
1

Modular deconstruction reveals the dynamical and physical

building blocks of a locomotion motor program

Angela M. Bruno,1 William N. Frost,2 Mark D. Humphries3

1. Department of Neuroscience, The Chicago Medical School, Rosalind Franklin Uni-
versity of Medicine and Science, North Chicago, Illinois, USA

2. Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind
Franklin University of Medicine and Science, North Chicago, Illinois, USA

3. Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom

Contact : Correspondence should be addressed to M.D.H (mark.humphries@manchester.ac.uk)
or W.F. (william.frost@rosalindfranklin.edu)

Running title : Modular deconstruction of a motor program

Abstract

The neural substrates of motor programs are only well understood for small, dedi-
cated circuits. Here we investigate how a motor program is constructed within a large
network. We imaged populations of neurons in the Aplysia pedal ganglion during
execution of a locomotion motor program. We found that the program was built from
a very small number of dynamical building blocks, including both neural ensembles
and low-dimensional rotational dynamics. These map onto physically discrete regions
of the ganglion, so that the motor program has a corresponding modular organiza-
tion in both dynamical and physical space. Using this dynamic map, we identify the
population potentially implementing the rhythmic pattern generator and find that
its activity physically traces a looped trajectory, recapitulating its low-dimensional
rotational dynamics. Our results suggest that, even in simple invertebrates, neural
motor programs are implemented by large, distributed networks containing multiple
dynamical systems.

Highlights :

• Neural ensembles code the Aplysia locomotion motor program

• Stable and rotational dynamics differentiate classes of ensemble

• Different dynamical classes map to physically separate and discrete regions

• Low-dimensional rotations of activity are recapitulated in physical space
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Introduction

The concept of the motor program, a fixed sequence of automatically-executed movements,
is widely assumed to underlie automatic motor control in both vertebrates (Mink, 1996;
Grillner et al., 2005; Summers and Anson, 2009; Esposito et al., 2014) and invertebrates
(Wu et al., 1994; Frost and Katz, 1996; Kupfermann and Weiss, 2001; Jing et al., 2004;
Flood et al., 2013; Schoofs et al., 2014). Its neural basis has been most clearly eluci-
dated in the reconstructions of dedicated circuits that initiate, generate, and execute a
specific rhythmic behaviour in invertebrates (Selverston, 2010). Deep understanding of
these circuits has been possible because each comprises the inter-connections between a
few identifiable neurons that are common to every animal. These have illuminated general
principles of the neural architectures, dynamics and modulation underlying motor control
(Getting, 1989; Katz et al., 1994; Yuste et al., 2005; Selverston, 2010). However, in larger
nervous systems the limited genetic capacity for specifying individual neurons and their
connectivity means that dedicated circuits give way to stochastically wired networks. The
existence of multifunctional motor networks in both Aplysia and the medicinal leech, in
which the same neural system supports more than one distinct motor program (Tsau et al.,
1994; Wu et al., 1994; Briggman et al., 2005; Briggman and Kristan, 2006), suggests that
even in simple invertebrates neural motor programs are implemented in large, distributed
networks rather than dedicated circuits (Getting, 1989; Wu et al., 1994). Understanding
the distributed network implementation of a motor program would thus bridge the gap
between dedicated circuits and the general principles of motor control.

How a distributed network implements a single motor program is unclear. Its imple-
mentation is potentially built from a mixture of systems (Getting, 1989; Jing et al., 2004;
Rokni and Sompolinsky, 2012), including at least one pattern generator for rhythmic out-
put (Selverston, 2010; Rokni and Sompolinsky, 2012; Churchland et al., 2012), a set of
motorneurons for translating rhythmic output to muscle commands (Brezina et al., 2000;
Rokni and Sompolinsky, 2012), and neuromodulators of both generator and motorneuron
output (Getting, 1989; Brezina et al., 2000). Each of these “building blocks” (Getting,
1989) could form a functionally separate population within the network, or two or more
could be combined into a single functional population. Each building block could imple-
ment a different dynamical system, such as neural ensembles (Wickens et al., 1994; Mattia
et al., 2013) or low-dimensional attractors (Schoener and Kelso, 1988; Briggman et al.,
2005; Churchland et al., 2012). Consequently, the distributed network implementation of
a motor program has many unknowns: whether it is a mixture of functionally independent
dynamical building blocks or a single integrated circuit; how these are organised in the
network; and what dynamics they implement.

To address these issues, we imaged populations of neurons in the pedal ganglion of the
sea-slug Aplysia while reliably eliciting its motor program for locomotion. The pedal gan-
glion contains approximately 1600 neurons (Cash and Carew, 1989), and wholly contains
the rhythmic pattern generator (Jahan-Parwar and Fredman, 1979, 1980), motorneurons
(Hening et al., 1979; Fredman and Jahan-Parwar, 1980) and associated neuromodulatory
neurons (Hall and Lloyd, 1990; McPherson and Blankenship, 1992) for locomotion, thus
making it a tractable target for mapping a motor program to the dynamics and structure
of its underlying distributed network. This mixture of systems means that population-
imaging of the Aplysia pedal ganglion is representative of the analytical challenges that will
become increasingly common for large-scale recordings of complex neural systems (Cun-
ningham and Yu, 2014), as we know that the recorded populations will have captured mul-
tiple dynamical systems within them. We thus had to develop new dimension-reduction
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approaches to deconstruct population recordings into the motor program’s component
systems.

In this paper, we report that the locomotion motor program is built from a very
small number of dynamical building blocks that are common to every execution. These
include both ensembles and low-dimensional dynamics. We show that this dynamical
decomposition unexpectedly maps onto physically discrete regions of the ganglion, such
that the motor program is built from physical as well as functional building blocks in a
distributed network. Using this dynamic map, we identify a population with rotational
dynamics potentially implementing the rhythmic pattern generator. We further show
that its activity physically traces a looped trajectory. These findings shed light on the
general principles of implementing motor programs in distributed networks, place strong
constraints on circuit mechanisms underlying locomotion in Aplysia, and pave the way for
targeted studies of attractor-like dynamics in neural systems.

Results

Optical recordings reveal variation within and between motor program
executions

We used a setup that was designed to simultaneously record neural populations at high
temporal and spatial resolution during execution of a single motor program (Hill et al.,
2010) (Fig. 1; see Experimental Procedures). Aversive tail stimuli elicit escape locomotion
in Aplysia, which consists of a rhythmic series of head reaches and muscular contraction
cycles that roll head to tail down the length of the animal (Jahan-Parwar and Fredman,
1979; Hening et al., 1979). Sharp-electrode studies showed rhythmically bursting mo-
torneurons located mostly in the pedal ganglion’s rostro-medial quadrant (Hening et al.,
1979) and phase-locked to the rhythmic muscle contractions (Hening et al., 1979; Fred-
man and Jahan-Parwar, 1980). The ganglion’s functional and physical organization during
locomotion is otherwise largely unknown.

Using an isolated brain preparation, we reliably elicited fictive locomotion by stimula-
tion of pedal nerve 9, while simultaneously recording the spike-trains of individual neurons
across the entire ganglion at high temporal resolution (1.6 kHz) using voltage-sensitive
dye imaging with a photodiode array (Fig. 1A) (Hill et al., 2010). We simultaneously
recorded 57-125 neurons in each of 12 preparations, a total of 1145 neurons, with each
record truncated to the initial 80 seconds in which each preparation consistently showed
locomotion-related activity. We accurately mapped the location of every recorded neuron
in the 2-dimensional imaging plane (see Supplemental Experimental Procedure 3; Fig.
3A).

Decomposing the motor program required combining recordings to identify dynamical
building blocks common to each execution of the program. However, recorded executions
varied in both time-scale (Supplemental Fig. 1A-C) and intensity (the distribution of
firing rates significantly differed between 55 of the 66 unique pairs of recordings; K-S
test at α = 0.05). This variation between recordings, combined with the likely mixture
of dynamics within each recording, made analysis with standard dimension reduction
techniques challenging (Machens, 2010). Illustrating this difficulty, we found that applying
principal components analysis (Briggman et al., 2005; Levi et al., 2005) to each recording
revealed hints of attractor-like dynamics (Supplemental Fig. 1D-E), but the number of
principal components capturing 95% of the variance in a recording ranged from 2-12,
indicating that each recording captured different sets of dynamics within the same motor
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Figure 1: Imaging and analyzing Aplysia’s locomotion motor program. A Experimental
setup. Left: Head reach in Aplysia’s rhythmic escape locomotion. Middle: Preparations consisted
of the ring ganglia (Ce: cerebral; Pl: pleural; Pd: pedal), with a stimulating electrode connected
to peripheral nerve Pd9. Some recordings also used a suction electrode connected to pedal nerve
10 (Pd10) to monitor the neck contraction phase of locomotion. Right: Imaged area of the dorsal
pedal ganglion, aligned to the photodiode array of 464 diodes (red outline). B Analysis stages for
deconstructing the motor program. Fast voltage-sensitive dye recordings captured simultaneous
cellular-level activity and the location of every neuron. Step 1: each motor program recording
is decomposed into its component ensembles using modularity-detection (panel C). We map the
physical location of the ensembles in each recording, seeking a “dynamic map” of each execution of
the program. Step 2: ensembles are classified across recordings into groups of statistically similar
firing patterns, seeking the dynamical building blocks of the motor program. Step 3: we map the
physical location of the ensemble groups over all recordings, seeking the physical layout of the
motor program’s dynamical building blocks. C Modularity detection of ensembles (step 1 in panel
B). Schematic illustration of the steps for decoding neural ensembles using community detection
with consensus clustering. Key is modelling the pairwise correlation matrix as a network: each
node is a neuron, each link’s weight is the correlation between that pair of neurons. Community
detection algorithms – so-called by analogy with the division of social networks into communities
– provide a general solution to the problem of separating an arbitrary network into its component
modules: here each module is thus an ensemble of strongly, mutually correlated neurons. Choice
of time-scale and type of correlation thus define a “neural ensemble”. Here we convolve each
spike-train with a Gaussian window whose width is defined by the characteristic period of the
locomotion-related activity (Experimental Procedures; Supplemental Fig. 1), and correlate each
pair of convolved spike-trains.
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program.
To solve these problems, our starting point was to seek the existence of neural ensem-

bles within each recording. Finding these would provide evidence of ensembles within a
distributed network implementation of a motor program; as we will show, these also pro-
vide a basis for solving the problem of combining information across variable recordings
to decompose the dynamic systems within a program. Our analysis strategy for decom-
posing the motor program is illustrated in Figure 1B; below we detail the new algorithms
introduced at each step.

Each motor program execution is comprised of functional neural ensem-
bles

As there are an unknown number and size of ensembles in each execution – potentially
zero – we developed an unsupervised algorithm for ensemble detection (Experimental Pro-
cedures). Each recording is characterized as a functional network of correlations between
neuron pairs (Figure 1C), where each node is a neuron and each link encodes correlation
strength. Our algorithm is based on the concept of community detection in arbitrary
networks: it separates each functional network into modules (“communities”) of nodes
by directly optimizing the modularity score Q, which is maximized by grouping nodes
into modules that have dense connections within them and sparse connections between
them (Newman, 2006b; Humphries, 2011). These modules are thus groups of neurons
whose activity patterns are more similar to each other than to any other neuron, and
give a quantitative definition of “neural ensemble” (or “cell assembly”) (Wehr and Lau-
rent, 1996; Harris, 2005; Peyrache et al., 2009; Niessing and Friedrich, 2010). To solve
the problem of reliably clustering each recording for later between-recording comparison,
we developed a new consensus-clustering approach to community detection (Supplemental
Experimental Procedure 1).

Consensus community detection was highly effective in organizing the raw recording
traces into separate ensembles of temporally correlated neurons (illustrated in Fig. 2A-C).
We found that each execution of the locomotion motor program decomposed into multiple
neural ensembles. The recordings captured between 7 and 18 ensembles each (total of
147), ranging in size from 2–24 neurons (median 8 neurons; Fig. 2D). Every ensemble
was highly self-similar (Fig. 2E), indicating that the algorithm was very successful at
separating each functional network into its component modules. The modularity of each
preparation was approximately the same (mean Q = 0.18± 0.05 s.d.), confirming that the
recordings were sampling the correlation structure of the circuit in a consistent manner.
The number of ensembles scaled with the number of recorded neurons in the preparation
(Fig. 2F), suggesting that each recording is sampling a subset of all simultaneously present
ensembles.

