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Abstract
We study a Bayesian inverse problem arising in the context of resin transfer 
molding (RTM), which is a process commonly used for the manufacturing 
of fiber-reinforced composite materials. The forward model is described by 
a moving boundary problem in a porous medium. During the injection of 
resin in RTM, our aim is to update, on the fly, our probabilistic knowledge 
of the permeability of the material as soon as pressure measurements and 
observations of the resin moving domain become available. A probabilistic 
on-the-fly characterisation of the material permeability via the inversion of 
those measurements/observations is crucial for optimal real-time control 
aimed at minimising both process duration and the risk of defects formation 
within RTM. We consider both one-dimensional (1D) and two-dimensional 
(2D) forward models for RTM. Based on the analytical solution for the 1D 
case, we prove existence of the sequence of posteriors that arise from a 
sequential Bayesian formulation within the infinite-dimensional framework. 
For the numerical characterisation of the Bayesian posteriors in the 1D 
case, we investigate the application of a fully-Bayesian sequential Monte 
Carlo method (SMC) for high-dimensional inverse problems. By means of 
SMC we construct a benchmark against which we compare performance of 
a novel regularizing ensemble Kalman algorithm (REnKA) that we propose 
to approximate the posteriors in a computationally efficient manner under 
practical scenarios. We investigate the robustness of the proposed REnKA 
with respect to tuneable parameters and computational cost. We demonstrate 
advantages of REnKA compared with SMC with a small number of particles. 
We further investigate, in both the 1D and 2D settings, practical aspects 
of REnKA relevant to RTM, which include the effect of pressure sensors 
configuration and the observational noise level in the uncertainty in the  
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log-permeability quantified via the sequence of Bayesian posteriors. The 
results of this work are also useful for other applications than RTM, which 
can be modelled by a random moving boundary problem.

Keywords: Bayesian inverse problems, moving boundary problems, 
Sequential Monte Carlo method, ensemble Kalman methods,  
resin transfer molding

S  Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper we study the Bayesian inverse problem within the moving boundary setting moti-
vated by applications in manufacturing of fiber-reinforced composite materials. Due to their 
light weight and high strength, as well as their flexibility to fit mechanical requirements and 
complex designs, such materials are playing a major role in automotive, marine and aerospace 
industries [3, 4, 27]. The moving boundary problem under consideration arises from resin 
transfer molding (RTM) process, one of the most commonly used processes for manufacturing 
composite materials. RTM consists of the injection of resin into a cavity mold with the shape 
of the intended composite part according to design and enclosing a reinforced-fiber preform 
previously fabricated. The next stage of RTM is curing of the resin-impregnated preform, 
which may start during or after the resin injection. Once curing has taken place, the solidified 
part is demolded from the cavity mold. In the present work we are concerned with the resin 
injection stage of RTM under the reasonable assumption that curing starts after resin has filled 
the preform. Though the current study is motivated by RTM, the results can be also used for 
other applications where a moving boundary problem is a suitable model.

We now describe the forward model (see further details in [3, 38, 47]). Let D∗ ⊂ Rd, 
d ∈ {1, 2}, be an open domain representing a physical domain of a porous medium with the per-
meability κ(x) and porosity ϕ. The boundary of the domain D∗ is ∂D∗ = ∂DI ∪ ∂DN ∪ ∂DO, 
where ∂DI is the inlet, ∂DN  is the perfectly sealed boundary, and ∂DO is the outlet. The domain 
D∗ is initially filled with air at a pressure p0. This medium is infused with a fluid (resin) with 
viscosity μ through an inlet boundary ∂DI at a pressure pI and moves through D∗ occupying 
a time-dependent domain D(t) ⊂ D∗, which is bounded by the moving boundary Υ(t) and the 
appropriate parts of ∂D. An example of the physical configuration of this problem in 2D is 
illustrated in figure 1.

The forward problem for the pressure of resin p(t, x) consists of the conservation of mass

∇ · v = 0, x ∈ D(t), t > 0, (1)

where the flux v(x, t) is given by Darcy’s law

v(x, t) = −κ(x)
µ

∇p(x, t) (2)

with the following initial and boundary conditions

p(x, t) = pI , x ∈ ∂DI , t � 0, (3)

∇p(x, t) · n(x) = 0, x ∈ ∂DN , t � 0, (4)
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V(x, t) = −κ(x)
µϕ

∇p(x, t) · n(x, t), x ∈ Υ(t), t � 0, (5)

p(x, t) = p0, x ∈ Υ(t), t > 0, (6)

p(x, t) = p0, x ∈ ∂DO, t > 0, (7)

p(x, 0) = p0, x ∈ D∗, (8)

Υ(0) = ∂DI . (9)

Here V(x, t) is the velocity of the point x on the moving boundary Υ(t) in the normal direction 
at x, n(x) and n(x, t) are the unit outer normals to the corresponding boundaries.

We remark that for definiteness we have assumed that at the initial time the moving bound-
ary Υ(0) coincides with the inlet boundary ∂DI and that the constant pressure condition is 
imposed at the inlet. It is not difficult to carry over the inverse problem methodology consid-
ered in this paper to other geometries and other conditions on the inlet (e.g. constant rate). 
Further, in two (three) dimensional RTM settings one usually models permeability via a sec-
ond (third)-order permeability tensor to take into account anisotropic structure of the media 
[3, 38] but here for simplicity of the exposition the permeability κ(x) is a scalar function. 
Again, the developed methodology is easy to generalize to the tensor case.

Let us note that in the 1D case the nonlinear problem (1)–(9) is analytically simple and 
admits a closed form solution (see section 2 and [38]) but the two and three dimensional cases 
are much more complicated and analytical solution is in general not available. We remark that 
in two and three dimensional cases the resin can race around low permeability regions and 
the front Υ can become discontinuous creating macroscopic voids behind the main front (see 
further details in [3, 38]) but in this paper we ignore such effects which deserve further study.

It has been extensively recognized [13, 14, 30, 31, 37, 42] that imperfections in a preform 
that arise during its fabrication and packing in the molding cavity can lead to variability in 
fiber placement which results in a heterogenous highly-uncertain preform permeability. In 
turn, these unknown heterogeneities in permeability of the preform give rise to inhomoge-
neous resin flow patterns which can have profound detrimental effect on the quality of the 

Figure 1. An example of the physical configuration of the moving boundary problem.
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produced part, reducing its mechanical properties and ultimately leading to scrap. To limit 
these undesirable effects arising due to uncertainties, conservative designs are used which 
lead to heavier, thicker and, consequently, more expensive materials aimed at avoiding per-
formance being compromised. Clearly, the uncertainty quantification of material properties 
is essential for making RTM more cost-effective. One of the key elements in tackling this 
problem is to be able to quantify, in real time, the uncertain permeability, which can, in turn, 
be used in active control systems aimed at reducing the risk of defects formation.

In this work we assume that D∗, ∂DO, ∂DI, ∂DN , pI, p0, μ and ϕ are known deterministic 
parameters while the permeability κ(x) is unknown. Our objective is within the Bayesian 
framework to infer κ(x) or, more precisely, its natural logarithm u(x) = log κ(x) from meas-
urements of pressure p(x, t) at some sensor locations as well as measurements of the front 
Υ(t), or alternatively, of the time-dependent domain D(t) at a given time t  >  0. We put special 
emphasis on computational efficiency of the inference, which is crucial from the applicable 
point of view.

1.1. Practical approaches for permeability estimation in fiber-reinforced composites

While the estimation of preform permeability during resin injection in RTM is clearly an 
inverse problem constrained by a moving boundary PDE such as (1)–(9), most existing prac-
tical approaches pose the estimation of permeability in neither a deterministic nor stochas-
tic inverse problems framework. For example, the very extensive review published in 2010 
[41] reveals that most conventional methods for measuring permeability assume that (i) the 
material permeability tensor is homogenous and (ii) the flow is 1D (including 2D radial flow 
configurations). Under these assumptions the resin injection in RTM can be described ana-
lytically, via expressions derived from Darcy’s law, which enable a direct computation of 
the permeability in terms of quantities that can be measured before or during resin injection. 
These conventional methods suffer from two substantial practical limitations. First, they do 
not account for the heterogenous structure of the preform permeability, and although they 
provide an estimate of an effective permeability, this does not enable the prediction of the 
potential formation of voids and dry spots. Second, those conventional methods compute the 
permeability in an off-line fashion (i.e. before RTM) with specific mold designs that sat-
isfy the aforementioned assumptions intrinsic to those methods (e.g. rectangular flat molds). 
This second limitation is not only detrimental to the operational efficiency of RTM but also 
neglects the potential changes in permeability that can results from encapsulating the preform 
in cavities with complex designs.

Some practical methodologies for online (i.e. during resin injection) estimation of heterog-
enous permeability have been proposed in [36, 49]. While these approaches seem to address 
the aforementioned limitations of conventional methods, they also use a direct approach for 
the estimation of permeability which faces unresolved challenges. As an example, let us con-
sider the recent work of [49] which uses an experimental configuration similar to the one 
described in figure 1 and which, by using pressure measurements from sensors located within 
the domain occupied by the preform, computes a finite-difference approximation of the nor-
mal flux to the front ∇p(Υ(t), t) · n. In addition, by means of images from CCT cameras, 
seepage velocity of the resin front is computed in [49]; this velocity is nothing but V(x, t) 
defined by (5) in the context of the moving boundary problem (1)–(9). Under the assumption 
that μ and ϕ are known, the approach proposed in [49] consists of finding

κ(Υ(t)) = argmin
θ

∥∥∥V(x, t) +
θ

ϕµ
∇p(Υ(t), t) · n

∥∥∥ (10)

M Iglesias et alInverse Problems 34 (2018) 105002
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with V(x, t) and ∇p(Υ(t), t) · n computed from measurements as described above. This 
approach offers a practical technique to estimating κ on the moving front and can then poten-
tially infer the whole permeability field during the resin injection in RTM. However, from the 
mathematical inverse problems perspective, this ad-hoc approach is not recommended as it 
involves differentiating observations of pressure data for the computation of ∇p(Υ(t), t) · n. 
Indeed, it is well-known [23] that differentiation of data is an ill-posed problem that requires 
regularization. In addition, rather than an inverse problem, the least-squares formulation in 
(10) is a data fitting exercise that excludes the underlying constraint given by the moving 
boundary problem and which entails a global effect induced by κ. As a result, the estimate of 
permeability obtained via (10) has no spatial correlation and thus fails to provide an accurate 
global estimate of the permeability field.

