo et al. 2018), photographs acquired in the City. 
Oases pilot study (>1700 images) were manually filtered 
to exclude all images that did not require privacy checks. 
The same process could be employed post-privacy check 
to ensure that all privacy features have been successfully 
identified and anonymized.

Another option explored by the City.Oases pilot was 
for contributors to identify manually in the pilot app any 
privacy features during the image upload process. In the 
upload page, the users were asked to blur out parts of the 
images which showed a face or vehicle license plate 
before being uploaded. When the users click the edit 

button on the upload page, they get to the edit page on 
which they can select a photograph. When the user has 
selected an image, s/he can blur out parts of the image by 
touching the points on the image that should be blurred. 
It should be noted that this manual privacy check, as 
with the automated detection service, is unlikely to be 
100% accurate. QA checks on the City.Oases image 
library found some of the images where manual blurring 
had failed to identify all privacy features.

4.1.3.1. Face detection service (FDS). The FDS model 
was created using TensorFlow and Google’s TensorFlow 
Object Detection API. The model used was mobilenet 
SSD (single-shot multibox detector) included in the 
TensorFlow API. The performance of the FDS in terms 
of detection accuracy was relatively good for clearly 
visible faces but much poorer when faces were obscured, 
poorly lit or were in the background of the image.

Overall performance for the FDS seems to match 
the level of accuracy quoted in the literature (e.g. Yang 
et al. 2016) for the types of unconstrained imagery 
collected by LandSense with a detection accuracy of 
around 70%. Almost half of the 49 detection failures 
observed could be categorized as borderline cases 
where it is arguable whether any faces in the image 
were clearly recognizable and needed to be blurred.

Performance across the different pilot studies varied 
with the urban-based pilots showing the highest level of 
omission errors, mainly due to the increased presence of 
people in the images collected (Figure 5). Commission 
errors were more common in the agricultural and habi
tat-monitoring pilots, with the CropSupport pilot in 
particular showing a high degree of commission errors 
(Figure 6). One potential method to improve overall 
FDS performance would be to use differentiated detec
tion thresholds based on the probability and prevalence 
of faces in the photographs collected.

Retraining the FDS using the images collected by 
the LandSense pilots was an option investigated, but it 
was determined that it may not be expected to sub
stantially increase accuracy since it is already at a level 
matching the state of the art in face detection for 
unconstrained photographs. Additionally, as with 
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Figure 5. Accuracy results of face detection service for all 
pilots.
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other analysis based on machine learning algorithms, 
retraining must be carefully performed to ensure that 
the retrained model shows genuine improvement. 
There is also a danger that an inductively trained 
tool may work successfully for the site it was con
structed on but generalize poorly to other sites.

As indicated above, no automated privacy check is 
likely to be perfect and some form of manual checking 
may need to be integrated into an FDS. Manually pre- 
filtering the images using IIASA’s Picture Pile software 
greatly reduced the number of images for processing 
and hence reduced processing time considerably. This 
type of filtering process could be carried out by con
tributors after the initial data collection phase.

If 100% accuracy is needed, then some form of 
post-process manual verification check appears to be 
necessary. This could be performed by the QA team, 
pilot data manager or by the contributors themselves. 
If GDPR regulations are the primary motivation for 
privacy checks, care must be taken to ensure the reg
ulations are not breached as part of the manual ver
ification process itself. Any images that potentially 

could be in breach of GDPR should not be located 
on a publicly accessible server until the QA FDS pro
cess is fully complete.

4.1.3.2. License plate detection. LandSense’s imple
mentation of the License Plate Detection Service 
(LPDS) used the Open Source version of the 
OpenALPR algorithm as described by Masood et al. 
(2017). Its overall performance for the photographs col
lected appears on initial examination to be very high 
(97%, Figure 7) but the accuracy is inflated due to imbal
ance in class size, with a very low number of license plates 
visible in the images. If its accuracy is based solely on the 
images with visible license plates, then it only recognizes 
only one license plate out of the 38 in total. As with the 
FDS, many of the license plate failures are borderline 
cases where the vehicle’s license plate is not clearly visible 
and it is debatable whether any LPDS would have been 
able to detect it accurately. To examine this, images from 
the City.Oases pilot, which had the largest number of 
license plates present, were evaluated using other detec
tion services.