Supplemental Figure 2 shows that our detected ensemble structures are robust to order
of magnitude changes in the time-scale of correlation, and to using an adaptive time-scale
that accounts for population firing rate changes over the recording.

Each motor program execution is comprised of physical neural ensembles

To understand how each motor program execution is distributed across the network, we
then sought the physical layout of the ensembles in each recording. Our use of voltage-
sensitive dye imaging with a photodiode array and independent component analysis to
isolate the spike-trains (Hill et al., 2010) allowed us to recover the location of each neuron
within the two-dimensional imaging plane of the ganglion (Fig. 3A; Supplemental Exper-



6

A B C

0 5 10 15 20 25

0

5

10

15

20

25

N
o
. 
e
n
s
e
m

b
le

s

Ensemble size (# neurons)

8

0 0.5 1

0

10

20

30

40
0.83

N
o
. 
e
n
s
e
m

b
le

s

Similarity

n=147

60 80 100 120

0

5

10

15

20

N
o
. 
e
n
s
e
m

b
le

s

No. neurons

r = 0.87

p = 0.0002

D E F

n=147

n = 12

Figure 2: Modular deconstruction of a motor program recording. A Raster plot of
an example optical recording of 102 neurons over 80 seconds. B The corresponding functional
network. Each node is a neuron; gray-scale intensity of the links indicates similarity of that pair of
neurons. The 12 detected modules within the network are color-coded. Distance between modules
indicates their average similarity. C Raster plot from panel A ordered and color coded by module
membership in panel B, showing the 12 ensembles. D Distribution of ensemble size across all
recordings. Red line indicates median value. E Distribution of median intra-group similarity
over all preparations; red line indicates median of distribution. F Correlation between number of
neurons in each recording and number of ensembles detected (linear regression, n = 12). (see also
Supplemental Fig. 2).
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Figure 3: Modular deconstruction of the physical substrate. A Mapping neuron location.
Left: layout of a recorded functional network; the asterisk (∗) indicates the example neural ensemble
corresponding to physical positions in panels A-C. Right: Estimated position of all 8 neurons in
the example ensemble; each position estimate is plotted as a two-dimensional Gaussian, with blue-
red indicating minimum-maximum probability of location. B Projection of the functional network
onto physical space. We plot the mean estimated position of all neurons, color-coded by ensemble
membership, onto the approximate extent of the ganglion covered in this recording. Links show a
sample of the network (within ± 1 s.d. of mean correlation). C Map of neural ensemble locations on
the photodiode array (top) showing physical contiguity of the ensembles in a recording: each region
of the array is claimed by the closest neuron; all regions belonging to the same neural ensemble
are merged (same color). Bottom: example control map, generated by randomly assigning neurons
to the same number and size of neural ensembles. Supplemental Figure 3 compares data and
randomized maps across all recordings.

imental Procedure 3). Across all recordings we found that most ensembles (100/147) were
physically cohesive (P < 0.05, permutation test), as illustrated in Figure 3A, such that
strongly correlated neurons were physically close.

We then asked whether this physical cohesiveness meant that ensembles comprising
a single execution of the program were intermingled or discretely arranged. As each
recording sampled a subset of all likely ensembles, to check for discreteness we needed
to solve the problems of incomplete data, of unknown, likely irregular physical shapes of
ensembles, and of possible noise in the clustering. To do so we developed a parameter-free
method for interpolating the physical extent of each ensemble, illustrated in Fig. 3B-C
(see Supplemental Experimental Procedure 3).

We found most ensembles (110/147) had at least half their neurons in one continuous
patch of space, and so were highly discrete (Supplemental Fig. 3). Most strikingly, as
illustrated in Fig. 3C the physical arrangement of ensembles in each recording was also
highly discrete (mean proportion of neurons in a single continuous patch was between 52%
and 92%; all were greater than 95% confidence interval, permutation test). Functionally-
defined ensembles thus correspond to physically separate neuron groups: a single execution
of the locomotion motor program is distributed across the network as a set of physically
discrete neural ensembles.

Different classes of ensembles correspond to different dynamical systems
within the motor program

Having characterized each execution, we turn to the central problem of combining record-
ings to identify the dynamical building blocks of the motor program (Fig. 1B, Step 2).
We had identified a database of 147 ensembles across all recordings. We classified these
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ensembles into one of four classes defined by significant peaks or troughs in their autocor-
relograms (Fig. 4; Experimental Procedures), which allowed us to capture their oscillation
pattern invariant to the time-scale or intensity of the motor program execution to which
they belonged. We show below that this broad classification allowed us to isolate dynam-
ical systems within each recording.

We found all four possible classes of oscillation pattern existed within the locomotion
motor program (Fig. 4). Most ensembles (85%) fell into the three classes of oscillator: “os-
cillatory” (63%); “bursters” (19%); and “pausers”(3%). The remaining 15% of ensembles
had no strong oscillation, yet neurons in these ensembles were recruited by the onset of the
motor program (Supplemental Fig. 4). These data suggest that a neural motor program
also incorporates neural ensembles that are not manifestations of some oscillation.

We found that the oscillator and burster classes identified separate dynamic systems.
For each recording, we selected the subset of ensembles belonging to a particular class, and
then projected all neurons in that selected population into a low-dimensional space using
PCA, to visualize the population dynamics (Briggman et al., 2005; Levi et al., 2005).

In most recordings we found that the oscillator-class population was dominated by
an oscillation of constant amplitude and frequency throughout the program’s execution,
shown by the first principal component (Fig. 5A). Projecting the population onto the
first two principal components showed that this constant oscillation corresponded to a
constant rotation of population activity (Fig. 5A). Such consistent rotation in two dimen-
sions indicates that the underlying oscillatory activity in this population was phaselocked
throughout the recording

In recordings with sufficient numbers of identified burster-class ensembles, we found
that the burster-class population was dominated by evolving activity over the course of
the program, shown by the first principal component (Fig. 5B). To confirm this, we
correlated the projection onto the first principal component against time, and found a
strong relationship (median r2 = 0.34, n = 11 recordings), consistent with a change
in baseline activity over time. Projecting the population onto the first two principal
components showed that this evolving oscillation did not correspond to a constant rotation
of population activity (Fig. 5B).

Our identification of four classes of oscillation pattern shows that the locomotion mo-
tor program can be decomposed into at least three dynamic systems, one showing corre-
lated firing but not oscillating (“non-oscillators”); one that implements a constant oscil-
lator (“oscillators”); and one that evolves over the program’s execution (“bursters”). The
pauser class may correspond to a fourth separate dynamic system, but no single recording
contained sufficient numbers for us to check.

Dynamic mapping of the motor program

Having identified these four classes of dynamical building blocks of the motor program, we
then sought to understand how they are distributed over the physical network (Fig. 1B,
Step 3). To do so, we took the map of extrapolated ensemble locations for each recording
(such as the example in Fig. 3C) and labeled each location with the oscillatory class of
that ensemble. We then combined these re-labeled maps across all recordings. We plot
the resulting “dynamic map” for each oscillatory class in Figure 4.

We see that the four classes of ensemble defined solely by oscillation pattern map
to different locations on the ganglion. In particular, the oscillator class ensembles are
predominantly located in the caudo-lateral quadrant, whereas the burster class ensembles
are predominantly located in the rostro-medial quadrant. Thus, the separate dynamical
systems identified by the oscillation patterns of neural ensembles correspond to a physical
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Figure 4: Classes of ensemble. Four classes of ensemble were defined by the presence or absence
of significant peaks or troughs in their auto-correlograms: the non-oscillatory class had no signif-
icant peaks or troughs; “oscillators” had both; “bursters” had significant peaks but not troughs,
indicating repeated phasic firing without repeated silence; “pausers” had significant troughs but
not peaks, indicating repeated silence without repeated stereotyped bursts. Auto-correlogram
(top) and raster (bottom) plotted for an example ensemble of each class. The red lines plot the
upper and lower bounds on expected spike-count predicted by a shuffled inter-spike interval model;
peaks are contiguous bins above the upper bound, troughs are contiguous bins below the lower
bound. We also plot the “dynamic map” of each oscillatory class, with heat intensity (blue-red)
indicating the proportion (%) of recordings in which that location belonged to that oscillatory class
of ensemble; white indicates no membership of that class detected. All maps plotted for the left
ganglion.
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Figure 5: Separate dynamical systems within the locomotion motor program. A
Oscillator-class ensembles. We plot the projection onto the first principal component (PC1, left)
and onto the first two PCs (right) for the population of neurons in oscillator-class ensembles in
three recordings (1, 6, and 9). Black dot indicates time zero. B Burster-class ensembles. Layout
as for panel A, plotted for the population of neurons in burster-class ensembles in the same three
recordings.

separation within the pedal ganglion network. We note that this clear separation is not
a trivial result of the discreteness of the individual ensembles: the execution of a single
program has discrete ensembles, showing that correlated neurons are located within a
single, discrete region of the ganglion network; but ensembles of different oscillation classes
could themselves be intermingled – our maps show that this is not the case.

Rotational dynamics of oscillator ensembles corresponds to a physical
looped trajectory of activity

Aplysia locomotion represents a particular challenge in understanding motor control. In
many invertebrates and some vertebrates locomotion is driven by a rolling wave of neural
activity that causes sequential muscle contractions. This rolling wave is most often realized
by the sequential firing of linked segmental networks (Cacciatore et al., 2000; Eisenhart
et al., 2000; Gjorgjieva et al., 2013), but in Aplysia the entire neural apparatus is contained
within the single pedal ganglion network. It is otherwise unknown how this single network
can implement the rhythmic pattern generator necessary to generate the slow rolling wave.

The oscillator ensembles are potentially the observable portion of the unidentified
rhythmic pattern generator for locomotion. Our dynamic map localized these to the
caudolateral quadrant (Fig. 4) where few motorneurons are found (Hening et al., 1979),
and where the single reported example of an oscillatory interneuron was found (Fredman
and Jahan-Parwar, 1980). Within each recording, we have shown that the activity of the
oscillator-ensemble population of neurons can be well-described by a perfect rotation in a
two-dimensional space, despite the variations over a single motor program execution and
between each execution (Fig. 5A).

Our mapping of the physical ensembles in each recording allowed us to ask if we
could observe directly the rotation in the two-dimensional space as a rolling wave of
activity in physical space. We again selected the oscillator ensembles in each recording, and
plotted the position of their spatially-averaged activity over time (Fig. 6A; Experimental
Procedures). We consistently found that this “activity packet” repeatedly traced a looped
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Figure 6: Rotational dynamics correspond to physical rotations of activity. A Pro-
jection of oscillator-class activity onto physical space. Top: Sequence of firing of 4 representative
oscillator ensembles in recording #1. Bottom: center of each of the 4 ensembles. Eligible record-
ings had 5-12 oscillator ensembles. B Looped trajectories of the activity packet in space. Top:
the activity packet from recording #1 (panel A) describes an elliptical orbit (red) on the plane of
the ganglion; black line: best-fit ellipse; scale bar: 1 diode spacing (∼ 60µm). Bottom: best-fit
ellipses showing trajectories from all recordings with sufficient oscillator ensembles to uniformly
span phases of a motor program cycle. C Looped trajectory corresponds to phasic motor output.
Top: Extracellular recording from pedal nerve 10 (Pd10). Bottom: firing of Pd10 mapped onto
the looped trajectory. Dark red represents peak firing, corresponding to bursts in the upper panel
(see Supplemental Fig. 5). D Hypothesised control of the pedal wave for locomotion. Cycling
activity on the network is plotted schematically as an ellipse. Activity on specific portions of the
trajectory is proposed to recruit motorneurons (M) projecting to muscles in the foot and body wall,
whose axons contribute to the suggested nerves. One cycle of the trajectory would thus generate
the pedal wave for locomotion by sequentially activating the neck/anterior, middle, then posterior
nerves.

trajectory in the ganglion network during a single execution of the motor program (Fig.
6B; Supplemental Video 1), recapitulating the low-dimensional rotational dynamics of the
population.