The recent work of [29] demonstrates considerable advantages of using systematic data 
assimilation approaches to infer permeability during the resin injection of RTM. By means 
of a standard ensemble Kalman methodology for data assimilation, the approach of [29] uses 
measurements from visual observations of the front location to produce updates of the pre-
form permeability within the context of a discrete approximation of the moving boundary 
problem (1)–(9). While the methodology used in [29] is focused in producing deterministic 
estimates, the standard Kalman methodology can be potentially used to quantify uncertainty 
in preform permeability. However, it has been shown that standard Kalman methodologies, 
such as the one used in [29], could result in unstable estimates unless further regularisation to 
the algorithm is applied [18].

In addition to the lack of an inverse problem framework that can lead to unstable and 
ultimately inaccurate estimates of the permeability in resin injection of RTM, most existing 
approaches (i) do not incorporate the uncertainty in the observed variables and (ii) do not 
quantify uncertainty in the estimates of the permeability of preform. It is indeed clear from our 
literature review that the estimation of permeability of preform during resin injection deserves 
substantial attention from an inverse problems perspective capable of quantifying uncertainty 
inherent to the fabrication and packing of the preform.

1.2. The Bayesian approach to inverse problems

In this paper we propose the application of the Bayesian approach to inverse problems [46] 
in order to infer the logarithm of the permeability u(x) = log κ(x), from observations {yn}N

n=1 
collected at some prescribed measurement/observation times {tn}N

n=1 during the resin injec-
tion in RTM. At each time tn we observe a vector, yn, that contains noisy measurements of 
resin pressure from sensors as well as some information of the moving domain (or alterna-
tively front location) observed, for example, via CCT cameras or dielectric sensors [32]. In the 
Bayesian approach, the unknown u(x) is a random function that belongs to a space of inputs X. 
A prior probability measure µ0(u) = P(u) on u must be specified before the data are collected; 
this enables us to incorporate prior knowledge which may include design parameters as well 
as the uncertainty that arises from preform fabrication (i.e. prior to resin injection). In our 
work we consider Gaussian priors which have been identified as adequate for characterizing 
the aforementioned uncertainty in log-permeability from the preform fabrication [30, 31, 50] 
(see also references therein).

At each observation time tn during the infusion of resin in RTM, we then pose the inverse 
problem in terms of computing, µn(u) = P(u|y1, . . . , yn), the (posterior) probability meas-
ure of the log-permeability conditioned on measurements y1 . . . , yn. Each posterior µn then 
provides a rigorous quantification of the uncertainty in the log-permeability field given all 
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available measurements up to the time tn. Knowledge of each of these posteriors during RTM 
can then be used to compute statistical moments of the log-permeability under µn (e.g. mean, 
variance) as well as expectations of quantities of interest that may be needed for the real-time 
optimization of controls (e.g. pressure injection) in RTM.

Although the proposed application of the Bayesian formulation assumes Gaussian priors, 
the nonlinear structure of the PDE problem, that describes resin injection in RTM, gives rise 
to a sequence of non-Gaussian Bayesian posteriors {µn}N

n=1 which cannot be characterized 
in a closed form. A sampling approach is then required to compute approximations of these 
posteriors. Among existing sampling methodologies, Sequential Monte Carlo (SMC) samplers  
[1, 8, 22, 34] are particularly relevant for the formulation of the above described inverse prob-
lem as they provide a recursive mechanism to approximate the sequence of Bayesian posteriors 
{µn}N

n=1. Markov Chain Monte Carlo (MCMC) approaches [9] can also be used to compute 
µn, at each observation time tn. However, conventional MCMC formulations do not exploit the 
sequential nature of the problem by enabling a recursive estimation of {µn}N

n=1 which is crucial 
for the optimisation of the RTM process via making use of active control systems.

Starting with J samples from the prior u( j)
0 ∼ µ0, j = 1, . . . , J  (i.i.d.), the idea behind SMC 

is to transform a system of weighted particles {W( j)
n−1, u( j)

n−1}J
j=1 that define µJ

n−1 to an updated 

set {W( j)
n , u( j)

n }J
j=1 that approximates µn as the new data yn collected at time tn become avail-

able. The weights {W( j)
n }J

j=1 are normalised (i.e. 
∑J

j=1 W( j)
n = 1, W( j)

n > 0) and the empirical 

measure

µJ
n(u) ≡

J∑
j=1

W( j)
n δu( j)

n
(u) (11)

converges to µn as J → ∞ (δw denotes the Dirac measure concentrated at w). Moreover, if 
f (u) denotes a quantity of interest of the unknown log-permeability u(x), the weighted par-

ticles {W( j)
n , u( j)

n }J
j=1 can be easily used to compute the sample mean

EµJ
n( f (u)) ≡

∫

X
f (u)µJ

n(du) =
J∑

j=1

W( j)
n f (u( j)), (12)

which converges (see for example [34]) to the expectation (under µn) of the quantity of inter-
est Eµn( f (u)).

The recursive computation of the weighted particles in SMC is suitable for the proposed 
application in RTM as it allows us to update, potentially in real time, our knowledge of the 
uncertainty in the log-permeability. However, producing accurate approximations of the 
Bayesian posteriors {µn}J

n=1 in the context of the inference of preform log-permeability in 
RTM represents a substantial computational challenge that arises from the fact that these pos-
terior measures are defined on a (infinite-dimensional) functional space. Upon discretization, 
these posteriors could be potentially defined on a very high-dimensional space. Unfortunately, 
it has been shown [5, 9] that standard Bayesian sampling methodologies such as standard 
SMC do not scale well with the dimension of the (discretized) unknown; this leads to unstable 
and ultimately inaccurate algorithms.

The recent works [9, 22] developed scalable (dimension independent) sampling algorithms 
for the approximation of the Bayesian posterior that arises from high-dimensional inverse 
problems. While these algorithms have a solid theoretical background that ensures their sta-
bility and convergence properties, achieving a desirable level of accuracy often comes at 
extremely high computational cost. More specifically, Bayesian methodologies, that provide 
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approximation of the form (11) and that converge asymptotically to the underlying posterior 
measure µn, often involve solving the forward model thousands or even millions of times. In 
the context of the inverse problem for RTM, the numerical solution of the moving bound-
ary (forward) problem in 2D or 3D settings is computationally very intensive. Therefore, the 
sequential approximation of the Bayesian posteriors of preform’s log-permeability must be 
conducted with scalable computational efficiency so that it can be realistically used within a 
near real-time optimization loop for RTM. In the proposed work we develop a computational 
inverse framework that possess such computational efficiency with the ultimate aim of the 
real-time uncertainty quantification of the reinforced preform’s log-permeability.

1.3. Contributions of this work

The contributions of this article are the following:

 (A)  A Bayesian formulation of the inverse problem to infer log-permeability from sequential 
data collected during resin injection in RTM. Both the 2D forward model described by 
(1)–(9) as well as the corresponding 1D version are considered. For the 1D case, we 
show that application of the infinite-dimensional Bayesian framework of [46] leads to 
well-posedness of the sequence of Bayesian posteriors.

 (B)  Application of a state-of-the-art SMC framework [22] for the approximation of the 
sequence of Bayesian posteriors {µn}J

n=1 that arises from the Bayesian formulation. Our 
use of SMC serves two purposes. First, the SMC framework motivates construction of 
a novel regularizing ensemble Kalman algorithm (REnKA) that aims at approximating 
this sequence of posteriors in a computationally efficient manner, thus suitable for its 
implementation in a practical setting of RTM. Second, we use a Benchmark obtained by 
SMC application in order to test accuracy of REnKA.

 (C)  Numerical investigation of the accuracy and robustness of the proposed REnKA scheme 
in the 1D case; this involves constructing, via the SMC sampler of [22], accurate 
approximations of the posteriors that we use as Benchmark against which we compare the 
proposed REnKA. The advantages of REnKA in terms of accuracy versus computational 
cost are showcased by comparing it with the implementation of a low-resolution SMC 
whose computational cost is comparable to REnKA’s.

 (D)  Application of REnKA for further investigations of the Bayesian inverse problem in both 
1D and 2D. In particular for the 1D case we conduct a numerical investigation of the 
added value of assimilating the front location relative to the number of pressure sen-
sors. Since the number of pressure sensors that can be physically deployed for preform 
permeability monitoring in RTM is usually limited, this investigation aims at providing 
practitioners with guidelines for the number of sensors that can accurately infer preform 
permeability alongside with its uncertainty. In addition, for the 1D case we study the 
effect of the frequency of the observations, as well as the observational noise level on the 
inference of the log-permeability. We further apply REnKA to the 2D forward model and, 
analogous to the 1D case, we study the effect that the number of pressure sensors have on 
the inferred log-permeability.

The rest of the paper is organized as follows. In section 2 we introduce the Bayesian inverse 
problem of inferring the permeability of a porous media in a 1D moving boundary problem for 
resin injection in RTM. In section 3 we discuss and apply SMC to approximate the Bayesian 
posteriors that arise from the Bayesian approach. In section 4 we introduce REnKA and then 
conduct, via numerical experiments with the 1D RTM model, a numerical investigation of its 
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approximation properties relative to its computational cost. In section S1 of the supplemen-
tary material (stacks.iop.org/IP/34/105002/mmedia) SupMat we further investigate relevant 
practical aspects of the inverse problem in 1D including the study of the effect of the number 
of pressure sensors as well as the noise level on accuracy of the inferred log-permeability 
and its uncertainty. In section 5 we demonstrate the applicability of REnKA to approximate 
the Bayesian inverse problem in the 2D RTM model described earlier. Some conclusions are 
presented in section 6.

2. Bayesian inversion of a 1D RTM model

In this section we apply the Bayesian approach to infer log-permeability in the context of the 
1D version of the forward problem defined in (1)–(9). The corresponding 1D moving bound-
ary problem induces a sequence of forward maps that we define in section 2.1 and that we 
aim at inverting with the Bayesian formalism that we introduce in section 2.2. This sequence 
of 1D forward maps admits a closed-form solution that can be numerically approximated 
at a very low computational cost. This will enable us in section 3 to obtain accurate numer-
ical approximations of the solution to the Bayesian inverse problem; we use these accurate 
approximations as a benchmark for assessing the approximation properties of the ensemble 
Kalman algorithm that we introduce in section 4.

2.1. The forward 1D RTM model

Let us consider a 1D porous media with physical domain D∗ ≡ [0, x∗] ⊂ R. As before, we 
denote by κ(x) (x ∈ D∗) and ϕ > 0 the permeability and porosity of the porous medium, 
respectively. Resin with viscosity μ is injected at x  =  0 at a pressure pI. The pressure at the 
moving front (outlet) Υ(t) is prescribed and equal to p0. The initial pressure distribution 
before injection is also set to p0. For convenience of the subsequent analysis, we parameterize 
the permeability in terms of its natural logarithm u(x) ≡ log κ(x). The pressure p(x, t) and the 
moving front Υ(t) are given by the solution to the following model

d
dx

[
1
µ

eu(x) d
dx

p(x, t)

]
= 0, x ∈ (0,Υ(t)), t > 0, (13)

p(x, 0) = p0, x ∈ (0, x∗], (14)

p(0, t) = pI , t � 0, (15)

d
dt
Υ(t) +

1
ϕµ

eu(Υ(t)) d
dx

p(Υ(t), t) = 0, t > 0, Υ(0) = 0, (16)

p(Υ(t), t) = p0, t > 0. (17)

The solution to (13)–(17) can be obtained analytically by the following proposition (see [3, 
38, 47]).