Figure 6. Examples of commission errors. (a) and (b) show commission errors for faces detected in crops, with red boxed areas 
supposedly containing a face, and (c) and (d) show a photograph before and after application of the licence plate detection 
software; note the metadata text in the bottom right of (c) is incorrectly masked out in (d).
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The City.Oases pilot had 14 images with license 
plates present that were not detected by the 
LandSense LPDS. These images were reprocessed 
using the commercial version of OpenALPR, which 
offers improved performance over the open source 
version used by LandSense. Even using this version, 
only license plates in 5 of the 14 images were detected.

Another commercial LPDS, PlateRecogniser 
(https://platerecognizer.com) was also tested. The lat
ter performed identically to the commercial version of 
OpenALPR. Photographs for which PlateRecogniser 
detected license plates not identified by LandSense 
LPDS or the commercial version of OpenALPR may 
still include errors. For example, Figure 8 notes the 
presence of a commission error related to the con
struction signage contained within the image.

The performance of the LandSense LPDS used 
could be improved through further training. 
However, it is also clear that even with training, 
some license plates may not be identifiable due to the 
unconstrained nature of the images collected. The low 
number of images with license plates in the LandSense 
dataset may not be sufficient for retraining. Suitable 
images would need to be sourced for retraining the 
algorithm. In addition, it is debatable whether the cost 
of retraining the LPDS would be a worthwhile use of 

time and resources given the low prevalence of license 
plates in the data collected and there would be no 
guarantee that any improvement would be substantial 
given the performance of the commercial LPDS.

4.2. QA checks for polygon overlap

For the CropSupport pilot, QA checks applicable to 
polygonal data were developed to check for overlap
ping polygons. Checking for overlapping polygons is 
a relatively simple spatial problem, based on standard 
GIS intersect functions (Burrough et al. 2015). We 
implemented a post-processing approach, the respon
sibility for correcting polygon overlap errors passed 
from the citizen contributing data to the data manager 
for the pilot. This process may be difficult without 
local knowledge or other ancillary data (e.g. detailed 
high resolution remotely sensed imagery). It also 
added additional manual QA processes into the work
flow; however, it was deemed appropriate to safeguard 
quality of data.

With the LandSense QA service, each instance of 
polygon overlap counted individually. That is, if two 
polygons were overlapping this counted as two over
lapping polygons. However, with other GIS tools, the 
same example may be reported as a single instance of 
overlapping. The difference between the number of 
overlaps and the number of overlapping polygons 
can lead to confusion when comparing results from 
different tools. Good practice requires that documen
tation, therefore, is clear, and transparent to ensure 
meaning is apparent.

Although amending overlapping polygons was not 
included in the LandSense QA tool, there are a range 
of approaches that could be used. Establishing good 
practice guidelines requires the consideration of the 
various options within the context of the specific citi
zen science project being undertaken. For example, 
the CropSupport pilot focused on adding polygons 
representing crop boundaries, therefore polygons do 
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Figure 7. Accuracy results of license plate detection service for 
all pilots.

Figure 8. Examples of outputs from the licence plate detector. (a) output from PlateRecogniser LPDS which detected one more 
license plate (shown in blue) than the OpenALPR and (b) output from PlateRecogniser which shows detection of a licence plate 
that was identified by LandSense LPDS or the commercial version of OpenALPR. Note the presence of a commission error related 
to the construction signage on the right hand side of the image.
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not need to be contiguous, but they should not over
lap. Conversely, a project using VGI to map land use 
may need to ensure that polygons are contiguous in 
addition to not overlapping. Other models might 
allow polygons to overlap but could allow a polygon 
to be within another polygon to enable hierarchical 
structuring of land use categories. In each case, the 
process of identifying overlaps does not alter but 
guidelines for dealing with any overlaps identified 
may vary according to the specific use case. For 
LandSense, overlapping polygons were not allowed 
and in the CropSupport pilot study users would be 
required to redraw their contributed polygon if it 
overlapped an existing polygon. A concern with this 
approach is that it assumes that the original polygon is 
correct. Other means to address the problem of over
lapping polygons could be adopted. For example, the 
option to redraw a polygon or the boundaries of the 
existing polygon it overlaps with could be provided. 
A potential problem with this option is that it may 
allow a contributor to edit another user’s data. There 
would be no way to guarantee that any edits made to 
polygons were correct and the original contributor’s 
data could be lost unless previous versions stored. To 
address this concern, it could be possible to flag over
lapping polygons for review. Users could also be asked 
to add comments on the overlap that could assist in 
solving the problem. The overlapping polygons could 
then be reviewed by the original contributors, or other 
users, and a consensus could be reached as to the 
correct polygon boundaries. This option would 
require the tools available to users to include snapping 
and topological functionalities. Finally, automatic 
polygon correction methods such as existing in some 
GIS packages could be adopted. However, caution 
should be taken when employing automated solutions, 
as these may simply redraw the polygon boundaries to 
remove any intersecting areas between them and there 
is no guarantee that the new polygons are an accurate 
reflection of reality.