If this was a physical realisation of the rhythmic pattern generator, the activity packet
trajectory should correlate with specific phases of movement. Consistent with this picture,
in further recordings we found that burst firing of pedal nerve 10, correlated with neck
contraction (Xin et al., 1996), in turn correlated with a specific portion of the looped
trajectory of activity in the ganglion network (Fig. 6C; Supplemental Video 2). Clustering
these recordings showed that phasic activity of our detected ensembles was temporally
aligned with the nerve’s activity, and so correlated with motor output during locomotion
(Supplemental Fig. 5). Our results thus suggest the intriguing possibility that ensembles
in the caudolateral quadrant are a network implementing a rhythmic pattern generator.

The motor program is comprised of a few dynamical building blocks

The classification of the 147 ensembles into four classes of oscillator allowed us to de-
compose and map the dynamical building blocks of the motor program, but had some
limitations. Such a classification forced all ensembles into four pre-defined classes, thus
pre-determining that there could only be a few dynamical building blocks. In addition,
visual inspection of our recordings revealed a wider variety of spike-train structure than
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properties of the nine groups. Grayscale intensity of lines indicates similarity of nodes.

could be captured by oscillation pattern, and it is likely that each recording captured one
or more entirely unknown types of ensemble. To address these issues, starting with the
same database of 147 ensembles we repeated steps 2 (classify) and 3 (map) of the analysis
(Fig. 1B) using a new unsupervised classification approach based on spike-train structure,
thus not presuming any number of dynamical building blocks. We thus develop here a
solution to the general problem of clustering ensembles across preparations.

To capture the wide variety of spike train structure we used a statistical approach
(Compte et al., 2003; Wohrer et al., 2013). Each ensemble was described by its firing rate
and regularity, respectively captured by the distribution of inter-spike intervals (ISIs) and
the distribution of the local regularity measure CV2 (Fig. 7A). Capturing each ensemble’s
dynamics using these complete distributions precludes the use of conventional clustering
methods to classify ensembles. To solve this, we developed an approach that clusters in a
“fit space” (Experimental Procedures). We fit N models to each distribution and compute
the probability that each model was the best fit to the distribution, combined into the
length N vector P (model). Here we use N = 6 models, covering unimodal (exponential,
normal, gamma, log-normal) and bimodal (normal, gamma) distributions (see Supplemen-
tal Experimental Procedures 2 for specification). By concatenating the vectors for its ISI
distribution and for its CV2 distribution, each ensemble is then represented as a point in
the (2×N)-dimensional space of rate and regularity properties. Distances between pairs of
ensembles in this fit-space are then used as the basis for unsupervised clustering, resulting
in groups of ensembles defined by the statistical similarity of their spike-train structure.

We found that the 147 ensembles reduced to nine ensemble groups defined by their
spike-train structure (Fig. 7B), supporting the hypothesis that the locomotion motor
program is constructed from a limited number of dynamical building blocks. No single
recording captured ensembles from all groups (median 4 types of group per recording,
range 2-6), showing that our unsupervised “fit space” approach was able to integrate
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information from across recordings. Figure 8 summarizes the properties of each group.
Three groups have bimodal distributions of both ISIs and CV2 (Groups 1, 2 & 8, totalling
119 of 147 ensembles in the database), consistent with the strongly oscillatory firing in
the system. Together these account for the majority of “oscillator” and “burster” classes
(Supplemental Fig. 6). A unique ensemble-group (Group 7; 3/147 ensembles) have a
bimodal distribution of ISIs, implying that these ensembles are bursting, yet had a uniform
distribution of regularity meaning that each burst is a Poisson process. Such highly-
irregular firing may indicate that these neurons’ afferent network is in the “balanced”
state of many asynchronous excitatory and inhibitory inputs (Berg et al., 2007).

Strikingly, two groups of ensembles have a unimodal ISI distribution (Groups 4 & 9,
7/147 ensembles), implying tonic firing throughout their recordings. These confirm that
ensembles of neurons with correlated but non-oscillatory firing are a dynamical system
present during the locomotion motor program. The lack of oscillatory firing implies that
such ensembles do not directly encode the program’s sequence of movements, but may play
a modulatory role. We further discuss the relationship between the spike-train properties
of the nine groups detected here and the known properties of the pedal ganglion in the
Supplemental Text.

Using the same approach as the oscillator classes, we plot the resulting “dynamic
map” for each ensemble group in Figure 8. We see that these groups are also physi-
cally segregated in the ganglion. As an example of the consistency in the mapping across
recordings, we see that the ensembles of the Poisson-burst group (Group 7) are found
in the same, precise location of the rostro-medial quadrant (Fig. 8). These maps show
that, when defined through unsupervised clustering of their spike-train statistics, the dy-
namical building blocks of the locomotion motor program are physically segregated in the
ganglion’s network.

Discussion

The implementation of a single motor program in a distributed network is modular, de-
constructable into separate dynamical building blocks that are recapitulated in physical
space (Figs. 4 and 8). These modules exist at two scales: the individual, discrete ensem-
bles of neurons; and the larger-scale discrete mapping of the different dynamical systems
within the pedal ganglion. This doubly-modular nature represents a dramatic dimension
reduction: here our data-set of 1145 neurons comprised 147 neural ensembles, which in
turn reduced to 9 groups of ensembles with statistically-similar firing. Our results thus
support the idea (Koch, 2012) that detecting neural modularity will be highly effective in
reducing the dimensional complexity of the brain.

Modular deconstruction of large-scale neural recordings

In tackling the problem of decomposing a motor program, we have developed an analy-
sis pipeline for dynamical mapping of a neural circuit (Fig. 1B). As the pedal ganglion
network’s implementation of the locomotion motor program contained many unknowns,
the key here was to use entirely unsupervised analysis that allowed us to discover com-
ponents within the large-scale recordings. Placed in sequence (Fig. 1B), the unsuper-
vised steps of ensemble detection and classification allow for a data-driven breakdown of
any set of large-scale, cellular-level recordings. Supplemental Fig. 2 shows that ensem-
ble detection using our consensus clustering algorithm is robust to order-of-magnitude
or dynamic changes in correlation time-scale, suggesting our methods are generalizable
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Figure 8: Groups of ensembles defined by spike-train structure. We found nine groups
of ensemble distinguished by their firing rate and regularity; percentages on the far left give the
proportion of ensembles in each group. In the left-most column we plot the map of all locations
containing that ensemble group, with heat intensity (blue-red) indicating the proportion of record-
ings in which that location contained an ensemble of that group; white indicates no membership
of that group detected. Further columns illustrate an example ensemble of each group: the four
most-similar spike-trains in that ensemble (80 s duration); and the cumulative distributions for the
interspike intervals (ISIs) and the irregularity metric (CV2) for the ensemble. Black line: data; red
line: best fitting model (highest P (model) out of the 6 candidates). Note different scaling of x-axes
for cumulative plots. Supplemental Figure 6 maps these ensemble groups defined by spike-train
structure onto the distribution of ensembles according to oscillator-class.
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to systems with richer, faster dynamics. Code implementing all stages of the analysis
is supplied in the Supplemental Software; Supplemental Experimental Procedures 1-3
outline the supplied functions. Ongoing developments of the MATLAB toolboxes are
available at: for spike-train community detection: https://github.com/mdhumphries/

SpikeTrainCommunitiesToolBox; and for analysis and classification of neural ensembles:
https://github.com/mdhumphries/NeuralEnsembleAnalysis.

We used two different approaches to classifying ensembles, as they give complementary
insights. Categorization by oscillation pattern (Fig. 4) allowed us to isolate dynamical
systems within a single population recording, and yet identify them across all recordings.
The unsupervised classification by spike-train statistics (Figs. 7-8) allowed us to both show
that the groupings of ensembles exist independent of any experimenter assumptions, and
use the extra statistical power gained by pooling across all recordings to identify unique
ensembles that appear in only a small subset of recordings. Both are generally applicable
to the output of any ensemble detection method.

Identified hypotheses for locomotion control in Aplysia

Generating rhythmic motor behavior requires solving the general problem of generating
the underlying repeating cycle of neural activity. The solution for locomotion adopted
by many invertebrate brains is to link many segmental ganglia following the longitudinal
axis of the animal (Cacciatore et al., 2000; Eisenhart et al., 2000; Gjorgjieva et al., 2013).
Their sequential firing then sequentially recruits motorneurons, causing a wave of muscle
contractions. The single network of the Aplysia pedal ganglion must solve the problem in
a different way.

The pattern generator and motorneurons appear to be distinct components in the
pedal ganglion (Fredman and Jahan-Parwar, 1980). The motorneurons are not synap-
tically coupled (Hening et al., 1979; Fredman and Jahan-Parwar, 1980), ruling out the
possibility that they are the internal pattern generator, generating and co-ordinating their
own bursting activity (Fredman and Jahan-Parwar, 1980). The dominance of excitatory
post-synaptic potentials underlying the firing of motorneurons (Hening et al., 1979; Fred-
man and Jahan-Parwar, 1980) and pedal-peptide neurons (Hall and Lloyd, 1990) points to
an excitatory interneuron network within the ganglion. As there are around 1600 neurons
in the pedal ganglion (Cash and Carew, 1989), and communication between neurons is pre-
dominantly via chemical synapses, a large network of synaptically-connected interneurons
could feasibly exist. With this limited prior knowledge of the network, our unsupervised
analyses rapidly identified a set of testable functional hypotheses for Aplysia locomotion
control.

First, our data supports the hypothesis that the rhythmic pattern generator for Aplysia
locomotion is realized by a network of interneurons in the caudo-lateral quadrant of the
pedal ganglion. Here we identified a set of oscillator ensembles (Fig. 4), whose pop-
ulation activity traces a perfect rotation in low-dimensional dynamical space (Fig. 5),
recapitulated in the physical space of the ganglion (Fig. 6). These rotations arise because
individual neurons within the population had phase-locked oscillatory activity through-
out the recordings. It is possible that the richness of observed oscillatory activity across
this quadrant is not wholly intrinsic to the pattern generator, as inputs from the intact
pleural and cerebral ganglion are known to respectively modulate the amplitude of oscil-
lation (Jahan-Parwar and Fredman, 1979, 1980) and contain the command neurons for
self-initiation of locomotion (Fredman and Jahan-Parwar, 1983).

From these data we can sketch a model for locomotion control in Aplysia, in which
activity in each portion of the loop recruits motorneurons projecting to different muscle
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groups (as we showed for nerve P10 in Fig. 6C). We illustrate this idea schematically in
Figure 6D, concentrating on the known nerves that project from the pedal ganglion to
different portions of the foot (and thus control the pedal wave component of locomotion).
One prediction of this model is that simultaneous suction electrode recordings from the
identified nerves should map onto relatively discrete portions of the trajectory of activity.
We do not expect them to be literally as discrete as shown; rather, pedal nerves inner-
vate overlapping areas of the foot, presumably to allow smooth execution of the pedal
wave (Fredman and Jahan-Parwar, 1980). As Aplysia locomotion includes both crawling
and faster galloping (Jahan-Parwar and Fredman, 1979), this model suggests that these
locomotion modes correspond to the rate of oscillation in the activity loop.

A second hypothesis is that the rotational dynamics recapitulated in dynamical and
physical space are consistent with the direct observation of a cyclical attractor network
(Eliasmith, 2005; Rokni and Sompolinsky, 2012; Yoon et al., 2013). This class of networks
generate and self-sustain a moving packet of activity (consistent with our observations in
Fig. 6, and Supplemental Videos 1-2), and have been proposed to underlie a wide-range
of neural systems’ dynamics, including grid-cell generation (Yoon et al., 2013) and head-
direction representation (Zhang, 1996). Compared to the cyclical attractors embodied by
small, fixed central pattern generator circuits (Selverston, 2010), the theoretical advantage
for locomotion of a network implementation lies in the ability to produce flexible motor
programs of differing speed and/or muscle recruitment by the speed and trajectory of
activity in the attractor network (Eliasmith, 2005; Rokni and Sompolinsky, 2012). This
cyclical attractor could be representative of the general solution to generating rhythmic
activity in a large neuronal network (Yuste et al., 2005; Yoon et al., 2013).

Under this hypothesis, our oscillator ensembles are the observable manifestations of
the attractor network’s moving activity packet. An alternative explanation of the physical
trajectory is that the pattern generator comprises a series of independently oscillating
neuron groups: if they were physically arranged in phase order, the location of the activity
packet would follow the layout of the groups. To be consistent with our observations, the
independent oscillators would be laid out in a loop. Future testing of the attractor-
network hypothesis will thus require making use of critical tests for dynamical systems
using perturbation. One crucial test would be to perturb the activity of the oscillator-
ensembles during an ongoing locomotion program: if they do form an attractor network,
then the perturbed activity should return to the same cyclical trajectory. Another crucial
test would be to target stimulation to a section of the oscillator-ensemble region at rest: if
that section was part of a cyclical attractor network, then sufficiently intense stimulation
should initiate the sustained activity packet.