Proposition 2.1. Given u ∈ X ≡ C[0, x∗], let us define

Fu(x) :=
∫ x

0
e−u(z)dz, and Wu(x) :=

∫ x

0
Fu(ξ)dξ. (18)

M Iglesias et alInverse Problems 34 (2018) 105002
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The unique solution Υ(t), p(x, t) of (13)–(17) is given for t � 0 by

Υ(t) = W−1
u

(
( pI − p0)

t
µϕ

)
, (19)

p(x, t) =

{
pI − ( pI − p0)

Fu(x)
Fu(Υ(t)) , x ∈ D(t) ≡ (0,Υ(t)),

p0, x ∈ D∗ \ D(t).
 (20)

The quantity of interest arising from the RTM injection model is the so-called filling time: 
the time it takes the front Υ(t) to reach the right boundary of the domain of interest [0, x∗]. 
Filling time, denoted by τ∗, is defined by Υ(τ∗) = x∗. From (19) and the definition in (18) it 
follows [38] that τ∗ is given by

τ∗ =
µϕ

( pI − p0)

∫ x∗

0
Fu(ξ)dξ. (21)

Note that the parameters p0 and pI are prescribed control variables and thus known. In 
addition, we assume that μ and ϕ are known constants. As stated earlier, we are interested 
in the inverse problem of estimating the permeability, or more precisely its natural logarithm 
u(x) = log κ(x) given time-discrete measurements of the front location as well as the pressure 
from M sensors located at {xm}M

m=1 ⊂ [0, x∗]. We denote by {tn}N
n=1 the set of N observation 

times. For fixed (assumed known) parameters pI, p0, ϕ and μ, the solution to the PDE model 
(13)–(17) induces the nth forward map Gn : C[0, x∗] → RM+1 defined by

Gn(u) ≡
[
GΥ

n (u),G p
n (u)

]T
=

[
Υ(tn ∧ τ∗),

{
p(xm, tn ∧ τ∗)

}M

m=1

]T
. (22)

Given u(x) = log κ(x) ∈ X , the evaluation of the forward map Gn(u) predicts the location of 
the front and the pressure at the sensor locations at the time t  =  tn. Since observation times are 
prescribed before the experiment, there is no assurance that for a given u, the corre sponding 
filling time satisfies tn � τ∗ for all n = 1, . . . , N . In other words, the front could reach the 
right end of the domain before we observe it at time tn. In a real experimental setting, the 
process stops at time τ∗. However, in the inverse problem of interest here, observation times 
are selected beforehand, and the search of optimal u’s within the Bayesian calibration of the 
nth forward map can lead to filling times greater than some observation times. In this case 
(tn > τ∗), the definition (22) yields Gn(u) = [Υ(τ∗), { p(xm, τ∗)}M

m=1]
T .

The following theorem ensures the continuity of the forward map, which is necessary for 
justifying the application of the Bayesian framework in section 2.2.2.

Theorem 2.2. The forward map Gn : C[0, x∗] → RM+1 is continuous.

For the proof of this theorem, see appendix A.
In the following subsection we apply the Bayesian framework for inverse problems in order 

to invert observations of Gn(u).

Remark 2.3. We note that for the present work the porosity ϕ is an assumed known con-
stant; our objective is to infer the log-permeability u(x) = log κ(x). However, the Bayesi-
an methodology that we apply can be extended to the case where the unknown is not only 
log κ(x) but also ϕ, and can include the case where ϕ = ϕ(x) is a spatial function defined on 
the physical domain D∗.
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2.2. The Bayesian inverse problem

Suppose that, at each observation time t  =  tn, we collect noisy measurements of the front 
location as well as pressure measurements from sensors. We denoted these measurement by 
yΥn ∈ R+ and y p

n ∈ RM , respectively. Our aim is to solve the inverse problem of estimating 
the log permeability u(x) = log κ(x) given all the data y p

1 , yΥ1 , . . . , y p
n , yΥn  up to time t  =  tn. We 

assume that the aforementioned observations are related to the unknown u(x), via the forward 
map (22), in terms of

y p
n = G p

n (u) + η p
n , (23)

yΥn = GΥ
n (u) + ηΥn , (24)

where ηΥn  and η p
n  are realizations of Gaussian noise with zero mean and covariance ΓΥ

n  and 
Γ p

n , respectively, i.e. ηΥn ∼ N(0,ΓΥ
n ) and η p

n ∼ N(0,Γ p
n ) (i.i.d.). For simplicity we assume that 

both measurements of the front location and pressures are uncorrelated in time. We addition-
ally assume that ηΥn  and η p

n  are uncorrelated for all n = 1, . . . , N .
Note that (23) and (24) can be written as

yn = Gn(u) + ηn, ηn ∼ N(0,Γn), (25)

with

yn ≡
[

yΥn
y p

n

]
, ηn ≡

[
ηΥn
η p

n

]
, Γn ≡

[
ΓΥ

n 0
0 Γ p

n

]
. (26)

Remark 2.4. Due to the nature of the RTM problem, we have that the pressure p(xm,t) at 
each sensor xm should increase with time as well as the fact that GΥ

n+1(u) � GΥ
n (u). However, 

the Gaussian noise in (23) and (24) can make the observations y p
n  and yΥn  ‘unphysical’. In 

practice, observations need to be post-processed before using them for the Bayesian inverse 
problem and unphysical y p

n , yΥn  should be excluded. We leave the question of how to incorpo-
rate such a post-processing framework for future study. Here we follow the traditional point 
of view on data modeled via (23) and (24) and choose sufficiently small ΓΥ

n  and Γ p
n  so that the 

probability of y p
n , yΥn  being unphysical is very low.

We adopt the Bayesian framework for inverse problems where the unknown u(x) = log κ(x) 
is a random field and our objective is to characterize the sequence of distributions of u condi-
tioned on the observations which we express as u|y1, . . . , yn. In other words, at each observa-
tion time t  =  tn we aim at computing the Bayesian posterior µn(u) = P(u|y1, . . . , yn). From 
this distribution we can obtain point estimates of the unknown that can be used in real time to, 
for example, modify controls (e.g. pI). More importantly, as we stated in the Introduction, the 
aforementioned distribution enables us to quantify uncertainty not only of the unknown but 
also of quantities of interest that may be relevant to an optimization of resin injection in RTM.

Even though for the illustrative purposes the model presented in this section is discretized 
on a relatively low dimensional space (e.g. 60 cells), our aim is to introduce a general compu-
tational framework independent of the size of the discretized domain. We therefore consider 
an infinite-dimensional formulation of the Bayesian inverse problem for which the unknown 
u belongs to a functional space X. The discretization of the Bayesian inverse problem will be 
conducted at the last stage of the computational algorithm, when the posteriors are sampled/
approximated. Thus, we are aiming at robust mesh-invariant computational algorithms.
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2.2.1. The prior. For the Bayesian approach that we adopt in this work, we require to specify 
a prior distribution µ0(u) = P(u) of the unknown, before the data are collected. This distribu-
tion comprises all our prior knowledge of the unknown and may include, for example, the 
regularity of the space of admissible solutions to the inverse problem. For the present work we 
consider Gaussian priors which have been used to characterize the uncertainty in the (log) per-
meability that arises from the preform fabrication [30, 31, 50] (see also references therein). In 
particular, here we consider stationary Gaussian priors µ0 = N(u, C) with covariance operator 
C that arises from the Wittle–Matern correlation function defined by [25, 28, 39, 43]:

c(x, y) = σ2
0

21−ν

Γ(ν)

(
|x − y|

l

)ν

Kν

(
|x − y|

l

)
, (27)

where Γ is the gamma function, l is the characteristic length scale, σ2
0  is an amplitude scale 

and Kν is the modified Bessel function of the second kind of order ν. The parameter ν controls 
the regularity of the samples. It can be shown [11, 43] that, for any ν > 0, if u ∼ µ0, then 
u ∈ C[0, x∗] almost-surely, i.e. µ0([0, x∗]) = 1. This requirement, together with the continuity 
of the forward map ensures the well-posedness of the Bayesian inverse problems as we dis-
cuss in the next subsection. In the context of composite preform’s permeability, it is natural to 
choose the mean u  according to the log-permeability intended by the design of the composite 
part [38].

For computational purposes we use the prior to parametrize the unknown u in terms of its 
Karhunen–Loeve (KL) expansion [2]:

u(x) = u(x) +
∞∑

k=1

λ
1/2
k vk(x)uk (28)

with coefficients uk and where λk  and vk  are the eigenvectors and eigenfunctions of C, respec-
tively. A random draw from the prior u ∼ N(u, C) can then be obtained from (28) with drawing 
uk ∼ N(0, 1) i.i.d.

2.2.2. The posterior. From (25) and our Gaussian assumptions on the observational noise, it 
follows that for a fixed u ∈ X, we have yn = Gn(u) + ηn ∼ N(Gn(u),Γn). Therefore, the likeli-
hood of yn|u is given by

ln(u, yn) ∝ exp
[
− 1

2
||Γ−1/2

n (yn − Gn(u))||2
]
. (29)

At a given time t  =  tn, the Bayesian posterior µn(u) = P(u|y1, y2, . . . , yn) is defined by the fol-
lowing infinite-dimensional version of Bayes’s rule.

Theorem 2.5 (Bayes theorem [46]). Let {Gs}N
s=1 be the sequence of forward maps defined 

by (22) and let {ls(u; ys)}N
s=1 be the corresponding likelihood functions (29). Let µ0 = N(u, C) 

be the prior distribution with correlation function (27). Then, for each n ∈ {1, . . . , N}, the 
conditional distribution of u|y1, · · · , yn, denoted by µn, exists. Moreover, µn � µ0 with the 
Radon–Nikodym derivative

dµn

dµ0
(u) =

1
Zn

n∏
s=1

ls(u, ys), (30)
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where

Zn =

∫

X

n∏
s=1

ls(u, ys)µ0(u)du > 0. (31)

Proof. The proof follows from the application of theorem 6.31 in [46] and the continuity of 
the forward maps (theorem 2.2) on a full µ0-measure set X. □ 

Note that from our assumption of independence of η1, . . . , ηn, the right hand side of (30) is 
the likelihood of y1, . . . , yn|u.