4.3. QA checks for positional accuracy and offset

Positional accuracy is an important issue in the collec
tion of data on land cover and land use (Congalton, 
and Green 2009). Many analyses of data, for instance, 
assume high positional accuracy and hence it is impor
tant to establish the level of accuracy required and that 
achieved. Positional accuracy is, for example, impor
tant in site-specific accuracy assessment discussed in 
Section 4.4 below.

The measurement of positional accuracy and offset 
are relatively straightforward and are widely discussed 
in the literature. In terms of good practice, the 

definition of accuracy and offset requirements is the 
key issue to be discussed here. In line with the other 
QA services discussed, the context of the data collec
tion exercise being undertaken is a critical element in 
the definition of positional accuracy requirements. 
The scale of the land use feature being surveyed will 
substantially impact on the level of positional accuracy 
required. The density of observation points within 
a given area will also affect the level of positional 
accuracy required. To illustrate this, where areas 
being observed are large, open land use features, 
such as fields of crops for the CropSupport pilot, the 
degree of positional accuracy for the observation point 
often does not need to be high to be of sufficient 
quality. In contrast, where the features being observed 
are small and densely packed, as in urban green spaces, 
such as those observed in the MijnPark.NL pilot, 
a higher level of positional accuracy may be required 
to ensure that the contributor has observed the correct 
feature. As a guide to the achieved positional accuracy, 
Figure 9 shows a summary of results for the City.Oases 
pilot which shows the variability in accuracy in terms 
of magnitude but also in space.

The local environment will influence the level of 
positional accuracy that can be achieved. In urban 
areas, the presence of tall buildings and other obstruc
tions to a clear view of the sky will reduce positional 
accuracy. Observations taken in more open, rural or 
suburban locations, such as the CropSupport pilot, 
will not suffer from similar GPS signal quality issues. 
In addition to climatic and locational factors, the 
technical specifications of the mobile device used to 
make the observations could affect the degree of posi
tional accuracy obtainable. For many guided cam
paigns, where both positional accuracy of the 
observation point and its positional offset from the 
reference point are important, the project’s design 
may need careful attention. The combination of errors 
of positional accuracy and offset can lead to large 
disparities in spatial accuracy of observations. For 
this reason, guided campaigns, in particular, should 
integrate the likely spatial accuracy of the mobile 
devices used to collect data in their design. A guided 
campaign should also consider the likelihood of 
obstructions to GPS signals and their potential impact 
on positional accuracy when choosing the location of 
observation points.

One potential method for reducing spatial accuracy 
issues in a guided campaign might be to consider the 
use of technological solutions to reduce or eliminate 
the positional offset problem. For example, QR codes 
could be installed at the observation points and users 
could be required to scan the code to indicate that they 
are at the correct location. This option would require 
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the presence of some physical infrastructure to which 
the QR code can be attached (e.g. post, bench, tree 
etc.). Another technological solution could be the 
installation of Bluetooth beacons at the observation 
points that could then log the presence of a Bluetooth 
enabled phone at the location and inform the user via 
the pilot app that a contributor was in the correct 
location.

When considering an appropriate level of posi
tional offset for guided campaigns, it may be consid
ered good practice to allow variable offset thresholds. 
For the LandSense guided campaigns, MijnPark.NL 
and City.Oases, a fixed value of 20 m for positional 
offset was used as both pilots were collecting data in 
similar urban environments. However, it would be 
possible to vary the offset based on the observability 
of each observation point (i.e. positional offset thresh
old could be relaxed for large features and tightened 
for small features or ones that need to be viewed from 
a specific geographical location). As elsewhere, the 
good practice advice is that settings such as offset 
thresholds be selected for the requirements of 
a particular application.

4.4. QA checks on label quality

The QA checks on label quality focused on two com
monly encountered issues with VGI: contributor 
agreement and thematic accuracy. The QA checks 
for contributor agreement sought to determine the 
extent to which two or more citizens participating to 
a project agree in the labeling of cases. The core focus 
in LandSense applications was typically either upon 
agreement on labeling to conventional LULC classes 
(e.g. OSMlanduse and Paysages) or to classes that 
indicate the perception of places (e.g. City.Oases and 
MijPark.NL). If a reference set representing reality was 
available, the focus was typically on the accuracy of the 
labels relative to the reference.