A third hypothesis is that the burster-class ensembles are integrators, as they reliably
form an evolving dynamical system over the motor program (Fig. 5B). These ensembles
were in the ganglion’s rostro-medial quadrant, where motorneurons are predominantly
located (Hening et al., 1979). One possibility is that the motorneurons captured in these
ensembles are integrating the output of the putative pattern generator together with other
modulatory inputs to turn the constant oscillation into a smoothly varying pattern of
muscle contractions. Another is that the burster-class represents a subset of neurons
integrating input for or against the decision to engage a different behavior (Briggman
et al., 2005). Testing these hypotheses in future work requires more thorough sampling of
the motorneuron population in this quadrant.
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Outlook

Traditionally, functional mapping studies were based on sharp electrodes, typically placing
them into at most a few neurons at a time to assess firing patterns during motor programs
of interest. Reconstructing networks this way is labor-intensive and takes immense time,
often involving successive generations of scientists focused on single model preparations.
Locked within the large-scale cellular-level recordings during behavior newly available from
a variety of species (Seelig et al., 2010; Ahrens et al., 2012, 2013; Larsch et al., 2013) are
the data necessary to reconstruct neural circuits’ functional connectivity from single sets of
recordings. The data-driven, unsupervised analysis pipeline developed here could unlock
this data’s potential, reducing the time needed to identify key neuronal components for a
given neural circuit by orders of magnitude.

Here we have demonstrated the use of modularity as a static concept to deconstruct the
mapping between a motor program and its neural implementation. However, in common
with many other neural populations’ activity (Briggman et al., 2005; Churchland et al.,
2012), the locomotion motor program evolves over its time-course (Hill et al., 2012), dis-
playing moment-to-moment functional reconfiguration. The next, greater challenges are
to fully characterize such functional dynamic modularity and the mechanisms underlying
it.

Experimental Procedures

Voltage-sensitive dye imaging in the fictive escape locomotion prepara-
tion.

The cerebral, pleural and pedal ganglia were dissected out and pinned to the bottom
of a Sylgard (Dow Corning) lined chamber containing Instant Ocean artificial seawater
(Aquarium Systems). The loose connective tissue surrounding the ganglia and nerves
was removed while keeping the sheath intact. The preparation was then transferred and
pinned to the floor of a Sylgard-lined recording chamber with a coverslip bottom used
for optical recording (PC-H perfusion chamber, Siskiyou). To maximize the number of
neurons in focus, the ganglion to be imaged was partially flattened by lightly pressing a
shard of cover slip upon it. The shard was held in place with small bits of silicon earplug
(Mack’s) adhered to the recording chamber floor.

For imaging, the preparation was maintained at 15−17◦C, using Instant Ocean passed
through a feedback-controlled in-line Peltier cooling system (Model SC-20, Warner Instru-
ments). Temperature was monitored with a BAT-12 thermometer fitted with an IT-18
microprobe (Physitemp, Inc) positioned near the ganglion being imaged. For staining,
the room was darkened and the perfusion saline was switched to saline containing the
fast voltage sensitive absorbance dye RH-155 (Anaspec). The preparation was perfused
with 0.03 mg/ml RH-155 in Instant Ocean for 1 hour at 15◦C. An Olympus BX51WI
microscope equipped with a 10X 0.6NA water immersion objective was used for imaging.
Trans-illumination was provided with light from a 735 nm collimated LED (ThorLabs)
which was passed through a 0.9 NA flip top achromat Nikon condenser. The light from
the objective was 100% directed either to an Optronics Microfire digital camera used for
focusing or to the parfocal focusing surface of a 464-element photodiode array (NeuroPDA-
III, RedShirtImaging) sampled at 1600 Hz.

Optical data from the 464 elements were bandpass filtered in Neuroplex (5 Hz high
pass and 100 Hz low pass Butterworth filters), and then spike-sorted with independent
component analysis (ICA) in MATLAB to yield single neuron action potential traces (the
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independent components), as detailed in Hill et al. (2010). We recently validated the
accuracy of ICA spike sorting using simultaneous intracellular and optical recordings from
neurons in various central ganglia of Tritonia diomedea and Aplysia californica (Hill et al.,
2010).

Our set-up and spike-sorting minimizes potential issues caused by light-scattering in
optical imaging studies. In invertebrate tissue, our combination of a photodiode array
and light wavelength are known to give a scattering radius close to the diameter of single
neurons (Cohen and Lesher, 1986; Zochowski et al., 2000). Scattering is minimized further
by our imaging with a very shallow depth-of-field, high NA lens, which limits the recording
mostly to those neurons visible on the surface, and by our use of a coverslip pressed down
onto the ganglion surface, which flattens it and maximizes the number of neurons in
focus. The further potential issue of merging neurons with similar activity into one signal
is unlikely to arise as individual neurons are defined in our study, not by user outlined
regions of interest, but in unsupervised fashion by our ICA spike sorting method.

Rhythmic locomotion motor programs were elicited using 5-10 V 5 ms monophasic
pulses delivered in trains from 2-10 Hz for 2-5 s via suction electrode to pedal nerve
9. In some experiments, a separate suction electrode was attached to pedal nerve 10 to
continuously monitor the locomotion rhythm (Xin et al., 1996).

Time-scale of each motor program execution

To characterize the time-scale of each motor program execution we sought the time-scale
δ that maximized both in- and anti-phase correlation between the whole population’s
activity, and so captured the time-scale of repeated states of the motor program. Each
recording was divided into vectors of neuron activity at time [t, t+δ], each vector containing
one entry for each neuron’s spike count in that time window. We correlated all pairs of
vectors and computed the dispersion of correlation as D(δ) = {mean absolute deviation of
correlation matrix} / { median of correlation matrix }; we picked δ giving the maximum
dispersion (Supplemental Fig. 1).

To represent individual spike-trains on this characteristic time-scale, each was con-
volved with a Gaussian of width σ and unit area over support ±5σ, giving the “spike
density” function f . We converted σ = δ/

√
12 (see Humphries, 2011).

PCA of motor program activity

We used standard principal components analysis (PCA) on both the entire set of spike-
density functions for each recording, and on sub-sets chosen according to the oscillatory
classes found in each recording. See (Briggman et al., 2005) for a tutorial on using PCA
to study neural population dynamics. The first few principal components define a set of
orthogonal axes that maximally account for the covariance in the data. Each principal
component Ui of an analyzed set of spike-density functions contains one entry per neuron
in the analyzed population, whose magnitude gives the contribution of that neuron to that
component: thus pairs of neurons with anti-phase activity will have large contributions
to two different principal components. Note that in such recordings of mixed dynamics,
neurons without strongly phasic activity are not strictly orthogonal to others, and so would
not be well isolated by PCA. Projections of data onto the ith principal component allow us
to visualize the population’s dynamics, and are defined at time t by: zi(t) =

∑n
k=1 U

k
i f

k(t),
where the sum is taken over all n neurons in the analyzed population.
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Consensus algorithm for detection of neural ensembles.

We defined functional networks of zero-lag correlations between each pair of neurons. To
do so, we computed the correlation coefficient Cij between the spike-density functions (f)
for each pair of neurons. The weighted functional network was then: Wij = Cij if Cij > 0
and Wij = 0 otherwise.

Maximizing modularity Q of this network decomposed the recording into its con-
stituent neural ensembles (Fig. 1C), where modularity is informally defined (Newman,
2006a) as Q = {number of links within a module} - {expected number of such links}.
An important challenge for us was to produce solutions that individually have high Q
yet that can also later be combined across recordings (in steps 2 and 3 of Fig. 1B).
To solve this, we extended our previous algorithm (Humphries, 2011) for maximizing
Q to produce a consensus clustering of modules for each recording (see Supplemental
Experimental Procedure 1). Key advantages of this algorithm over standard clustering
approaches include that it automatically determines the number and size of modules;
and it can give null answers, as Q ≤ 0 signals the absence of ensembles (Humphries,
2011). A MATLAB toolbox for this family of algorithms is part of the Supplemental
Software. Development of these spike-train community detection algorithms is ongoing
at: https://github.com/mdhumphries/SpikeTrainCommunitiesToolBox.

Network visualization was done using the MATLAB toolbox of Traud et al (Traud
et al., 2009): http://netwiki.amath.unc.edu/VisComms/VisComms.

Physical organization of the neural ensembles.

The ICA weight matrix allowed estimation of the two-dimensional co-ordinates of each
neuron (Supplemental Experimental Procedures 3). For each recording, we discretized the
diode array and constructed ensemble maps by assigning grid squares to neurons in the
same ensemble. Contiguous patches of space were defined by all adjacent squares assigned
to the same ensemble. See Supplemental Experimental Procedure 3 for details; the code
is also part of the Supplemental Software. Dynamic maps of classes and groups were
created on a template of the left ganglion oriented with rostral north, so each individual
recording’s ensemble map was rotated and/or mirrored to that template if necessary.

Finding types of functional ensembles.

We classified ensembles according to their pattern of oscillation. We computed an auto-
correlogram A with 1 s bins up to a maximum lag of 20 s; the bin-size was chosen to
be smaller than the characteristic time-scale of the motor program in every recording
(Supplemental Fig. 1). Significance of oscillations in the auto-correlogram was assessed
using a permutation test. We shuffled the inter-spike intervals of the spike train 100
times to produce 100 permuted auto-correlograms A∗, and determined their mean and
standard deviation in each bin i. To remove rate-dependence, A was Z-transformed: Z(i)
= [A(i) - mean(A∗(i))] / std(A∗(i)). We considered a Z-scored bin significant if Z(i) > 3
for positive-valued bins and Z(i) < −2 for negative-valued bins; note the asymmetry
necessary to detect negative correlations in point processes. To further account for noise,
two consecutive bins had to meet criterion to qualify as a significant peak or trough.

The“fit-space” approach to clustering each ensemble using the full statistical distri-
butions of its spike-trains is detailed in Supplemental Experimental Procedure 2. This
method generalizes to an arbitrary number N of models fit to any choice of S spike-train
metrics, giving N vectors for P (model) and an N × S vector defining each ensemble’s
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position in the “fit space”. One key advantage is that the vector acts both as a space in
which to classify types and as a mixture-of-models – if the true model is not amongst the
N specified, P (model) uniquely weights the contribution of each specified model to the
true model. The code for fitting distributions and clustering in the fit-space is part of the
Supplemental Software. Further development of these ensemble analysis and classification
tools are ongoing at: https://github.com/mdhumphries/NeuralEnsembleAnalysis.

Trajectories of motor program activity.

We checked the motor program’s evolution in space using the oscillator class ensembles.
Each ensemble’s activity was characterized by its average spike density function f∗, ob-
tained by taking the mean over the spike density functions f of its neurons. To ensure
uniform sampling of the motor program’s cycle, we computed the phase-lag between f∗s
for all pairs of oscillator ensemble in a recording; phase spread was estimated by von
Mises κ, and we chose only recordings with κ = 0 indicating uniform spread of phase
(7/12 recordings). The estimated trajectory of the activity packet on the pedal ganglion
was then computed. To make ensemble activity comparable, each f∗ was normalized to
its maximum rate, giving f̂∗. We found the center (x, y) of the largest physical patch of
each oscillator ensemble, and computed the current x-axis position x∗(t) of the activity
packet by taking the weighted center-of-mass at time t as x∗(t) =

∑n
i xif̂

∗
i(t) over all n

oscillator ensembles, and similarly computed y∗(t) for y-axis position. Ellipses were fit
to trajectories using the direct least-squares method (Fitzgibbon et al., 1999). Mapping
of pedal nerve 10 activity was also based on its spike density function f , generated by
convolving its spikes with a Gaussian of the same width used for the population recording.
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Figure S1: Related to Figure 1. Variability within and between motor programs. A-C Characteristic
time-scales of motor program execution. We divided each population recording into vectors of neuron activity in
some bin-width δ (see Online Methods). A Example correlation matrix for population-vectors constructed using
a bin-width of 4.25 seconds. B Dependency of the spread of correlation in each matrix on the chosen vector
bin-width. We measured spread of correlation to simultaneously assess the correlated and anti-correlated state of
the population, defined as: {mean absolute deviation of correlation matrix} / { median of correlation matrix }.
C For each recording, the maximum spread of correlation defined the characteristic time-scale δ for that motor
program recording. Each spike-train was then represented on that time-scale by convolving its spikes with a
Gaussian of width σ = δ/

√
12; thus this set the time-scale defining a neural ensemble in each motor program.