Remark 2.6. Due to the assumption of independence between front location and pressure 
measurements, the likelihood (29) can be expressed as

ln(u, yn) ∝ l p
n (u, y p

n )l
Υ
n (u, yΥn ), (32)

where

lβn (u, yβn ) ∝ exp
[
− 1

2
||[Γβ

n ]
−1/2(yβn − Gβ

n (u))||2
]
, β ∈ { p,Υ}. (33)

This enables us to define two particular cases of the inverse problem. The first case corre-
sponds to the assimilation of only pressure measurements y p

n , while in the second case only 
front location measurements yΥn  are assimilated. Similar arguments to those that led to theo-
rem 2.5 can be applied (with lβs (u, yβn ) instead of ls(u, yn)) to define the Bayesian posteriors µ p

n  
and µΥ

n  associated to these two Bayesian inverse problems. In section S1 of the supplementary 
material SupMat we study these two particular cases with an eye towards understanding the 
added value of assimilating observations of the front location with respect to assimilating only 
pressure measurements.

3. Approximating the posteriors via sequential Monte Carlo method

In the previous section we have established the well-posedness of the Bayesian inverse problem 
associated to inferring the log-permeability in the 1D moving boundary problem (13)–(17). 
The solution of this inverse problem is the sequence of posterior measures {µn}N

n=1 defined by 
theorem 2.5. As we discussed in section 1, these posteriors cannot be expressed analytically 
and so a sampling approach is then required to compute the corresponding approx imations. 
As stated earlier, the sampling of each posterior µn (n = 1, . . . , N ) can be performed indepen-
dently by, for example, Markov chain Monte Carlo (MCMC) methods. However, we reiter-
ate that, for the present application SMC samplers are rather convenient as they exploit the 
sequential nature of the considered inverse problem by enabling a recursive approximation 
of the posterior measures as new data (in time) become available. Such recursive approx-
imations of the posterior could enable practitioners to update their probabilistic knowledge 
of preform’s log-permeability which is, in turn, essential to develop real-time optimal control 
strategies for RTM under the presence of uncertainty.

Recognizing that the inverse problem under consideration involves inferring a function 
potentially discretized on a very fine grid, it is vital to consider the application of SMC sam-
plers such as the one introduced in [22], carefully designed for approximating measures 
defined on a high-dimensional space. In this section we review and apply this scheme for the 
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approximation of the Bayesian posteriors {µn}N
n=1 that we defined in the previous section. The 

aims of this section are to (i) provide a deeper quantitative understanding of the accuracy of 
the fully-Bayesian methodology of [22] with respect to its computational cost under practical 
computational conditions; (ii) provide a motivation for the proposed REnKA that we propose 
from this SMC sampler in section  4; and (iii) define accurate approximations of {µn}N

n=1 
which we use as a benchmark for testing our REnKA scheme.

In section 3.1 we briefly discuss the essence of the standard SMC that we then use in sec-
tions 3.2–3.3 to review methodological aspects of the adaptive-tempering SMC sampler for 
high-dimensional inverse problems of [22]. We then apply this SMC in section 3.4 for the 
solution of the Bayesian inverse problem in the 1D case defined in the previous section. In 
section 3.5 we assess practical limitations of the SMC.

3.1. Standard SMC for Bayesian inference

As we discussed in the Introduction, starting with the prior µ0, the objective of SMC is to 
recursively compute an approximation of the sequence of Bayesian posteriors {µn}N

n=1 in 
terms of weighted particles. More specifically, assume that at the observation time tn, we have 

a set of J particles {u( j)
n−1}J

j=1 with, for simplicity, equal weights (W( j)
n = 1/J , j = 1, . . . , J), 

which provides the following particle approximation of µn−1(u) = P(u|y1, . . . , yn−1):

µJ
n−1(u) ≡

1
J

J∑
j=1

δu( j)
n−1

(u) ≈ µn−1(u). (34)

The objective now is to construct a particle approximation of µn(u) = P(u|y1, . . . , yn), which 
includes the new data yn collected at time tn. In a standard SMC framework [8, 10, 33], this 
particle approximation is constructed by means of an importance sampling step with proposal 
distribution µn−1. To illustrate this methodology, let us first note formally that

Eµn( f (u)) ≡
∫

X
f (u)µn(du) =

Zn−1

Zn

∫

X
f (u)ln(u, yn)µn−1(du)

=
[ ∫

X
ln(u, yn)µn−1(du)

]−1
∫

X
f (u)ln(u, yn)µn−1(du),

 (35)

where we have used

dµn

dµn−1
(u) =

Zn−1

Zn
ln(u, yn) and

Zn

Zn−1
=

∫

X
ln(u, yn)µn−1(du), (36)

which can be obtained directly from theorem 2.5. An approximation of (35) can be obtained 
by

EµJ
n( f (u)) = c−1

n

J∑
j=1

f (u( j))ln(u( j), yn) =

J∑
j=1

W( j)
n f (u( j)), (37)

where

W( j)
n ≡ c−1

n ln(u( j)
n , yn), cn ≡

J∑
j=1

ln(u
( j)
n−1, yn). (38)
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From (37) we see that the importance (normalized) weights W( j)
n  assigned to each particle 

u( j)
n−1 define the following empirical (particle) approximation of µn:

µJ
n(u) ≡

J∑
j=1

W( j)
n δu( j)

n−1
(u). (39)

However, the accuracy of such empirical approximation relies on µn−1 being sufficiently close 
to µn; when this is not the case, after a few iterations (observation times) the algorithm may 
produce only a few particles with nonzero weights. This is a well-known issue of weight 
degeneracy that often arises from the application of empirical (importance sampling) approx-
imations within the context SMC samplers [5]. Weight degeneracy is routinely measured in 
terms of the effective sample size (ESS) statistic [24]:

ESS ≡

[
J∑

j=1

(W( j)
n )2

]−1

, (40)

which takes a value between 1 and J; ESS = J  when all weights are equal and ESS = 1 when 
the distribution is concentrated at one single particle. A common approach to alleviate weight 
degeneracy is, for example, to specify a threshold for the ESS below which resampling (often 

multinomially) according to the weights {W( j)
n }J

j=1 is performed. Resampling discards par-

ticles with low weights by replacing them with several copies of particles with higher weights. 
The approximation of a sequence of measures via the combination of the importance sampling 
step followed with resampling leads to the sequential importance resampling (SIR) scheme 
[10].

It is important to note that the aforementioned resampling step in SIR can clearly lead 
to the lack of diversity in the population of resampled particles. This is, in turn, detrimental 
to the approximation of the sequence of posteriors. The general aim of the standard SMC 
approach is to diversify these particles by a mutation step with involves replacing them with 
samples from a Markov kernel Kn with invariant distribution µn. In the following subsection 
we provide a discussion of the aforementioned mutation in the context of the SMC sampler for 
high-dimensional inverse problem [22]. We refer the reader to [8, 10, 33, 34] for a thorough 
treatment of more standard SMC samplers.

3.2. SMC for high-dimensional inverse problems

The weight degeneracy in the importance sampling step described above is more pronounced 
when the two consecutive measures µn−1 and µn differ substantially from each other. This 
has been particularly associated with complex (e.g. multimodal) measures defined in high- 
dimensional spaces. When the change from µn−1 to µn is abrupt, the importance sampling 
step can result in a sharp failure, whereby the approximation of µn is concentrated on a sin-
gle particle [5]. Recent work for high-dimensional inference problems has suggested [1, 22] 
that further stabilization of the importance weights is needed by defining a smooth trans-
ition between µn−1 and µn. For the present work, we consider the annealing approach of [34, 
35], where qn intermediate artificial measures {µn,r}qn

r=0 are defined such that µn,0 = µn−1 and 
µn,qn = µn. These measures can be bridged by introducing a set of qn tempering parameters 
denoted by {φn,r}qn

r=1 that satisfy 0 = φn,0 < φn,1 < · · · < φn,qn = 1 and defining each µn,r  as 
the probability measure with density proportional to ln(u, yn)

φn,r with respect to µn−1. More 
specifically, µn,r  satisfies
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dµn,r

dµn−1
∝

[
ln(u, yn)

]φn,r

, (41)

which, formally, implies

dµn,r

dµn,r−1
∝

[
ln(u, yn)

]φn,r−φn,r−1

. (42)

Note that when qn  =  1, φn,1 − φn,0 = 1 and so expression (42) reduces to (36). We now follow 
the SMC algorithm for high-dimensional inverse problems as described in [22].

3.2.1. Selection step. The first stage of the SMC approach of [22] is a selection step which 
consists of careful selection of the tempering parameters which define the intermediate mea-
sures {µn,r}qn

r=0; these are in turn approximated by the application of the SIR scheme described 
above. Let us then assume that at an observation time tn and iteration level r  −  1, the temper-

ing parameter φn,r−1 has been specified, and that a set of particles u( j)
n,r−1 provides the follow-

ing approximation (with equal weights) of the intermediate measure µn,r−1:

µJ
n,r−1(u) ≡

1
J

J∑
j=1

δu( j)
n,r−1

(u) ≈ µn,r−1(u). (43)

From (42) we can see that the new tempering parameter φn,r  must be selected to ensure that 
φn,r − φn,r−1 is sufficiently small, so that the subsequent measure µn,r  is close to µn,r−1 thus 
preventing a sharp failure of the empirical approximation of µn,r  (39). In particular, once the 
next tempering parameter φn,r  is specified, we note from expression (42) that the importance 
weights for the approximation of µn,r  are given by

W( j)
n,r = W( j)

n,r−1[φn,r] =

[
ln(u

( j)
n,r−1, yn)

]φn,r−φn,r−1

∑J
s=1

[
ls(u

(s)
n,r−1, yn)

]φn,r−φn,r−1
. (44)

Recognizing that the ESS in (40) quantifies weight degeneracy in SIR, the approach of [22] 
(see also [21]) proposes to define on-the-fly the next tempering parameter φn,r  by imposing a 
fixed, user-defined value Jthres on the ESS. More specifically, φn,r  is defined by the solution to 
the following equation:

ESSn,r(φ) ≡

[
J∑

j=1

(W( j)
n,r−1[φ])

2

]−1

= Jthres, (45)

which may, in turn, be solved by a simple bisection algorithm on the interval (φn,r−1, 1]. An 

approximation of µn,r  is then given by the weighted particle set {u( j)
n,r−1, W( j)

n,r }J
j=1. If at the 

r  −  1 level, we find that ESSn,r(1) > Jthresh, it implies that no further tempering is required 
and thus one can simply define φn,r = 1. We note that the number of tempering steps qn is 
random.