In the course of the LandSense project, some chal
lenges and issues were encountered and two are high
lighted here. First, there were instances in which only 
one contributor obtained data. In such circumstances, 
agreement between contributors cannot be assessed. It 
may, however, be possible to evaluate other aspects of 
the quality of the data. For example, it may be possible 
to determine how the contributed data fits within its 
geographical context (Goodchild, and Li 2012) or to 

Figure 9. Example of positional errors for the city.Oases pilot. (a) statistical summary of the positional accuracy results and (b) 
a map showing the spatial distribution of errors of differing magnitude (base map provided by OpenStreetmap, © OpenStreetmap 
contributors).
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compare the labels against some other source of data. 
Second, in many instances, a large number of contri
butors may participate. For example, in LandSense 
between 2 and 40, contributors provided data for 
MijnPark.NL and from 3 to 6 for contributors for 
Paysages. Sometimes the number of participants may 
be so large that it actually acts to degrade a study 
(Foody et al. 2015). In such circumstances, a range of 
possible approaches can be used to seek to maximize 
the value of the data. For example, attention could 
focus on cases for which all or a majority of contribu
tors agree. Information on contributor performance 
may also be used to weight contributed data to ulti
mately increase classification accuracy (Foody et al. 
2018). Thus, having multiple contributors labeling 
can be useful and although the required number of 
contributors is likely to be application dependent it 
would be good practice to strive for such a community 
of contributors in future work. However, in doing so 
the composition of the crowd needs attention 
(Comber et al. 2016). Within LandSense, for example, 
contributors with different personal profiles per
formed differently (Olteanu-Raimond et al. 2020) 
and this may have implications to future studies, espe
cially in relation to issues such as the selection and 
training of potential contributors.

In special circumstances, it can be necessary to 
deviate from good practices, and if this is the case, 
open and honest reporting of the accuracy assessment 
is required to aid interpretation (Stehman, and Foody 
2019). For example, it may sometimes not be possible 
for a citizen to visit a randomly selected site to acquire 
VGI. In such circumstances, the problem should be 
noted and reported as it may aid interpretation Other 
approaches to indicate accuracy, such as those based 
on social status and geographical context may also be 
used to help support an accuracy assessment 
(Goodchild, and Li 2012).

5. Conclusions

This article summarizes some of the key experiences 
and lessons learnt in the LandSense project in relation 
to QA of VGI. Universal guidelines cannot be offered 
as the needs of studies may vary greatly but some 
general conclusions may be drawn. For example, it 
was stressed that a compromise should be reached 
between maintaining data protocols and schemas 
rigidly (to simplify and streamline QA processes) 
whilst still allowing flexibility for each specific pilot 
study to identify a data model that fits their subject 
area and requirements as well as allow projects to 
evolve. Some common data elements (e.g. GPS accu
racy) and formats (e.g. geojson) may be necessary to 

enable effective QA processes to be performed, but 
these need to be defined in a consensual manner to 
encourage buy-in from those involved in each pilot 
study.

Examples of good practice identified throughout 
the project were outlined for each QA check of rele
vance to LandSense. The checks covered common 
issues such as photographic image quality and privacy 
checks, polygon overlap, positional accuracy and off
set, and labeling quality in assessments of contributor 
agreement and categorical accuracy. As visual inter
pretation of images, both from ground-based photo
graphy and remote sensing, are central to much of 
VGI, the basic issues of image quality are of funda
mental importance. Being able to satisfactorily inter
pret an image and know the location it relates to are 
critical to the successful use of VGI as ground data. 
While citizen science has much to offer a key experi
ence gained, however, was that there are important 
challenges in the use of citizen-based VGI. If designing 
a crowdsourcing project, for example, do not assume 
that citizens will provide photographs of appropriate 
illumination and blur. We also do not assume that 
current image analysis software can fully complete 
necessary privacy checks. Factoring in some human 
interpretation into the data processing system may be 
wise.