Arrows in panels B and C indicate the maximum spread of correlation for the example recording in panel A.
D-F Dimensionality of dynamics. We applied PCA to the set of all spike-density functions in a recording. D
Cumulative variance accounted for by the first 20 principal components (PCs) in each recording, one line per
recording. The number of PCs required to account for 95% of the variance (red line) ranged from 2 to 12. E
Example PCA analysis of recording #5. In this recording 6 PCs account for 95% of the variance. For each PC,
we plot its scores (or “factor loadings”) on the left, and the projection of the spike-density functions on to that
PC on the right. The mixture of projections shows that the motor program recording likely captured multiple
dynamics. F Plot of the projection onto the first two PCs; time zero is indicated by the black dot. Rotational
dynamics of the population are evident, but cannot be isolated from other dynamical contributions.
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Figure S2: Related to Figure 2. Robustness of ensemble detection to time-scale of correlation. In
the main text our detected ensembles were found using a different Gaussian width per recording for the spike-
train density functions, to account for between-recording variation; here we show that the ensemble structure
is robust to a wide range of widths, and so our results do not critically depend upon our choice. A Distance
between original and new clusterings into ensembles when using the same fixed-width Gaussian window for all
recordings. Distance is computed as the normalized variational information (VI), which measures the amount of
information needed to turn one set of ensembles into the other; it ranges between 0 (identical ensembles) and
1 (orthogonal clustering). We re-cluster all 12 recordings using 3 fixed-widths; the 0.5 and 0.25 s widths are
smaller than the smallest width used in the main text. The black line above the boxplots gives the best-case
random assignment for comparison: the same number and size of ensembles, with neurons randomly assigned.
We compute the VI between the permuted and original ensembles for 100 random assignments of each recording,
and plot the mean here: re-clustering in all cases was thus well above the best-case chance performance. Boxplots
show median (center line), interquartile range (IQR; box), data range (1.5 × IQR; whiskers), and outliers. B
Correlation between the difference in Gaussian width and the resulting distance between the detected ensembles;
colours correspond to boxplots in panel A. C Time-series of median population inter-spike interval (ISI) for one
recording. D Example spike-density functions for two neurons generated using an adaptive Gaussian window:
the Gaussian’s variance was set according to the median population ISI (panel C) at the time of the spike. E
Distance between original and new clusterings into ensembles when using an adaptive-width Gaussian window
for all recordings. Conventions as per panel A. Upper black line gives the result for the same permutation control
as in panel A.
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Figure S3: Related to Figure 3. Physically discrete organization of functional ensembles in Aplysia
pedal ganglion. A Map-level discreteness. Red lines correspond to the mean for a map of the proportion of
neurons in the largest contiguous patch of each ensemble. The histogram gives the distribution of these map-level
means over all permutations of the maps (n = 240 permuted maps). All data maps were more discrete than all
permuted maps. (Each permutation kept the same number and size of neural ensembles for that recording, but
randomly distributed neurons within each, then constructed the maps as per the reconstructions for the data).
B Ensemble-level discreteness. Histogram in blue gives the distribution over all detected ensembles (n = 147) of
the proportion of neurons in the largest contiguous patch. Histogram in grey gives the corresponding distribution
over all ensembles taken from the permuted maps (n = 2490 permuted ensembles). The majority of detected
ensembles were more discrete than the most discrete permuted ensemble.
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Figure S4: Related to Figure 4. Evoking the motor program recruits neurons in non-oscillatory
ensembles. Histogram of spike count changes after motor program onset for all neurons in non-oscillatory
ensembles. Change is computed as the difference in spike count from the 10 s window before stimulus onset to
the 10 s window at the mid-point of the recorded program. The median difference (red line) is significantly greater
than zero (Wilcoxon signtest, P ≈ 2.5×10−10, n = 114), showing that neurons in non-oscillatory ensembles were
recruited by the motor program.
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Figure S5: Related to Figure 6. Simultaneous optical imaging with monitoring of motor output.
Raster plot of all ensembles detected in the optical imaging recording used in Figure 6 and Supplementary
Video 2, which had a simultaneous suction-electrode recording from nerve P10. When entered into the clustering
algorithm along with all recorded neuronal spike-trains, the spike-train for nerve P10 was assigned to the ensemble
in black. The oscillatory firing of other ensembles, such as the four ensembles plotted above the P10 ensemble, is
aligned and phase-shifted with respect to P10’s firing. The consistent temporal alignment with the firing of this
neck-muscle projecting nerve shows that phasic activity of the detected ensembles correlated with the locomotion
program.
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Figure S6: Related to Figure 8. Breakdown of each oscillator class by identified ensemble groups. For
the set of ensembles in an oscillatory class (Fig. 4 of the main text), we plot the proportion belonging to each
of the 9 identified groups of ensembles defined by their spike-train statistics (Fig. 8 of the main text). White
numbers indicate the bar segment for each group. Group#1 (with bimodal ISI and CV2) unsurprisingly makes
up the majority of the three oscillating classes; but not of the non-oscillatory class, which included the majority
of ensembles in groups with unimodal ISI distributions.



Supplemental Video Legends

Supplemental Video 1. Related to Figure 6. Rotational dynamics in projected and
physical space. For a sample recording, we compare the low-dimensional reconstruction of the
population dynamics (right) against the physical trajectory of the same population’s activity
packet (left). On the right we animate the time-course (in blue) of the projection onto the
first two principal components of the population of neurons in oscillator-class ensembles (on the
same axes used in Figure 5A). On the left we animate the corresponding trajectory (in red)
of the oscillator-class ensembles’ activity packet on the plane of the ganglion, superimposed on
an image of the ganglion from that recording to show the trajectory’s approximate physical
location (same axes as Figure 6B). The trajectory was reconstructed for all 80 seconds of the
recording.

Supplemental Video 2. Related to Figure 6. Trajectory rotations correspond to pha-
sic motor output. Animation of the activity packet’s trajectory in a simultaneous recording
of population activity and nerve P10. Colour intensity (yellow-red) of the trajectory codes the
simultaneous firing rate of nerve P10 (yellow: low; red: high; see Figure 6C). The trajectory
was reconstructed for all 80 seconds of the recording.
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Supplemental Procedures 1–3 outline the three main new analytical tools for the unsu-
pervised, parameter-free analysis pipeline. Together they form the user guide for the code
supplied in the Supplemental Software. Supplemental Procedure 1 introduces the basic
concepts behind community detection algorithms, the spectral clustering algorithm we in-
troduced in (Humphries, 2011), and the key new extension of this algorithm to consensus
clustering. Supplemental Procedure 2 describes the motivation and technical details be-
hind the new “fit-space” approach to unsupervised clustering using distributions – here, of
spike-train metrics. Supplemental Procedure 3 describes the localisation of each neuron’s
physical position, and the motivation and implementation of the new Voronoi tessellation
methods for estimating the physical extent of neural ensembles. The Supplemental Text
places our new results on the types of neural ensembles and their locations into the context
of prior work on the Aplysia pedal ganglion.
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Supplemental Procedure 1. Community detection and con-
sensus clustering algorithms

Network theory provides a powerful framework for modelling the functional correlations
of neurons. By representing each neuron as a node and each correlation as a weighted
link, we define a functional network of cellular-level activity (Humphries, 2011). A key
challenge in network analysis is how to divide a network into groups — or modules —
such that the nodes in each module are densely connected with each other but weakly
connected to nodes in other modules (for review see (Fortunato, 2010; Newman, 2012)).
This is usually termed the problem of “community detection”, by analogy with detecting
meaningful groupings in social networks. The division of our functional network into
modules thus defines potential neural ensembles.

We first briefly recap our community detection algorithm from (Humphries, 2011),
which provides a fast, scalable approach that directly maximises a quantitative measure
of modularity. We then introduce our novel algorithm for producing consensus clusterings
using that community detection algorithm, which allows for highly reproducible groupings
of the same data-set.

1.1 Defining the functional network

Our starting point is the weighted network matrix W whose entries Wij give the positive
correlation between neurons i and j. We emphasise that the modular-deconstruction ap-
proach to such cellular-level functional networks is highly general. The matrix W can be
constructed from a wide range of spike-train correlation measures, on time-scales ranging
from milliseconds to seconds (as we demonstrated in (Humphries, 2011)). For example,
one could first convolve each spike-train with an exponential, Gaussian, Epanechnikov, or
other kernel, then compute pairwise correlations using cosine similarity, the correlation
coefficient, or other linear measure. Alternatively, one could compute the pair-wise corre-
lations using metrics specific to spike-train structure, such as the Victor-Purpura distance
(Victor and Purpura, 1996), Lyttle-Fellous burst metric (Lyttle and Fellous, 2011) or the
parameter-free ISI-distance (Kreuz et al., 2007). Modules within the functional network
then quantitatively define a “neural ensemble” independently of the specific time-scale
and choice of pair-wise correlation measure.

In the main text we used a rectified correlation coefficient computed between pairs of
Gaussian-convolved spike-trains at zero-lag. These choices were made as we were interested
in simultaneous spiking of neurons in common phases of the overall oscillatory motor
program.

1.2 Community detection using spectral decomposition

Our goal is to divide the functional network into its component modules. We seek to
optimise the modularity Q of this matrix, informally defined as Q = {number of links
within a module} - {expected number of such links}. Optimising the modularity thus
requires the placement of all nodes into an unknown number of modules of unknown sizes.

To begin, we form the modularity matrix (Newman, 2006a)

B = W −P, (1)

where P is a matrix encoding a suitable null model network; following (Newman, 2006a;
Humphries, 2011) we use the model with entries between nodes (i, j) of Pij = kikj/m,
where ki, kj are the total weight of links made by nodes i and j, and m is the total weight of
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the network. This model gives the ensemble average of networks with the same expected
distribution of weights per node as the data network, ignoring any correlation between
nodes that may arise from modular structure in the data network.

Assume we are given some arbitrary assignment of all nodes n to a set of M modules,
encoded by the n×M binary matrix S: each of the M columns encodes the membership
of that module, so that entry Sij = 1 for node i in module j, and is 0 otherwise. From
this, we can quantitatively define the informal notion of modularity as (Newman, 2006a)

Q = Tr(STBS), (2)

where Tr indicates the matrix trace, and T is the matrix transpose.
We thus seek some assignment of nodes in S that maximises Equation 2. Our starting

point is an eigenspectra decomposition of B: as B is a centred matrix with mean of zero,
the number of p positive eigenvalues indicates the maximum number of detectable modules
in the network (Newman, 2006a).

We proceed as follows (Humphries, 2011). The p eigenvectors corresponding to all
positive eigenvalues form a p-dimensional projection of the modularity matrix, in which
entry i in each eigenvector together specify the p-dimensional co-ordinates of node i. We
thus cluster in this space to determine the module membership. We consider in turn each
possible number of modules between k = 2 and p+ 1 (as the first eigenvector denotes two
modules, given by the sign of its entries). For each k, we repeat k-means clustering 100
times, using Euclidean distance. Each k-means clustering returns an assignment of each
node to a module, for which we compute Q.

Out of all 100 × p clusterings, the one that maximises Q is a viable definition of the
neural ensembles present in the recording. In (Humphries, 2011) we showed how this can
give insights into the evoked firing of dopaminergic neurons, and the spontaneous activity
of cortex in vivo. However, the need to combine modules from across recordings presented
a stern new challenge.

1.3 Consensus community detection

One distinct advantage of using modularity optimisation is that not only is it a demon-
strably powerful approach to the analysis of networks (Newman, 2006a,b; Nadakuditi and
Newman, 2012), but also its limitations are very well characterised. This both allows us
to interpret its output correctly, and to understand how to solve specific problems. The
search space for modules is astronomically large: for N neurons, the number of possible
groups ranges between 1 (all neurons in one group) and N (each neuron in its own group),
and so the total number of group permutations is given by the Bell number for N ; for
100 neurons, the number of possible groupings is ∼ 4.75× 10115. Given the astronomical
size, sampling this space usually requires that the algorithms are stochastic in that each
single iteration of the algorithm starts from a different initial condition (as in the k-means
step from the above algorithm) and/or starts with a different initialisation of the random
number generator.