While the tempering approach described above is aimed at preventing ESS from falling 
below a specified threshold Jthres and thus avoiding a sharp failure of the empirical approx-
imation of µn,r , resampling is still required to discard particles with very low weights. Let us 

then denote by û( j)
n,r  ( j = 1, . . . , J) the particles, with equal weights, that result from resam-

pling with replacement of the set of particles u( j)
n,r−1 according to the weights W( j)

n,r .
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3.2.2. Mutation phase. As stated in the preceding subsection, at the core of the SMC meth-
odology is a mutation phase that adds diversity to the population of the resampled particles 

û( j)
n,r . In the context of the tempering approach described above, this mutation is conducted 

by means of sampling from a Markov kernel Kn,r with invariant distribution µn,r . Similar to 
the approach of [22], here we consider mutations given by running Nµ steps of an MCMC 
algorithm with µn,r  as its target distribution. More specifically, we consider the preconditioned 
Crank–Nicolson (pcn)-MCMC method from [9] with target distribution µn,r  and reference 
measure µ0. Formally, these two measures are related by

dµn,r

dµ0
∝ ln,r(u, yn) ≡

[
ln(u, yn)

]φn,r
n−1∏
s=1

ls(u, ys). (46)

The pcn-MCMC method for sapling µn,r  is summarised in algorithm 2 (see appendix B). 
Under reasonable assumptions this algorithm produces a µn,r -invariant Markov kernel [22]. 

The resulting particles denoted by u( j)
n,r  (u( j)

n,r ∼ Kn,r(û
( j)
n,r , ·)) then provide the following particle 

approximation of µn,r :

µJ
n,r ≡

1
J

J∑
j=1

δu( j)
n,r

→ µn,r as J → ∞, (47)

where the convergence is proven in a suitable metric for measures [1]. Note that at the end of 

the iteration r  =  qn, the corresponding particle approximation µJ
n = µJ

n,qn
≡ 1

J

∑J
j=1 δu( j)

n,qn
 pro-

vides the desired approximation of the posterior that arises from the Bayesian inverse problem 
of interest. This SMC sampler is summarized in algorithm 3 (see appendix B).

Remark 3.1. For simplicity, here we use the resampling step at every iteration of the SMC 
sampler. However, whenever ESSn,r(1) > Jthresh (and so φn,r = 1) the resampling step can be 
skipped; this involves using the corresponding weighted particle approximation and modify-
ing the formula for the incremental weights as discussed in [22, section 4.3].

3.3. A note on tempering

Let us define the following inverse of the increment in tempering parameters:

αn,r =
1

φn,r − φn,r−1
, (48)

and note that 0 � φn,r � 1 implies αn,r � 1. In addition, expression (42) can be written as

dµn,r

dµn,r−1
∝

[
ln(u, yn)

]α−1
n,r ∝ exp

[
− 1

2αn,r
||(Γn)

−1/2(yn − Gn(u))||2
]

= exp

[
− 1

2
||(αn,rΓn)

−1/2(yn − Gn(u))||2
]

,

 

(49)

where we have used the definition of the likelihood in (29). Informally, we can then interpret 
each iteration of the SMC sampler (at a given observation time tn) as the solution of a Bayesian 
inverse problem that consists of finding µn,r  given the prior µn,r−1 and the data:

yn = Gn(u) + η̃n, η̃n,r ∼ N(0,αn,rΓn). (50)
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From (48) and the fact that 0 � φn,r � 1, it follows that αn,r � 1. Therefore, (50) is nothing 
but the original problem (25) albeit with a noise η̃n,r  that has an inflated covariance αn,rΓn.

We also note that αn,r plays the role of a regularization parameter in the sense that it con-
trols the transition between µn,r−1 and µn,r . The larger the αn,r the smoother this transition. 
Alternatively, we can see that αn,r can be interpreted as a ‘temperature’ in the tempering 
scheme which, in turn, flattens out the likelihood function at the observation time tn. Clearly, 
more tempering will be required whenever ||(Γn)

−1/2(yn − Gn(u))||2 is large; this can for 
example happen if the observational data are accurate (i.e. small Γn) and/or many observations 
are available.

The amount of tempering is controlled by the number of parameters obtained via (45). The 
greater the number of tempering parameters, the larger the αn,r’s which in turn indicates that 
more regularization is needed to ensure a stable transition between those measures. This has 
also, in turn, an associated increase in iterations and thus in computational cost.

3.3.1. Computational aspects of SMC. The main computational cost of the SMC sampler 
previously discussed is attributed to the mutation step for which Nµ steps of the pcn-MCMC 
algorithm are performed. At each observation time tn and iteration r, the SMC sampler then 
requires J Nµ evaluations of the nth forward map Gn. Therefore, the computational cost of 
computing µn is qngnJ Nµ, where gn denotes the computational cost of evaluating Gn which, in 
turn, corresponds to solving the moving boundary problem from time t  =  0 up to time tn. The 
total computational cost of computing the full sequence of posteriors {µn}N

n=1 is then

CSMC ≡ J Nµ

N∑
n=1

qn
gn

gN
, (51)

which is expressed in terms of gN, the cost of evaluating GN  (i.e. solving the forward model 
from time zero up to the final observation time).

The work of [22] has suggested that accurate approximations of the posterior via SMC 
samplers require, for example, values of Nµ = 20 and J  =  104. If we assume for a moment 
that only one observation time N  =  1 is considered and that only one tempering step q1  =  1 
is required to compute µ1, the computational cost in this case would be approximately 105 
times the cost of solving the forward model from time t  =  0 up to time t1. Such cost would be 
clearly computationally prohibitive for practical applications, where the aforementioned for-
ward simulation may take several minutes of CPU time. In particular, for the 2D or 3D version 
of the RTM process, the high computational cost of the SMC sampler becomes impractical. 
While reducing the values of J and Nµ may result in a more affordable computational cost, 
this is substantially detrimental to the level of accuracy of the SMC sampler as we show via 
numerical experiments in section 3.5. Alternatively, a parallel implementation of the J forward 
model evaluations can substantially reduce the cost of this algorithm, which in turn, scales 
by a factor of J. However, within the manufacturing industry, the availability of computer 
resources that can deliver 105 − 106 parallel simulations is the exception rather than the norm.

3.4. Numerical examples with SMC

In this subsection we report the results from the numerical application of the SMC sam-
pler discussed in the previous subsection. The objective is to approximate the sequence of 
Bayesian posteriors that arise from the 1D moving boundary problem defined in section 2 for 
the experimental set-up described in section 3.4.1. In section 3.4.2 we discuss the numerical 
results obtained via the SMC sampler with a very high number of particles which results in 
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accurate approximations of the Bayesian posteriors. These approximations are then used in 
section 3.5 to assess the practical limitations of the scheme under certain choices of tunable 
parameters and number of particles. These limitations motivate the approximate methods that 
we propose in section 4.

3.4.1. Experimental set-up. We consider a dimensionless version of the 1D model (13)–(17) 
which together with its numerical approximation is described in appendix C. The dimension-
less values for the control variables are p0  =  1 and pI  =  2. We use a Gaussian prior distribution 
µ0 = N(u, C) with the covariance operator C that arises from the covariance function defined 
in (27). We numerically solve (off-line) the eigenvalue problem associated to the matrix that 
results from discretizing C; the corresponding eigenvector/eigenvalues are then stored for sub-
sequent use in the parameterization of the log-permeability in the SMC sampler. The KL 
expansion (28) becomes a truncated sum with a number of elements equal to the the total num-
ber of eigenvalues of this matrix; these are, in turn, equal to the number of cells used for the 
discretization of the domain D∗ = [0, 1]. No further truncation to this KL expansion is carried 
out. A few samples from the prior are displayed in figure 2 (right). Pointwise percentiles (0.02, 
0.25, 0.5, 0.75 and 0.98) of the prior are displayed in figure 3 (top-left). Tuneable parameters 
of the prior for the present experiments are σ2

0 = 0.5, ν = 1.5, l  =  0.05 and u(x) = 0.0 for all 
x ∈ D∗.

In order to generate synthetic data, we define the ‘true/reference’ log permeability field 
u† whose graph (red curve) is displayed in figure 3 (top-left); this function is a random draw 
from the prior described above. We use u = u† in the numerical implementation of (13)–(17) 
in order to compute the true pressure field p†(x, t) as well as the true front location Υ†(t). 
The plot of p†(x, t) is shown in figure 2 (left) together with the space-time configuration of 
M  =  9 pressure sensors and N  =  5 observation times. The graphs of { p(x, tn)}5

n=1 are shown 
in figure 2 (middle). The true locations of the front {Υ†(tn)}5

n=1 are 0.21 ,0.40, 0.58, 0.73 
and 0.87. Synthetic data are then generated by means of y p

n = { p†(xm, tn)}9
m=1 + η p

n  and 
yΥn = Υ†(tn) + ηΥn , where η p

n  and ηΓn  are Gaussian noise (see section 2.2) with standard devia-
tions equal to 1.5% of the size of the noise-free observations. Synthetic pressure data {y p

n }5
n=1 

are superimposed on the graphs of { p(x, tn)}5
n=1 in figure 2 (middle). Synthetic front locations 

{yΥn }5
n=1 are 0.21, 0.39, 0.59, 0.74, 0.86. In order to avoid inverse crimes, synthetic data are 

generated by using a finer discretization (with 120 cells) than the one used to approximate the 
posteriors (with 60 cells).

Figure 2. Left: true pressure field p†(x, t) and space-time measurement configuration 
with M  =  9 sensors and N  =  5 observation times. Middle: true pressure at observation 
times { p†(x, tn)}5

n=1 (curves) together with the corresponding synthetic data y p
n  (dots). 

Right: samples from the prior.
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3.4.2. Application of SMC. In this subsection we report the application of the SMC sampler 
of [22] (see algorithm 3 in appendix B) which, as described in the preceding section, provides 
a particle approximation of each posterior that converges to the exact posterior measure µn as 
the number of particles J goes to infinity. In order to achieve a high-level of accuracy we use 
J  =  105 number of particles which is substantially larger compared to the number of particles 
(e.g. 103 to 104) often used in existing applications of SMC for high-dimensional inverse 
problems [8, 22]. In addition, we consider the selection of tunable parameters Nµ = 20 and 
Jthresh = J/3 similar to the ones suggested in [22]. For each observation time tn, we store 

the ensemble of particles {u( j)
n }105

j=1 that approximates the corresponding posterior µn. From 

this ensemble, we compute the 0.02, 0.25, 0.5, 0.75, 0.98 posterior percentiles displayed in 
figure 3 (top-middle to bottom-right), where we also include the graph of the true log-per-
meability (red curve). The vertical line in these figures indicate the true location of the front 
Υ†(tn) at each observation time tn. We can clearly appreciate that the uncertainty band defined 
by these percentiles is substantially reduced as more observations (in time) are assimilated. 
In fact, the main reduction of the uncertainty is observed in the region of the moving domain 
D†(tn) = [0,Υ†(tn)] at the corresponding observation time tn. It is then clear that at each obser-
vation time tn, measurements collected from pressure sensors with xm ∈ D∗ \ D†(tn) are not 
very informative of the log-permeability field. This comes as no surprise when we recognize 
that the pressure field given by (20) depends on the permeability field only in the region of the 
moving domain D(t). In other words, the values of the permeability in the region defined by 
D∗ \ D(tn) have no effect on p(x, tn); hence the nth likelihood function is independent of u in 
this region. We can indeed observe from figure 3 that the percentiles of the log-permeability 
in this region (see domain to the right of the vertical lines) is similar to those from the prior. 