Photographs were acquired mainly as a source of 
information on land use and land cover but before this 
could be extracted they were subjected to three QA 
checks: blur, brightness and privacy. Checks on image 
blur and brightness were based on the use of 
a numerical quality scales. Threshold values on these 
scales may then be used to identify the photographs of 
suitable quality and those which could be excluded or 
subjected to enhancement operations. From the 
experience gained in LandSense, it is suggested that 
the quantitative score for each photograph generated 
in the QA checking should be retained with it so that 
future, possibly unplanned, work could easily use dif
ferent quality thresholds if appropriate for the task. 
The effect of different thresholds on the relative size of 
commission and omission errors should also be con
sidered within the context of a study. For example, 
with privacy checks for features such as faces, different 
thresholds may be required in urban and rural areas. 
Finally, in some analyses, such as in face detection as 
part of a privacy check, it was highlighted that current 
automated approaches may be inadequate alone. Such 
tasks may require inclusion of additional, perhaps 
manual, checking. The accuracy of privacy checks 
was less than might be expected from the literature 
on topics such as face detection from constrained 
photographs. The experience gained from LandSense 
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was that some form of manual check was required if all 
privacy features were to be detected and masked out. 
Experience also showed that if images were to be 
enhanced this needs some care. For example, a basic 
brightness correction may enhance the interpretability 
of a photograph but this can cause problems. First, the 
change may make privacy features more apparent and 
hence it is recommended that privacy checks are 
undertaken after other QA checks. Second, permission 
may be required from the contributor to alter the 
image and hence if such changes are anticipated per
mission for such activity should be acquired when 
gaining consent from a contributor to participate in 
a project.

The positional accuracy of contributed data was 
important, and requirements may vary depending on 
the features under study. Thus, thresholds for posi
tional accuracy may vary between urban and rural 
sites and depending on the nature of the features 
understudy. The ability to use physical infrastructure 
to enhance confidence in geopositional data was 
encouraged if appropriate. The quality of the devices 
likely to be used by contributors also needs considera
tion, especially as newer more expensive devices often 
provide high positional accuracy.

Assessments of labeling quality were encountered 
when seeking to evaluate contributor agreement or 
thematic accuracy. Such assessments were based on 
comparisons of multiple labels applied to a set of 
geographical features (e.g. crop type by a set of con
tributors). How the multiple labels are used requires 
careful consideration. For example, a basic consensus 
approach could be used to generate a label or only 
those cases labeled the same by a majority or indeed all 
labelers could be used. Differences between groups of 
labelers were also observed in LandSense and hence 
the personal profile of contributors may need careful 
consideration. In LandSense, an additional observa
tion was that it is possible to weight contributed data 
to obtain an enhanced ensemble label. A problem 
sometimes observed was that a site may get labeled 
by only one contributor. In such a case, the standard 
approach to evaluating labeling quality cannot be used 
and a project should be adaptable and consider other 
QA approaches.

Adaptability was also required in the assessment of 
polygon overlap. The approach adopted evolved such 
that the check was moved from a near real-time task 
for the contributor to a post-processing operation to 
be undertaken by the project staff. This change can be 
important, especially if detailed local knowledge is 
desired as the project staff, unlike some contributors, 
may not have it. In LandSense, it also required the 
incorporation of a manual assessment into the pro
cess. Finally, it was stressed that many seemingly basic 

issues need to be carefully considered. For example, 
terminology must be clear. Thus, thematic classes used 
need clear and careful definition as does the spatial 
unit used and deviation from common assumed con
ditions explained (e.g. there needs to be a way to deal 
with problematic cases such as mixed units in 
a classification). Clarity was also important in relation 
to comparison of results between methods. For exam
ple, the LandSense polygon overlap QA check would 
report an overlap between two polygons as a single 
case but other systems and researchers might count 
this as two cases.

It is hoped that these lessons from LandSense help 
other projects. Note that the outcomes are explicitly 
proposed as good practice and should not be treated as 
the only or “best” solution. The specific requirements 
and context of a VGI exercise will be a key driver in the 
applicability and utility of the various good practices 
shown. Many of the practices discussed represent 
a compromise between maximizing data quality whilst 
maintaining important features such as contributor 
engagement. While technological advancements may be 
expected to enhance aspects such as automated privacy 
checks, the experiences gained in LandSense may help 
others develop citizen science projects and help fulfil the 
potential of VGI. LandSense provided experiences and 
learnings of value to other projects for the effective 
acquisition and use VGI. Critically, our experiences 
urge caution against assuming that basic issues such as 
photograph quality can be downplayed or that auto
mated methods for common applications will be suffi
cient. Including basic checks (e.g. image brightness and 
blur) and planning for some manual input to QA of VGI 
is important until relevant technological advancements 
occur.
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