Like all known benefit or cost functions for stochastic unsupervised clustering, max-
imising Q is a NP-complete problem (Brandes et al., 2006); thus all algorithms can only
be heuristic approximations to finding the solution with maximum Q within this astro-
nomical search space. Moreover, it is known that many solutions with high values of Q
exist, and often form plateaus around the maximum-valued solution(s) (Good et al., 2010).
Consequently, each run of any good stochastic unsupervised clustering algorithm, such as
the above, is likely to return good solutions that are related but different sets of modules.
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In practical contexts, such variability can be undesirable. In many applications, we
have a set of networks representing a set of related samples from the system under study,
and we wish to combine the analyses of those networks to build a picture of the whole sys-
tem. We thus would like to combine the results of community detection on each network,
but this is particularly difficult to do if applying an algorithm to each network will return
different good clusterings. A method for finding both a good solution and a consistent
solution is needed to allow such combinations.

In this regard neural recording studies, whether cellular-level as here or at the macro-
scopic scale of fMRI and EEG (Bullmore and Sporns, 2009), are particularly challenging
because each data-set that defines a single network is a noisy incomplete sample from a
large, relatively unknown neural system. Understanding the neural system thus requires
the combination of all sampled networks. In the present study, the challenge is to define
neural ensembles consistently between recordings, so that we can combine those recordings
to quantitatively examine the common functional and physical properties of the Aplysia
pedal ganglion.

Our solution here is to use the consensus clustering approach (Monti et al., 2003;
Nguyen and Caruana, 2007). The general idea is that a stochastic clustering algorithm
will return a total of g clusterings, and each clustering G contains some information about
the most reliable partition of the data-set into groups. Lancichinetti and Fortunato (Lan-
cichinetti and Fortunato, 2012) recently introduced the use of this idea into the problem of
community detection. Inspired by this, we developed a novel consensus community detec-
tion algorithm that, crucially, is parameter-free: it self-determines both the appropriate
clustering and its convergence.

Our consensus algorithm is generally applicable to arbitrary networks. For our present
purposes, it provides a powerful solution to the problem of generating reliable neural
ensembles before comparison between and merging across recordings.

1.3.1 Consensus algorithm

Given the initial weighted network W, we retain all g = 100 × p clusterings in set G
produced by the above spectral clustering algorithm of modularity maximisation. We
then iteratively proceed as follows:

1. From set G remove all clusterings that have Q ≤ 0 as these provide no information
about modularity, giving set G∗ with g∗ clusterings in total.

2. Produce the consensus matrix C: entry Cij = nij/g
∗ is the proportion of times each

pair of nodes (i, j) are placed in the same module.

3. Check for convergence of the consensus matrix (see below):

(a) If converged, stop; return the single clustering defined by the consensus matrix
(see below)

(b) If not converged, cluster the consensus matrix using the spectral algorithm
giving a new set of clusterings G; repeat from step (1).

(c) If not converged after 50 iterations, exit with current best answer.

Note that this algorithm is simple because the consensus matrix defines another weighted
network that can be directly input to the spectral algorithm. Figure P1 shows this algo-
rithm in action on one of the recordings in this paper.
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Figure P1: Example output of the consensus algorithm for community detection. Each
row shows properties of the consensus matrix C for one iteration of the algorithm, from the initial
consensus matrix built from the clustering of the recorded data, to the final converged matrix after
four iterations. The rows depict: left, the consensus matrix visualised as a pseudo-colour plot,
colour intensity (blue-red) of each square coding the proportion of times that pair of nodes (i, j)
are placed in the same module; middle: histogram of entries in the consensus matrix, colour-coded
to show the two distributions (Clow,Chigh) found by the k-means clustering of those entries; right:
network visualisation of the consensus matrix, with each link’s greyscale intensity proportional to
the consensus matrix entry for that pair of nodes. The network visualisation clearly shows how the
increasing bimodality of the consensus matrix over the iterations corresponds to the separation of
the original data-set into a single set of modules.
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Convergence The values of the consensus matrix will become bimodal in the presence of
any detectable modular structure: the distribution around the upper mode will comprise
entries corresponding to pairs of nodes consistently clustered together because of their
shared membership of a common module; the distribution around the lower mode will
comprise entries corresponding to pairs of nodes clustered together at random (Figure
P1). Thus, our convergence condition is that the entries of the upper distribution define
a single, unique clustering of the nodes.

On each iteration, we check this criterion as follows:

• We cluster the entries of C into two groups Clow and Chigh corresponding to the two
modes. We used k-means with k = 2 and initial centroid values of [0.4,0.9].

• We then check for the presence of a single clustering in the upper distribution. We
first create two lists: an empty list of assigned nodes, and a list of unassigned nodes
that initially contains all nodes.

1. Picking any node at random from the unassigned list, we create a module
containing that node and all other nodes with which it has a non-zero entry in
Chigh.

2. If any of these nodes are already in the assigned list, then the upper distribu-
tion does not define a unique clustering. We exit and continue the consensus
algorithm.

3. Otherwise these nodes are moved to the assigned list.

4. Repeat from step (1) until either we have exited (at step 2) or all nodes are
assigned.

Thus, if each node is assigned, then we have produced a single consensus clustering of all
nodes into modules.

This convergence criterion was reliable for every recorded data-set from this study, as
well as all further example networks we have tested (the catch condition to exit after 50
iterations was never reached). Every data-set converged to a bimodal distribution, and
the upper distribution always uniquely defined a single consensus clustering. For the 12
networks in the data-set, the mean number of iterations to convergence was 2.25.

1.4 Code

All MATLAB functions for running the consensus community detection algorithm are in
the ConsensusCommunityDetectionToolbox folder of the Supplemental Software. Each
function has extensive help text within it; here we give an overview of each function’s role.
Ongoing development of this toolbox is hosted at:
https://github.com/mdhumphries/SpikeTrainCommunitiesToolBox.

Main functions:

consensus cluster spike data binless The top-level function: this takes a dataset of
spike-trains, and executes all steps necessary to run the algorithm on spike-train data
– convolution of each train with a function, computation of the similarity matrix from
all pairs of convolved trains, and executing the consensus algorithm itself.

allevsplitConTransitive The consensus algorithm function: this takes a similarity ma-
trix, and executes the algorithm described above. This calls the helper functions:
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expectedA Computes the null model matrix P

spike train from times Expands spike-train representation for convolution

Useful functions:

plot clusters Visualisation of detected ensembles. Takes the spike-train data-set and
a grouping of that data-set; plots the spike-trains as a raster, ordered into their
detected groups

sortbysimilarity Computes various measures of each cluster’s similarity, and sorts the
group IDs into order of similarity

MIpartitions Computes the normalised mutual information between a pair of clusterings
of the same data-set

VIpartitions Computes the variational information between a pair of clusterings of the
same data-set

The toolbox is used by top-level scripts in the Supplemental Software:

Consensus Cluster Dataset uses the toolbox to detect the ensembles present in each
recordings in the supplied data-set
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Supplemental Procedure 2. Fit-space: finding types of neu-
rons and ensembles

Having recorded from many individual neurons and detected the neural ensembles in each
recording, the key challenge is building a picture of the neural system using this data.
Each recording represents a partial, noisy sample of the system, so we need robust tools to
integrate across the samples. The first step is to identify common characteristics of firing
properties across the recordings, to build a database of types of ensembles in the neural
system.

Our goals here include:

1. Ensemble types, existence: ensembles are defined by the temporal correlations of
their neurons’ spike-trains; but each ensemble will then also have a characteristic
set of spike-train statistics; how many types of ensemble exist when we take these
statistics into account? (e.g. tonic, bursting, oscillatory, other?)

2. Ensemble types, use of: by identifying ensemble types, we can then refine all fur-
ther analyses of ensemble-level dynamics by selecting the type of ensembles we are
interested in (e.g. for sequential firing, we can select out only oscillatory types).

3. Cataloguing neurons and ensembles: large-scale recordings allow us to rapidly sample
across a large subset of simple neural systems, reducing the time to gather data
by orders of magnitude compared to traditional single cell extra- or intra-cellular
recordings. To date, the only well-characterised large sample of neuron types in the
Aplysia pedal ganglion are the motorneurons of the rostro-medial quadrant (Hening
et al., 1979) and neurons contributing axons to pedal nerve 9 (Fredman and Jahan-
Parwar, 1980). So we have the opportunity to map the largely unexplored majority
of the ganglion.

4. Novelty of neurons and ensembles: we would like to know if there exists any partic-
ularly unusual types of ensembles and neurons in the pedal ganglion, which would
merit further investigation on their own.

To achieve these goals, we want to characterise the ensembles using a range of mea-
surements, and use unsupervised clustering on these measurements to identify groups of
similar ensembles. That is, we might imagine there exists a small set of “prototype”
ensembles of which the actual recorded ensembles are noisy realisations.

We should note that this problem of unsupervised electrophysiological classification is
of very general interest in neuroscience – a well-known example being the efforts of corti-
cal electrophysiologists to automate categorisation of the broad range of interneurons and
pyramidal neurons (Cauli et al., 2000; Petilla Interneuron Nomenclature Group, 2008; De-
felipe et al., 2013). A particular challenge facing the use of large-scale recording technology
(Bartho et al., 2004; Fujisawa et al., 2008) is that we only have access to spike-trains, and
not other electrophysiological parameters that usefully distinguish neuron types.

Thus the challenge here is to use only measures of spike-train structure to define these
types, and find a combination of these measures’ values to uniquely define each type. The
key problem to solve is that each neuron’s spike-train potentially has a complex structure,
so we need a way to succinctly capture this structure without obscuring differences between
neurons, yet in a way that allows for unsupervised clustering.
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2.1 Spike-train measures for defining types

We defined types of neural ensembles based on the structural properties of their spike
trains in terms of the firing rate and firing regularity. The former gives us clues about
the excitability of the neuron, the latter gives us clues about the intrinsic dynamics of the
neuron; together they form a picture of how a neuron integrates its inputs into its output.
We refer to this throughout as the rate-regularity type of an ensemble.

For firing rate, we simply use the inter-spike interval (ISI), and calculate all ISIs for each
spike-train. Typically spike-train rates are summarised by the mean ISI or its reciprocal f
= 1/mean(ISI) spikes/s. However, the mean ISI is not broadly distributed for the neurons
in the pedal ganglion, and so is a poor indicator of differences in spike-train structure.

Many measures of spike-train regularity are available. The most common choice is
to use the coefficient of variation (CV) of the ISI: CV(ISI) = std(ISI)/mean(ISI). This
has the nice property that CV(ISI) = 1 for a Poisson point process, and so CV(ISI) <
1 indicates greater regularity and CV(ISI) > 1 indicates greater irregularity. However,
as it is measured from ISIs taken over the whole recording, it is sensitive to changes in
firing rate over the recording because the standard deviation of the ISIs will reflect those
changes.

To overcome this problem, we used the so-called CV2 (Holt et al., 1996), which is both
less sensitive to rate changes and allows for examination of the changes of irregularity over
time (Ponce-Alvarez et al., 2010; Wohrer et al., 2013). This is a local measure of regularity
between adjacent ISIs Ii and Ii+1:

CV2(i) =
2|Ii − Ii+1|
Ii + Ii+1

, (3)

which is the ratio of the twice the difference to the sum of those adjacent ISIs. Typically the
spike-train is then summarised by taking the mean C̄V 2 over all CV2(i) with i = 1 . . . n−1
for n ISIs. Again this has the nice property that C̄V 2 = 1 for a Poisson point process,
and so C̄V 2 < 1 indicates greater regularity and C̄V 2 > 1 indicates greater irregularity.
Moreover, we also have the option of examining the distribution of the CV2(i)s themselves,
which we use below.

2.2 Defining types by distributions of metrics

We computed the above measures for every spike-train in the data-set. Spike-train struc-
ture is difficult to summarise using simple aggregates of these measures. Our data-set
indeed showed clear problems with using simple aggregate measures to characterise neu-
rons: visual inspection showed that many neurons had bimodal distributions of ISIs and
of CV2(i)s (e.g. Figure 7 in the main text), and so mean rate (mean ISI) or mean reg-
ularity (C̄V 2) did not capture even the central peak of the data, let alone the shape of
the distribution. Consequently, we wished to use the complete distribution of ISIs and of
CV2(i)s to capture the complexity of each neuron’s spike-train structure.