Figure 3. Top-left: percentiles of the prior log-permeability µ0. Top-Middle to bottom-
right: percentiles of the posteriors {µn}5

n=1 obtained via SMC with large number of 
samples J  =  105. Solid red line corresponds to the graph of the true log-permeability 
u†. Vertical dotted line indicates the location of the true front Υ†(tn).
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However, due to the regularity of the log-permeability enforced in the prior µ0, there is a 
smooth transition in the uncertainty band at the interface defined by the front location Υ(tn).

The number of intermediate tempering distributions that SMC adaptively computed to 
approximate the sequence of posteriors {µn}5

n=1 were the following:

q1 = 4, q2 = 3, q3 = 3, q4 = 2, q5 = 3. (52)

We use these numbers in (51) to compute the total computational cost of approximating the 
sequence {µn}5

n=1. The values of gn (i.e. cost of evaluating each Gn) are estimated by the average 
CPU time from 1000 simulations computed with different log-permeabilities sampled from the 
prior. We obtain that total cost is approximately 1.5 × 107 times the cost of evaluation the 5th 
forward map G5 (i.e. at the final observation time). Clearly, this computational cost is prohibitive 
for the two and three dimensional problems where, as stated earlier, evaluating the forward map 
can take several minutes of CPU time. For the present 1D case we are able to afford this cost due 
to the relatively low cost associated with solving the 1D moving boundary problem.

3.5. Reducing the cost of SMC by adjusting tunable parameters

Given the high computational cost of computing accurate approximations of the posteriors 
with SMC, it is reasonable to ask whether its computational cost can be reduced by adjust-
ing the tunable parameters in (51). By reducing either the number of particles J and/or the 
number of MCMC steps Nµ, we can achieve a substantial decrease in the computational 
cost. The selection of Jthresh also determines the computational cost as it, in turns, defines the 
number of tempering steps for each posterior. However, it is essential to understand the effect 
of decreasing these tunable parameters on accuracy of the SMC sampler. In this subsection 
we aim at understanding this effect by comparing the application of the SMC sampler with 
smaller number of particles J and different choices of the tunable parameters Nµ and Jthresh. 
This requires creating a Benchmark against which we can compare performance of SMC. 
The Benchmark is obtained by the highly-resolved characterization of the posteriors that we 
computed in the preceding section by using the SMC sampler with large number of particles 
(J  =  105). In section S1 of the supplementary material SupMat we provide further discussions 
of the performance and diagnostics of the SMC sampler applied to approximate these poste-
rior measures. These diagnostics offer evidence that the SMC sampler has been successfully 
applied, thereby providing accurate characterization of the posterior that we may use as a 
Benchmark to compare against the posteriors computed via algorithms with lower resolution/
accuracy. The numerical investigation below is aimed at assessing SMC with different selec-
tions of ensemble size J as well as the tunable parameters Nµ and Jthresh.

For the reasons stated above, through the rest of the this and the following sections, we 
refer to the aforementioned highly-resolved SMC particle approximations (with J  =  105) as 
the ‘exact’ sequence of posteriors {µn}5

n=1 that we use for subsequent comparisons purposes. 
Moreover, for these comparisons we assume that the sample mean and variance of these SMC 
samples are exact approximations of the mean Eµn and variance Vµn of the posterior µn. In 
other words, we assume

Eµn = un,105 , Vµn = σ2
n,105 , (53)

where

un,J ≡ 1
J

J∑
j=1

u( j)
n , σ2

n,J ≡ 1
J − 1

J−1∑
j=1

(u( j)
n − un,J)

2. (54)
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Let us now consider the application of the SMC sampler for the following choices of 
small number of particles: J = 50, 100, 200, 400, 800, 1600, 3200, 6400. We also consider 
three choices of the tunable parameter Jthresh (Jthresh = J/3, J/2, 2J/3) and two choices of 
Nµ (Nµ = 5, 20). In figure 4 we show percentiles of the log-permeability posteriors µn (for 
n = 1, 3 and 5) obtained using the aforementioned SMC sampler for some of those choices 
of the number particles J, and with the same selection of tunable parameters Nµ = 20, 
Jthresh = J/3 that we used for the highly-resolved SMC with large particles; percentiles from 
the latter are included in the right column of figure 4 for comparison purposes. We can see that 
as the ensemble of particle increases, the approximation of SMC improves when compared to 
the one provided by the highly-resolved SMC. Note that very small number of particles results 
in very poor approximations of these percentiles.

In order to quantify the level of approximation obtained with SMC with the aforementioned 
selections of parameters, we compute the L2(D∗)-relative errors of the mean and variance 
with respect to the posterior measure approximated with the highly-resolved SMC computed 
as described in the preceding subsection. More precisely, let us define

EJ
n ≡

||Eµn − un,J||L2(D∗)

||Eµn ||L2(D∗)

, VJ
n ≡

||Vµn − σ2
n,J||L2(D∗)

||Vµn ||L2(D∗)

, (55)

where Eµn and Vµn are the µn-posterior mean and variance characterized via SMC with large J 
from (53) and (54). In the previous expressions un,J and σ2

n,J  are the sample mean and variance 

defined in (53) obtained from the ensemble {u( j)
n }J

j=1 computed via SMC for the choices of 
small J stated above and with the aforementioned selections of tunable parameters. In addi-
tion, we consider the estimator of the true log-permeability defined by the ensemble mean un,J 
and thus we monitor the corresponding L2(D∗)-relative error defined by

εJ
n ≡

||u† − un,J||L2(D∗)

||u†||L2(D∗)

. (56)

Quantities EJ
n, VJ

n and εn
J are random variables that depend on the initial ensemble of particles 

that we generate from the prior µ0. We thus report these quantities (for each n = 1, 3, 5) averaged 
over 15 experiments corresponding to different selections of the initial ensemble of particles. In 
figure 5 we display EJ

n (top), VJ
n (middle) and εJ

n (bottom) for (from left to right) n = 1, 3, 5 as a 
function of the aforementioned selections of ensemble size J. For brevity we omit the results for 
n = 2, 4 as they display similar behaviour. The total computational cost of computing the full 
sequence of posteriors (i.e. CSMC from (51)) is shown in figure 6 (left). We reiterate that this cost 
is expressed in terms of the number of evaluations of the 5th forward map G5.

While the numerical analysis of the convergence of the SMC sampler is beyond the scope of 
this work, the results presented in this section are aimed at understanding the level of accuracy of 
SMC with relatively small number of particles and for a selection of tunable parameters which 
may enable the use of this method in more practical scenarios. From these results it is clear 
that the selections of Jthresh have no substantial effect on the accuracy of the scheme in terms of 
approximating the mean and variance of each posterior. Similarly, the computational cost with 
respect to our selections of Jthresh does not seem to vary significantly. It is evident that the main 
effect in terms of accuracy is the choice of MCMC steps (i.e. parameter Nµ). Indeed, note that 
the error obtained with Nµ = 5 is considerably larger than the one with Nµ = 20 although the 
computational cost of the former is one quarter of the computational cost of the latter. We con-
clude that even though decreasing Nµ can offer computational affordability, it is detrimental to 
the approximation properties of the scheme. This comes as no surprise as it is well known that the 
mutation step that involves running MCMC is crucial for the accuracy of any SMC methodology.

M Iglesias et alInverse Problems 34 (2018) 105002



22

The behavior of the SMC sampler with respect to the number of particles J is as expected. 
On the one hand, an increase in J corresponds to a decrease in the error with respect to the 
mean and variance. On the other hand, the computational cost, CSMC, increases with J. Note 
that there is a clear linear relationship between these two variables which is, in turn, obvious 
from (51) provided that qn is invariant with respect to J. Indeed, for the cases considered here, 
the number of intermediate tempering distributions (not reported) computed at each observa-
tion time, is invariant with respect to our choices of J. This is somewhat an expected outcome 
since our choice of Jtresh in (45) is always a fraction of J. It is also worth mentioning that 
the effect of J is less noticeable when we look at the error with respect to the truth. At each 
observation time, we notice that the εn seems to converge to a nonzero value as J increases. 
Note that convergence to the truth is not ensured due to the limited number of measurements 
inverted and the potential lack of identifiability of the log-permeability.

The results reported in this subsection suggest that achieving a reduction in the computa-
tional cost by reducing Nµ has a severe detrimental effect in the accuracy of the SMC sampler 
with small number of particles. In addition, Jthresh does not seem to have a substantial effect 
in either the accuracy or computational cost. Clearly, we are only then limited to the number 
of particles J to control the computational cost of the sampler without severely compromising 
accuracy of the approximate posteriors.

4. Approximating the posteriors via a regularizing ensemble Kalman algorithm

In the previous section we have demonstrated, by means of numerical examples, that an accu-
rate approximation of the Bayesian posteriors via the state-of-the art SMC samplers results 
in a very high computational cost; hence it is unfeasible for practical applications such as the 
2D resin injection in RTM introduced in section 1. In this section we propose a regularizing 
ensemble Kalman algorithm (REnKA) that aims at providing an accurate approximation of 

Figure 4. Percentiles of the posteriors µn’s (n = 1, 3, 5) obtained via SMC with (from 
left to right) J  =  50, 400, 1600, 105. Solid red line corresponds to the graph of the true 
log-permeability u†. Vertical dotted line indicates the location of the true front Υ†(tn).
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the sequence of Bayesian posteriors at a much lower computational cost. In section 4.1 we 
introduce REnKA as a Gaussian approximation from the SMC sampler of [22] discussed in 
the preceding section. The proposed REnKA in the context of existing ensemble Kalman 
methods is discussed in section 4.2. A numerical investigation of the convergence properties 
of REnKA is reported in section 4.3.

For the subsequent development of the proposed scheme, we extend the domain of defini-
tion of the sequence of forward maps Gn introduced in (22). More specifically, we assume 
Gn : X → RM+1 where X  is a Hilbert space such that X = C[0, x∗] ↪→ X  (compactly). We 
denote by < ·, · >X and < ·, · > the inner products in X  and RM+1, respectively. In addition, 
we define Z ≡ X × RM+1 with inner product denoted by < ·, · >Z.

4.1. Motivation for REnKA

Motivated by the SMC tempering approach described in the previous section, we now pro-
pose an ensemble Kalman algorithm whose aim is to approximate {µn,r}qn

r=1 by a sequence of 
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Figure 5. SMC approximations. Top and middle: relative errors of mean (top) and 
variance (middle) of the posteriors µn, (from left to right) n = 1, 3, 5, obtained with 
SMC with different choices of small (log) ensemble size log(J) and tunable (SMC) 
parameters Jthresh and Nµ. Bottom: relative errors with respect to the truth u† of the 
ensemble mean.

M Iglesias et alInverse Problems 34 (2018) 105002



24

Gaussian measures {νn,r}qn
r=1 which are, in turn, characterised by a set of particles with equal 

weights. Suppose that, at time t  =  tn we have an ensemble {u( j)
n,r−1}J

j=1 of J samples from 

a Gaussian measure νn,r−1 that approximates µn,r−1, and a prescribed tempering parameter 
φn,r−1. We may then solve (45) for the new φn,r  and define the regularization parameter αn,r in 
(48). We now wish to make a transition from νn,r−1 to a Gaussian measure νn,r  that approxi-
mates µn,r . To this end, it is convenient to define the augmented variable

z = (u,Gn(u))T ∈ Z (57)

and note that, in terms of this variable, we may rewrite (50) as

yn = Hz + η̃n, η̃n,r ∼ N(0,αn,rΓn), (58)

where H = (0, I) and I is the identity operator. One can see that by reformulating the inverse 
problem in terms of the augmented variable, the resulting forward map (i.e. H) acting on this 
variable is linear.

From (57) we define the following augmented particles

z( j)
n,r−1 = (u( j)

n,r−1,Gn(u
( j)
n,r−1))

T , (59)

and construct the empirical Gaussian measure:

ν̂n,r−1(z) ≡ N(zn,r−1, Cn,r−1), (60)

where

zn,r−1 ≡ 1
J

J∑
j=1

z( j)
n,r−1, (61)

and

Cn,r−1(·) ≡
1

J − 1

J∑
j=1

(z( j)
n,r−1 − zn,r−1)〈z( j)

n,r−1 − zn,r−1, ·〉Z . (62)
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Figure 6. Total computational cost in terms of G5-forward model evaluations. Left: 
total computational cost obtained via SMC with different choices of Nµ and Jthresh. 
Right: comparison of total computational cost obtained via REnKA with different 
choices of Jthresh = J/3 against the cost of SMC with different selection of tunable 
parameters Nµ and Jthresh.
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The Gaussian measure ν̂n,r−1(z) is used to approximate the measure, denoted by µ̂n,r−1(z), 
that arises from pushing forward µn,r−1(u) under (57). By using this Gaussian approximation 
of µ̂n,r−1(z), we then provide a Bayesian formulation of the inverse problem given by (58). 
More specifically, we wish to compute ν̂n,r(z) ≡ P(z|yn) given ν̂n,r−1(z) and the data from 
(58). A formal application of Bayes theorem yields

dν̂n,r

dν̂n,r−1
(z) ∝ exp

[
− 1

2
||(αn,rΓn)

−1/2(yn − Hz)||2
]
. (63)

Moreover, from (60) and the linearity of the forward map H (on the augmented variable), it 
follows by standard arguments [26] that

ν̂n,r(z) = N
(
zn,r−1 +Kn,r(yn − Hzn,r−1), (I −Kn,rH)Cn,r−1

)
, (64)

where

Kn,r ≡ Cn,r−1HT(HCn,r−1HT + αn,rΓ)
−1. (65)

Let us then note that Cn,r−1 in (62) can be written as

Cn,r−1 =

[
Cuu

n,r−1 Cuw
n,r−1

(Cuw
n,r−1)

T Cww
n,r−1

]
, (66)

where

Cww
n,r−1(·) =

1
J − 1

J∑
j=1

(Gn(u
( j)
n,r−1)− Gn,r−1)〈Gn(u

( j)
n,r−1)− Gn,r−1, ·〉, (67)

Cuw
n,r−1(·) =

1
J − 1

J∑
j=1

(u( j)
n,r−1 − un,r−1)〈Gn(u

( j)
n,r−1)− Gn,r−1, ·〉, (68)

Cuu
n,r−1(·) =

1
J − 1

J∑
j=1

(u( j)
n,r−1 − un,r−1)〈u( j)

n,r−1 − un,r−1, ·〉X , (69)

and

Gn,r−1 ≡ 1
J

J∑
j=1

Gn(u
( j)
n,r−1), un,r−1 ≡ 1

J

J∑
j=1

u( j)
n,r−1.

Informally, we use the block structure of (66) and define νn,r , the approximation of µn,r , as the 
marginal measure of ν̂n,r  given by

νn,r(u) ≡ N
(
un,r−1 +Ku

n,r(yn − Gn,r−1), Cuu
n,r−1 −Ku

n,r(C
uw
n,r−1)

T), (70)

where

Ku
n,r = Cuw

n,r−1(C
ww
n,r−1 + αn,rΓ)

−1. (71)

Although the measure (70) is fully characterised by its mean and covariance, for the subse-
quent tempering step we need a particle approximation of νn,r(u). We can obtain those par-

ticles by updating the current set of particles u( j)
n,r−1 via the formula

u( j)
n,r = u( j)

n,r−1 + Cuw
n,r−1(C

ww
n,r−1 + αn,rΓ)

−1(y( j)
n,r − Gn(u

( j)
n,r−1)), (72)
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where

y( j)
n,r ≡ yn + η( j)

n,r , η( j)
n,r ∼ N(0,αn,rΓn). (73)

Indeed, under the standard assumption that the noise η( j)
n,r  is independent from u( j)

n,r−1, it can be 
shown by the standard arguments in Kalman-based methods (see for example [7]) that

νJ
n,r(u) ≡

1
J

J∑
j=1

δu( j)
n,r
(z) → νn,r(u), J → ∞. (74)

Expression (72) leads to an iterative (regularised) ensemble Kalman-based algorithm, sum-
marized in algorithm 1, for which the proposed selection of the regularisation parameter αn,r is 
based on the tempering approach discussed in section 3.2. While this selection of αn,r ensures 
a smooth transition between the measures µn−1 and µn in SMC, we conjecture that a similar 
effect should be observed between the corresponding Gaussian approximations computed via 
the REnKA scheme, thereby leading to stable and reasonably accurate approximations of the 
posteriors computed via small number of samples. Our conjecture will be verified via numer-
ical experiments in section 4.3.

Algorithm 1. Regularizing ensemble Kalman algorithm (REnKA).

   Let {u( j)
0,0}J

j=1 ∼ µ0 be the initial ensemble of J particles.
   Define the tunable parameter Jthresh.
   for n = 1, . . . , N  do
   Set r  =  0 and φn,0 = 0;
        while φn,r < 1 do
           r → r + 1

           Compute the nth likelihood (29) ln(u
( j)
n,r−1, yn) for j = 1, . . . , J .

           (this implies computing G(u( j)
n,r−1) needed below).

           Compute the tempering parameter φn,r :
           if minφ∈(φn,r−1,1] ESSn,r(φ) > Jthresh then
              set φn,r = 1.
           else
             compute φn,r  such that ESSn,r(φ) ≈ Jthresh  using a
              bisection algorithm on (φn,r−1, 1].
           end if
            Construct Cuw

n,r−1, C
ww
n,r−1 defined by expressions (67) and (68).

            Update each ensemble member:
           for j = 1, . . . , J  do

                u( j)
n,r = u( j)

n,r−1 + Cuw
n,r−1(C

ww
n,r−1 + αn,rΓ)

−1(y( j)
n,r − Gn(u

( j)
n,r−1)),              (75)

             where

                   αn,r = (φn,r − φn,r−1)
−1, y( j)

n,r = yn + η
( j)
n,r ,

             with η( j)
n,r ∼ N(0,αn,rΓn).

           end for
        end while

        Set u( j)
n+1,0 ≡ u( j)

n,r−1. Approximate µn with νJ
n ≡ 1

J

∑J
j=1 δu( j)

n,r
.

   end for

M Iglesias et alInverse Problems 34 (2018) 105002



27

Remark 4.1. Note that the key assumption for the proposed scheme is the Gaussian 
approx imation of µ̂n,r−1(z) provided by (64). It is clear that the measure µ̂n,r−1(z) is, as a rule,  
non-Gaussian and the aforementioned assumption will result in a methodology that will, in 
general, not converge to the posteriors µn as the ensemble size J → ∞. Nevertheless, we will 
show via numerical examples that this approximation provides reasonably accurate estimates 
using only a small number of particles.

It is not difficult to see that the main computational cost of REnKA, in terms of the cost of 
evaluating the forward model at the final observation time, is given by

CREnKA ≡ J
N∑

n=1

qn
gn

gN
, (76)

where, as before, gn denotes the computational cost of evaluating the Gn-forward map. As we 
will demonstrate via numerical experiments, for the moving boundary problem of section 2.1, 
REnKA offers a computationally affordable and thus practical approach to approximate the 
solution to the Bayesian inverse problem that arises from RTM.

It is important to mention that, at a given observation time tn and iteration level r, the 

value of 
∑J

j=1 ln(u
( j)
n,r−1, yn)

1−φn,r−1 may be zero to machine precision. In this case, the tem-

pering parameter φn,r  is not be computable, via a bisection scheme on (φn,r−1, 1], as stated 
in algorithm 1. This computational issue is more likely to arise at the early iterations of the 
scheme for which the value of φn,r−1 is not sufficiently close to one. This can be overcome, 
for example, by simply adapting the bisection algorithm in order to first compute a φ∗ such 

that 
∑J

j=1 ln(u
( j)
n,r−1, yn)

φ∗−φn,r−1 > 0. If minφ∈(φn,r−1,φ∗] ESSn,r(φ) > Jthresh  we then set 

φn,r = φ∗; otherwise, we find φn,r  by solving (45) via a bisection algorithm on (φn,r−1,φ∗]. 

For the numerical experiments reported in the present work, zero values to machine precision 

for 
∑J

j=1 ln(u
( j)
n,r−1, yn)

1−φn,r−1 were only encountered where a large number of measurements 

were inverted in the 2D setting of section 5.