To identify ensemble types we needed to also characterise their rate and regularity
properties. One option would be to use an aggregate over all neurons in the ensemble –
such as the mean firing rate – but given the problems with using such aggregate measures
for individual neurons, pooling them across multiple neurons would cause further issues in
capturing the structure of the ensembles’ spike-trains. We thus characterised each ensem-
ble by a single ISI and a single CV2(i) distribution created by pooling the distributions
for each neuron in the ensemble.
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2.3 Summarising distributions of spike-train metrics

To directly use these distributions of rate and regularity to characterise each ensemble’s
spike-train structure we must first quantitatively summarise them. We thus fit models
for a range of possible distributions (see below). However, this seems incompatible with
our ultimate goal of finding ensemble types by unsupervised clustering: first, for unsuper-
vised clustering each object must be defined by the same length N vector of properties;
for each ensemble that would be something like: [mean(rate), std(rate), mean(regularity),
std(regularity),...]. We then cluster in this N -dimensional space. But fitting a complete
distribution model would provide either different numbers of parameters or incomparable
parameters for each distribution, depending on the fitted model (for example, one free pa-
rameter for an exponential distribution versus two for a normal distribution; the mean and
standard deviation for the normal distribution versus the a,b parameters for the Gamma
distribution). Second, even if we arrange for each distribution to be characterised by the
same set of parameters, that leaves the problem of how to choose the right distribution
model(s).

2.4 Fit space

We introduce here the idea of “fit space” to solve both problems simultaneously: we fit
a range of m models to a distribution, and find for each model M the probability p(M)
that it is the best fitting of the m candidates. For that distribution we now have a length
m vector P (model) defining the relative fits of all the models – for example for m = 5 we
might have P (model) = [0, 0.1, 0, 0.7, 0.2]. By repeating for all distributions, we then
have every ensemble represented as a point in this m-dimensional space of “fits”. We can
then cluster to determine if there are distinct types of ensemble present in that space.

This approach has two particularly appealing properties. First, we can go on to include
other properties we wish to use to define “types” (for example, the mean phase of spiking
with respect to some global oscillation) by simply concatenating their measured values to
the length m vector and increasing the dimensions of the space. We can even concatenate
two or more fit-spaces, as we do in the main text for the rate and regularity vectors for
P (model). Second, amongst the m candidates we do not need to guess the correct model
for every single distribution in the data. The m-dimensional vector of probabilities can
also be interpreted as mixture weights for combining the candidate distributions to obtain
the true distribution. If a particular type of ensemble has a distribution of, say, ISIs
that is not in the m candidates, then it is likely that all ensembles of that type will have
approximately the same vector of probabilities giving the mixture of models closest to the
true distribution. Thus all ensembles of that “type” will still have points in approximately
the same region of fit space, and will still be found by the unsupervised clustering.

2.4.1 Choosing and fitting candidate models

Our choice of models was guided by the twin needs to broadly sample the range of possible
distributions (to allow a mixture interpretation to make sense) and to capture the evident
dominant distributions of ISIs and CV2(i)s in the data from visual inspection of a sample
of neurons. Our final set of m = 6 candidates were: (1) Normal (n = 2 parameters);
(2) Log-normal (n = 2); (3) Gamma (n = 2); (4) Uniform (n = 2); (5) Bimodal Normal
(n = 5); (6) Bimodal Gamma (n = 5). Note that both bimodal models include a mixture
parameter.

Two are particularly unusual. The uniform distribution was included because this is
the expected distribution of CV2(i)s for a Poisson process (as each possible pair of adjacent
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ISIs occurs with equal probability, so their ratios as expressed in CV2(i) must also occur
with equal probability). The bimodal distributions of ISIs and CV2(i)s visually observed
in the data often were not symmetric around the two modes, and thus a bivariate Gamma
model was included in an attempt to capture this asymmetry.

All models were fitted to each distribution using maximum likelihood estimation (MLE).
Models (1)-(4) have analytical MLE solutions for their parameters, and are also available
in MATLAB’s Statistics Toolbox. Models (5) and (6) do not have analytical MLE solu-
tions for their parameters, so we used numerical optimisation of their maximum-likelihood
fits to the distribution using MATLAB’s mle and fmincon functions. Examples fits are
shown in Figure 7 and Figure 8.

2.4.2 Calculating P (model)

For each distribution the fitting process gives us a vector of negative log-likelihoods L,
one per model. One option is to interpret the model with the lowest L as the best-fit to
the distribution. However, this does not take into account that the models have different
numbers of parameters, and we must always take care that a model with more parameters
is not simply over-fitting the data. Thus we choose some measure of model-selection
that computes the trade-off between the goodness-of-fit and the number of parameters.
A wide-range of model-selection approaches are available (see e.g. (Wasserman, 2004)).
Here we will use the Bayesian Information Criterion (BIC) as it tends to more heavily
penalise the number of parameters, and thus makes the selection of the bimodal models
(5-6) more convincing. But equally we could have used Akaike’s Information Criterion
(AIC) or others.

Given that L is the negative log-likelihood of model Mi, the BIC is

BIC(Mi) = 2L+ k ln(n) (4)

where k is the number of free parameters and n is the number of data-points in the
distribution. The model with the lowest BIC score is thus considered the best-fit in that it
best trades-off the goodness-of-fit (as measured by L) with the number of free parameters
(as given by the second term above). However, the absolute BIC values cannot tell us
whether that model is notably better than the next-best model: as these values scale
with the number of data-points n, so their differences might be small on the scale of the
BIC values. Instead, using the BIC values we can compute the approximate posterior
probability that each model is correct (Wasserman, 2004):

First for each model we compute the difference between its BIC value and the minimum
of the BIC values: ∆i = BIC(Mi)−minj∈m BIC(Mj).

Second, we compute the posterior probability that this model is correct by:

p(Mi) =
exp(−∆i/2)∑m
j=1 exp(−∆j/2)

. (5)

Thus we now have our fit-space vector: P (model) = [p(M1), p(M2), ..., p(Mm)] computed
for each of the m models applied to the distributions. We do this for the distribution of
ISIs and the distributions of CV2(i)s for each ensemble.

2.4.3 Finding “types” in the fit-space

Our overarching goal was to find properties of ensemble activity that uniquely define
“types”. This is another unsupervised clustering problem in an N -dimensional space: we
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take N metrics for spike-train structure, and n objects (here, ensembles) with scores for
each metric, and we ask if this n-dimensional data-set can be reduced to C clusters, where
each cluster is a defined “type”. In the main text we use a 12-dimensional vector, made
by concatenating the 6-dimensional P (model) vector for rate (ISI distribution) with the
6-dimensional P (model) vector for regularity (CV2(i) distribution).

We use our consensus community detection algorithm to also tackle this unsupervised
clustering problem. We construct a weighted network D for the entire dataset using the
Euclidean distance between the fit-space vectors for each pair of objects. Note that we
use Euclidean distance and not a correlation-type measure due to the likely small number
of non-zero entries in the vectors. We then convert this to a similarity matrix W by
Wij = exp(−D2

ij). This similarity matrix is then passed to the consensus community
detection algorithm. As noted in the main text, we constructed an ensemble-level network
for all 147 ensembles in the data-set.

2.5 Code

All MATLAB functions for creating and clustering in the “fit-space” are in the Supple-
mental Software. Each function has extensive help text within it; here we give an overview
of each function’s role. Ongoing development of this ensemble analysis and classification
toolbox is hosted at: https://github.com/mdhumphries/NeuralEnsembleAnalysis.

Main functions:

fitMLEdistribution Takes a distribution of some variable, and fits the specified models
to it using maximum likelihood; also computes the AIC and BIC scores for the
fits, and corresponding estimates of P (model); the latter specify position of that
distribution in the fit-space. This function calls:

bimodalGaussianPDF computes the PDF for a bimodal Gaussian model

bimodalGaussianCDF computes the cumulative distribution function (CDF) for
a bimodal Gaussian model

bimodalGammaPDF computes the PDF for a bimodal Gamma model

bimodalGammaCDF computes the CDF for a bimodal Gamma model

BICL Compute BIC scores from a set of (negative) log-likelihoods

AICL Compute AIC scores from a set of (negative) log-likelihoods

Akwgts Compute the approximate posterior probability P (model)

These functions are used by top-level scripts in the Supplemental Software:

Analyse Spike Train Properties computes statistical properties of each neuron’s and
ensemble’s spike-trains, and fits models to their distributions using fitMLEdistribu-
tion

Types of Ensemble Across Dataset Clusters in the fit-space. Computes the similar-
ity between each pair of ensembles, and uses the consensus community detection
algorithm to cluster ensembles in that space.
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Supplemental Procedure 3. Building maps of ensemble loca-
tions

The following outlines the construction process for the physical map of the neuron locations
and extent of each neural ensemble from each recording. The ultimate goals were to
understand: (1) how cohesive each functionally-identified ensemble was in physical space;
and (2) the tessellation of physical space by the ensembles.

3.1 Neuron location

We first had to establish the location of each neuron in the two-dimensional recording
plane. The starting point was the mixing matrix resulting from the Independent Compo-
nent Analysis (ICA) of the time-series recorded from the photo-diode array.

3.1.1 ICA output

The ICA analysis of the 464 recorded diodes gives the N sources (individual neuron time-
series) and a weight matrix W (the matrix inverse of the mixing matrix M i.e. W = M−1).
The weight matrix has N columns; the jth column of the weight matrix has 464 entries,
entry i being the contribution of that diode’s time-series to the jth neuron. Thus it is
possible to estimate the position of the neuron in two-dimensional space by the relative
weightings of each diode location.

The first step is to normalise each row of the weight matrix: the weights in each row
are proportional to the amplitude of the original diode’s time-series (i.e. small amplitudes
would lead to large weights and vice-versa). So each row needs to be on the same scale.
We thus normalised each row to the range (min:max) of the diode’s time-series.

3.1.2 Estimating (x,y) position

The diodes are arranged in an hexagonal pattern on a 50× 50 grid. To recover the (x, y)
position of a neuron on this grid, we proceed as follows:

1. Make a weight map Z: assign the weight of each diode’s contribution (from the
corresponding column of W) to its location on the grid.

2. Threshold the weight map: keep only weights greater than the mean+3 S.D.s of all
non-zero weights; all other weights are then set to zero (this removes all very small
weights that are simply noise; without this, very wide estimates of a neuron’s extent
are occasionally obtained).

3. Fit a two-dimensional Gaussian to estimate the neuron’s (x̄, ȳ) position and the
variance (σ2x, σ

2
y) in that estimate. For the x-position this is (similarly for the y-

position):

(a) let Sx with x = 1 . . . 50 be the sum of each column of Z (i.e. the total weight
of each possible x-location) [for Sy this is the sum of each row of Z]

(b) then p(x) = Sx/
∑50

x=1 Sx

(c) estimated x-location is then: x̄ =
∑50

x=1 xp(x)

(d) estimated variance σx =
∑50

x=1 p(x)[x− x̄]2

4. Evaluate Gaussian on a 500×500 grid (Figure P2A). This discretisation of the diode
array then forms the basis for all further processing.
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A B C

Figure P2: Estimated positions of neurons and ensembles. A Probability distribution for
the location of a neuron on the two-dimensional recording plane; colour-intensity is proportional
to P (location) according to the fitted two-dimensional Gaussian distribution. B Probability dis-
tribution for location of each neuron in an ensemble on the two-dimensional recording plane. The
white cross shows the estimated physical centre of the ensemble. C Location of the ensemble in
panel B within the pedal ganglion. Crosses plot the (x̄, ȳ) position of each neuron shown in panel
B on an image of the recorded pedal ganglion preparation.

We repeat the above to obtain the estimated (x̄, ȳ) position of every neuron in the
recording.

3.2 Ensemble cohesiveness

The consensus community-detection algorithm returns G ensembles in a recording, each
ensemble comprising neurons grouped by similar firing characteristics. For each ensemble,
we estimate its cohesiveness in physical space by measuring how far each neuron is from
the physical centre of the ensemble. We take the ensemble’s centre (xG, yG) as the average
of the (x̄, ȳ) positions of each neuron (Figure P2B-C).

For the n neurons in the ensemble, the cohesiveness measure is then: given di =
distance of neuron i from (xG, yG), cohesiveness C = Median ∀i (di).

This measure of cohesiveness (median distance from centre) deals more smoothly with
an irregularly-shaped physical distribution of neurons in an ensemble than other tested
options (e.g. distance of the neurons in an ensemble from each other).

To interpret the cohesiveness measure we need to test the significance of the cohesion
against a null model that the ensembles are not cohesive. We use a null model in which the
same number and size of ensembles are maintained, but ensemble membership is permuted
by selecting neurons with uniform random probability from across those recorded on the
two-dimensional plane. For each ensemble, we generate a P -value for cohesiveness by:

1. An ensemble of the same size is created by randomly selecting n neurons from the
data-set

2. A new centre (x∗G, y
∗
G) is computed for the randomly-assigned ensemble

3. From this, a cohesiveness measure C∗ is computed for the random ensemble

4. Steps 1-3 are repeated 1000 times to give C∗1 , C
∗
2 , . . . , C

∗
1000

5. P = [#Ci < C]/1000
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This P -value is then the probability that the ensemble would be that physically cohe-
sive by chance.

3.3 Physical extent of ensembles

We need to estimate the physical extent of each ensemble, in order to assess whether or
not ensembles correspond to discrete physical regions that do not overlap.

The problems to solve here are three-fold:

1. Missing data. Even if a fully discrete region corresponding to a neural ensemble
exists, we will not typically have recorded all neurons in that ensemble (due to a
combination of occluded neurons and small-bodied neurons producing smaller sig-
nals). Therefore, the distance between two neurons of the same ensemble is not
indicative of whether or not the ensemble is physically contiguous.

2. Irregularity. The physical shape of an ensemble is likely to not be simple, even if it
is a single discrete region. Given the small number of neurons in each ensemble, this
makes boundary-drawing a rather unconstrained problem

3. Noise. Even if we could record every neuron in a “true” ensemble, there will likely
be neurons assigned to wrong ensembles simply due to the size of the search space.
Consequently, the physical mapping needs to be robust to noise in the clustering.

We solved these problems using (discretised) Voronoi diagrams. These allow us to
identify possible contiguities between neurons spaced far apart, while also respecting the
irregular physical shape of the ensembles. Moreover, we can concentrate on the largest
single region identified as belonging to one ensemble to circumvent the noise problem.

Starting with the same 500×500 grid above, for each recording we proceeded as follows:

1. Neuron diagram: For each grid square within the diode array, assign that square to
the closest neuron (given each neuron’s (x̄, ȳ) position estimate). [Figure P3A]. We
solve this by brute force checking each viable grid square, i.e. all on the diode array.

2. Ensemble diagram: for each grid square on the neuron diagram, assign that square
the ID number of the ensemble to which that neuron belongs. [Figure P3B]. Again
we solve this by brute force checking of each viable grid square (all on the diode
array).

3. Find each patch of physical space belonging to each ensemble: a patch is defined as a
single contiguous region of space. We defined contiguous as any of the 8 surrounding
grid squares belonging to the same ensemble. We solve this using a breadth-first
search of adjacent squares.

We note that the above algorithm works equally well in three-dimensional tissue, based on
a cuboid divided into voxels, and defining contiguous as any of the 26 voxels surrounding
the current voxel.

Based on these identified patches, we defined a metric for physical discreteness as
“density-per-ensemble” D: the proportion of the ensemble’s neurons in the largest patch.
Thus, a D ≥ 50% means that at least half that ensemble’s neurons are physically contigu-
ous. For each recording, we summarised the discreteness of the map (D̃) by taking the
average of D over all ensembles.

While this metric is useful, it is also good to compare it against a null model for no
physical discreteness at the level of the whole map. For this null model we again assumed
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A
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D

Figure P3: Voronoi diagrams for estimating the physical extent of ensembles. A
Neuron-level Voronoi diagram. Each patch of the same colour is the grid region assigned to
one neuron; the black dots give the estimated (x̄, ȳ) position of each neuron. B Ensemble-level
Voronoi diagram. Each patch of the same colour is the grid region belonging to neurons in that
ensemble. This recording had 7 identified ensembles. All have one dominant patch of space.
C Example control diagram for the physical distribution of ensembles. Using the same number
and size ensembles, each neuron is randomly assigned to one of the ensembles. The resulting
physical distribution is more fragmented than the actual ganglion (panel B). D Visualisation of
the ensemble location maps using sparse Voronoi diagrams. As before, each patch of the same
colour is the grid region assigned to the same ensemble, but black indicates areas unclaimed by
any ensemble. Compare to panel B.
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a uniformly-random assignment of neurons to ensembles of the same size as those detected
by the community detection algorithm. This model thus tests for the likelihood that these
contiguous patches containing the clustered neurons arose by chance.

Due to the computational bottleneck of the breadth-first search in producing the patch
assignments, we cannot do thousands of permutations to produce accurate estimations
of P -values. Instead, we simply establish whether or not the metric is above the 95%
confidence interval by sampling. The procedure is:

1. Randomly assign neurons to the same size ensembles as in the original clustering of
the data-set

2. Construct a randomised ensemble diagram using that random assignment to ensem-
bles (Figure P3C).

3. Find all patches belonging to each randomised ensemble.

4. Compute D∗ for each randomised ensemble and D̃∗ = mean(D∗) for the whole
randomised map

5. Repeat steps 1-4 20 times. If the average discreteness D̃ for the recording is greater
than maximum value of D̃∗, then the functional ensembles are more discretely or-
ganised in physical space than expected by chance at the 95% confidence interval.

In Supplemental Figure 3A, we plot the ensemble-level discreteness in two histograms:
the blue histogram plots the distribution of D obtained over all ensembles in the database;
the grey histogram plots the distribution of D∗ obtained over all ensembles in all the
permuted maps of all recordings. In Supplemental Figure 3B, we plot the map-level
discreteness: the average D̃ of each data map as a red line, and the distribution of D̃∗

obtained over all the permutations of all maps in a histogram.

3.4 Visualisation and combination of maps

The above provides a general solution to the three problems of missing data, irregularity
(of ensembles’ physical shape), and noise. However, the plots of the Voronoi diagrams in
panels A and B of Figure P3 have the drawback that visually they imply coverage of the
entire diode array by the recording, whereas there is an uneven spread of neuron locations
in most recordings, often with few neurons recorded in the medial-rostral quadrant (“Sector
II” in Hening et al., 1979) of the ganglion, due to their small size. (Note that the claiming
of all grid squares by the Voronoi-based algorithm is nonetheless necessary for estimating
the physical contiguity of the ensembles). Moreover, when combining each individual
recording’s map to produce the dynamic maps (Figures 4 and 8 of the main text), the
assignment of grid squares far from any neuron may produce results biased in favour of
the most common types of neuron or ensemble encountered.

To avoid both this visual illusion and allow for unbiased combination of maps, we can
define a sparse type of Voronoi map: we proceed as above, but allow for the existence of
unclaimed grid squares on the diode array itself. A square is unclaimed if it is further
from its closest neuron than that neuron is from its closest neuron. In this way, areas of
the diode array with a low density of recorded cells will have many unclaimed regions.
Figure P3D shows that this “sparse” Voronoi map successfully conveys the lack of recorded
neurons in the most rostral portions of the ganglion, and successfully avoids colouring to
the edge of the diode array in all directions.
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3.5 Code

All MATLAB functions for creating and quantifying the Voronoi maps are in the Supple-
mental Software. Each function has extensive help text within it; here we give an overview
of each function’s role.

Main functions:

Voronoi grid Takes a set of points and discretised volume containing them (in any num-
ber of dimensions), and constructs the Voronoi diagram on that volume.

find contiguous patches Search algorithm for detecting contiguity between Voronoi
patches belonging to neurons in the same ensemble.

These functions are used by top-level scripts in the Supplemental Software:

Map topology using Voronoi Computes physical properties of each recording: the co-
hesiveness of its ensembles, their Voronoi diagrams, and their discreteness.
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Supplemental Text. Interpretation of functional modules and
physical locations

Here we discuss the further possible mappings of the identified types of ensemble to known
neuron types of the pedal ganglion, and to the locomotion motor program. The discussion
here is in reference to the four classes of ensemble defined by their oscillations (Figure 4
in the main text), and to the nine groups of ensemble defined by the rate and regularity
properties of their spike-trains (Figure 8 in the main text).

4.1 Tonically firing ensembles

One of our most intriguing observations was the existence of tonically firing neural ensem-
bles (the “non-oscillatory” class in Figure 4 and Groups 4 and 9 in Figure 8), groups of
neurons with correlated firing yet not correlated with the cycle of oscillations in the motor
program.

We consistently found Group 4 and 9 ensembles at the medial edge of the caudal-
medial quadrant, near the pedal commissure (sector IB and edge of 3c in map of (Hening
et al., 1979)). A population of neurons here likely use serotonin as a neurotransmitter
(McPherson and Blankenship, 1992; Marinesco et al., 2004). Some of these serotonergic
neurons are oscillatory during fictive locomotion (McPherson and Blankenship, 1992), and
thus were likely identified as Group 1 ensembles when recorded (note presence of ensembles
in this region of the Group 1 atlas). We thus suggest the possibility that these Group 4
and 9 neurons may be further populations of non-oscillatory serotonergic neurons.

4.2 Phasic Poisson ensembles

We found a unique type of ensemble (Group 7) that was correlated with the cycle of the
motor program but each cycle’s burst was a Poisson process, consisting of spikes produced
at random intervals. These ensembles were consistently located in the rostro-medial quad-
rant (Sector II of (Hening et al., 1979)) predominantly occupied by motorneurons, yet this
pattern of firing has not been previously reported in motorneurons (Hening et al., 1979;
Fredman and Jahan-Parwar, 1980). One possibility is that this ensemble is the sub-set
of serotonergic neurons with burst-like activity just above the pedal commissure observed
by (McPherson and Blankenship, 1992); however, in the closely related Aplysia brasil-
iana these serotonergic neurons have highly regular burst patterns during fictive motion
(McPherson and Blankenship, 1991).

A stronger possibility is that Group 7’s irregular, Poisson-like firing pattern implies
the afferent network to these neurons is in the so-called “balanced state”. Originally
observed for single-cell in vivo recordings in primate visual cortex, the existence of irreg-
ular, Poisson-like firing presented a challenge for standard models of how single neurons
integrate their input, as such models predict a regularising operation whereby summing
excitatory post-synaptic potentials caused by the input of irregular spike trains produces
a highly regular output spike-train (Softky and Koch, 1993). The leading explanation for
the irregular firing of a single neuron is a network effect in which each neuron receives an
approximately balanced input from many asynchronously firing excitatory and inhibitory
neurons (van Vreeswijk and Sompolinsky, 1996; Shadlen and Newsome, 1998; Salinas and
Sejnowski, 2000; Renart et al., 2010). Far from being restricted to cortex, evidence for such
a “balanced” asynchronous input state has been reported for burst-firing in turtle spinal
motorneurons during fictive movement (Berg et al., 2007). Consequently, it is possible
that our Group 7 ensembles represent a set of neurons driven by a balanced input regime
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during their burst activity – confirmation of this would represent, to our knowledge, the
first evidence that such a balanced regime exists at the ensemble level in an invertebrate
network, and thus that the balanced state is a general principle of operation for neural
circuits. Equally intriguing is why such a balanced input state exists only for this highly
specific group of neurons in the entire recorded portion of the ganglion.

4.3 Unknown types

We have observed a number of types which have no clear correlate with electrophysiological
signatures or physical locations of neuron classes reported in the literature, though it is
possible that within these ensemble types are included the rare GABAergic (Diaz-Rios
et al., 1999) and nitric oxide synthase (NOS) neurons (Moroz, 2006) within the ganglion.
These are:

• Group 2: smoothly oscillating ensembles (with a bimodal Gaussian distribution of
ISIs), found mainly in the rostro-lateral quadrant.

• Group 3: noisy bursting ensembles, in the centre of ganglion.

• Group 5: ensembles with a unimodal distribution of CV2, found in caudo-lateral
quadrant

• Group 6: sparsely firing single spikes, but unexpectedly modulated by ongoing oscil-
lation (bimodal Gamma distribution of ISIs). Located predominantly lateral of the
ganglion’s centre.

• Group 8: sparsely firing bursters, rostral of the ganglion’s centre. Their bimodal
distribution of CV2 implies regularly spaced spikes within bursts (first mode) with
long intervals between bursts (second mode).
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