4.2. REnKA in the context of existing ensemble Kalman methods for inverse problems

Ensemble Kalman methods for inverse/calibration problems have been widely used in the 
last decades [15, 20]. More recently, using iterative Kalman methods with a regularization 
parameter (e.g. αn,r in (75)) have been proposed for a wide class of applications. In particular, 
the proposed REnKA scheme can be related to the recently developed regularizing ensemble 
Kalman method introduced in [19] for solving classical (deterministic) inverse problems. 
More precisely, algorithm 1 is nothing but a sequential version of the iterative scheme pre-
sented in [19] except for the selection of the regularization parameter αn,r. While in the pres-
ent work we have motivated algorithm 1 from the SMC framework, the algorithm in [19] was 
obtained as an ensemble approximation of the regularizing Levenberg–Marquardt scheme ini-
tially developed in [16] for solving ill-posed inverse problems. In the context of the proposed 
work, REnKA aims at providing a derivative-free approximation to the solution of

||Γ−1/2
n (yn − Gn(u))|| → min (77)

in a stable (regularized) fashion. The regularization parameter in [19] was selected accord-
ing to the discrepancy principle in order to regularize the inverse problem posed by (77). 
In contrast, the present work uses the adaptive tempering approach of [22] for the selec-
tion of this regularization parameter in the context of SMC. It is clear that tempering can be 
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understood as a regularization to the Bayesian inverse problem; the effect of αn,r is to flatten 
out the posterior and allow for a more controlled/regularized transition between the sequence 
of measures. Other works highlighting the connection between ensemble Kalman methods 
and SMC approaches include [40, 44, 45]. In addition, by noticing from (48) that, for each 
n = 1, . . . , N , 

∑qn
r=1 α

−1
n,r = 1, the proposed REnKA can be also understood as a sequential 

version of the ensemble smoother with multiple data assimilation proposed by [12]. However, 
it is important to reiterate that the adaptive selection of αn,r proposed here is inherited from the 
SMC approach of [22]. This selection differs substantially from the strategy proposed in [12] 
for which the number of intermediate tempering distributions qn is fixed and selected a priori.

4.3. Numerical approximating the posterior with REnKA

In this subsection we report the results from applying REnKA proposed in section 4.1 for the 
approximation of the sequence of posteriors {µn}5

n=1 that we introduced in the framework of 
section 3.4. The algorithm is applied with the same selection of ensemble sizes (J  =  50, 100, 
200, 400, 800, 1600, 3200, 6400) that we use for the SMC sampler of section 3.5. In addi-
tion, we consider three choices of the tunable parameter Jthresh (Jthresh = J/3, J/2, 2J/3). In 
figure 7 we display the percentiles of the log-permeability posteriors µ1, µ3 and µ5 obtained 
with REnKA, for a fixed set of initial ensembles, and for some of these choices of J. For 
comparison purposes we include the fully resolved posterior (via SMC) in the right column of 
figure 7. We can clearly observe that the approximations provided by REnKA improves as the 
ensemble size J increases. More importantly, we can note that the uncertainty band defined by 
these percentiles provided better approximations than those from SMC with the same number 
of particles (see figure 4).

We quantify the level of accuracy of REnKA with respect to the Benchmark defined by 
the highly-resolved SMC sampler reported in section 3.4.2. In figure 8 we display EJ

n  (top), 
VJ

n (middle) and εJ
n (bottom) for (from left to right) n = 1, 3, 5 computed with the REnKA 

samples with various ensemble sizes J. Similar results (not shown) are obtained for n = 2, 4. 
The total computational cost (CREnKA from (76)) of computing the full sequence of posteri-
ors is shown in figure 6 (right). In figures 8 and 6 (right) we also include some of the results 
obtained with the SMC samplers with the same choice of small number of particles discussed 
in section 3.5. These results speak for themselves; given a small number of particles, REnKA 
provides a much more accurate approximation of the posterior measures than SMC. For exam-
ple, note that for the final measure µ5, REnKA (applied with Jthresh = J/3) with an ensemble 
of J  =  200 particles yields E200

5 ≡ 12%, V200
5 ≡ 18% at a computational cost of 1.6 × 103 

G5-forward model evaluations. In order to obtain a similar level of accuracy (E200
5 ≡ 11%, 

V200
5 ≡ 24%), we need to apply the SMC sampler (say with Jthresh = J/3, and Nµ = 20) with 

J  =  6400 particles for which the computational cost is approximately 5 × 105 G5-forward 
model evaluations.

The results above not only demonstrate that, when a small number of particles is used, the 
performance (accuracy versus computational cost) of REnKA outperforms SMC, but also 
these results show that REnKA is robust for reasonable selections of the tunable parameter 
Jthresh. Similar to SMC, this parameter determines the number of tempering distributions at 
each observation time and thus has an impact on the computational cost of the scheme. It is 
also important to remark that even though the relative errors of REnKA with respect to the 
mean and variance decrease as the ensemble size increases, these errors seem to converge to a 
non-zero value thereby indicating that REnKA does not provide an asymptotic convergence to 
the posterior measures as J → ∞. Nevertheless, our results clearly showcase the advantages 
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of REnKA for approximating these measures in an accurate and efficient fashion for a limited 
and realistic computational cost.

Having numerical evidence from section 4.3 that REnKA is a robust and computationally 
feasible approach for addressing the Bayesian inverse problem defined in section 2, in sec-
tion S1 of the supplementary material SupMat we provide further practical insights in the 
Bayesian inverse problem for the 1D case studied earlier. In particular, we study effect of (i) 
number/type of measurements, (ii) number of observation times and (iii) observational noise 
level, on the sequence of Bayesian posteriors that result from approximating, via REnKA, the 
Bayesian inverse problem in the 1D case.

5. Bayesian inversion in 2D RTM

In this section we apply REnKA for the Bayesian inversion of the 2D moving boundary prob-
lem described by (1)–(9). In contrast to the 1D case, the numerical solution of the 2D moving 
boundary problem is much more computationally intensive. Therefore, the application of a 
fully Bayesian methodology such as the SMC sampler considered in section 3 is impractical 
for an online computation of the Bayesian posteriors in the 2D case. In this subsection, we 
exploit the capabilities of REnKA for providing an accurate yet computationally tractable 
approach for inferring preform (log) permeability alongside with its uncertainty.

5.1. Formulation of the 2D Bayesian inverse problem

Let us consider now the 2D moving boundary problem introduced (1)–(9) from section 1. We 
recall that we are interested in the inference of the log-permeability u(x) = log κ(x) given 

Figure 7. Percentiles of the posteriors µ1, µ3, and µ5 obtained via REnKA with (from 
left to right) J = 50, 400, 1600 and SMC (right column) with J  =  105. Solid red line 
corresponds to the graph of the true log-permeability u†. Vertical dotted line indicates 
the location of the true front Υ†(tn).

M Iglesias et alInverse Problems 34 (2018) 105002



30

noisy measurements of the pressure field { p(xm, tn)}M
m=1 from M sensors located at points 

{xm}M
m=1 ⊂ D∗ collected at a discrete observation times {tn}N

n=1. In addition, we wish to invert 
observations of the front location, or alternatively from the moving domain D(t) that can be 
potentially obtained from CCT cameras such as in [32, 49]. While in the 1D case we can 
trivially define observations of the (single point) front, in 2D the front Υ(tn) is a curve which 
defines the moving domain D(t). Therefore, rather than dealing with measurements of the 
front Υ(t) itself we may assume pointwise measurements of D(t) via its characteristic func-
tion defined by

χ(x, t) ≡
{

1 x ∈ D(t),
0 x /∈ D(t). (78)

More precisely, we define observations of the form {χ(xΥm , tn)}MΥ

m=1, where {xΥm }
MΥ

m=1 ⊂ D is 
an array of points for which the characteristic function of D(t) is observed. In practice this 
array should be considered dense when a high resolution camera is used for capturing the 
moving domain. Note that this mathematical description of front measurements is suitable as 
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Figure 8. Top and middle: relative errors of mean (top) and variance (middle) of the 
posteriors µn, (from left to right) n  =  1,3, 5, obtained via REnKA with different choices 
of (log) ensemble size log(J) and tunable parameter Jthresh. Bottom: relative errors of the 
ensemble mean obtained via REnKA with respect to the truth u†.
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it enables its direct comparison with observations from digitalized images and also with the 
discrete formulation of (2)–(9) via the control volume finite element method (CV/FEM) in 
which the front location is characterized in terms of the filling factor (see details in [38]) rather 
than using a parameterization of Υ.

For specified (known) pI, p0, ∂DI, ∂DN , ϕ, the solution of (2)–(9) induces a map 
u = log κ → [ p(x, t), D(t)] which enables us to define the sequence of forward maps 
Gn : C(D) → RM+MΥ by means of

Gn(u) =
[
{ p(xm, tn)}M

m=1, {χ(xΥm , tn)}MΥ

m=1

]
. (79)

To our best knowledge, uniqueness, existence and regularity theory for problem (2)–(9) with 
non constant κ(x) = eu(x) is an open problem for d  >  1 (see a related discussion in [38]). 
However, for the present work we assume that the following condition holds.

Assumption 1. The sequence of forward maps Gn : C(D) → RM+MΥ (n = 1, . . . , N ) are 
continuous.

We now follow the same formulation of the Bayesian inverse problem as the one we 
described in section 2.2. At each observation time t  =  tn, we collect noisy measurements of 
the front location yΥn ∈ RMΥ as well as pressure measurements from sensors y p

n ∈ RM . We 
assume that observations yn = [yΥn , yp]

T  are related to the unknown via expressions (25) -(26) 
with Gn defined in (79). As before, both measurements of D(t) (via its characteristic func-
tion) and pressures are assumed to be uncorrelated in time and independent from each other. 
Furthermore, we consider Gaussian priors µ0 = N(u, C) with a covariance operator C that 
arises from the Whittle–Matern correlation function defined in (27). The assumption of con-
tinuity of the forward maps as well as the fact that µ0(C(D

∗
)) = 1 ensures existence of the 

sequence of posterior measures µn = P(u|y1, . . . , yn) given by theorem 2.5 with the same defi-
nition of the likelihood functions introduced in (29). In the following section we use REnKA 
to to compute an ensemble approximation of {µn}N

n=1.

5.2. 2D numerical experiments

In this subsection we apply REnKA for the solution of the 2D Bayesian inverse problem 
defined in the previous subsection. The forward model described by (1)–(9) is solved numer-
ically with the MATLAB code developed in [38] and available from https://github.com/
parkmh/MATCVFEM. This code is based on the interface-tracking control volume finite ele-
ment method (CV/FEM) [3, 17, 48]. For experiments of this subsection, we consider the fol-
lowing fixed values:

D∗ = [0, 1m]× [0, 1m], µ = 0.1Pa · s, ϕ = 1, p0 = 1MPa, pI = 6MPa.

Samples from µ0 are generated via KL parametrization as described in section 2.2.1 with 
parameters σ2

0 = 0.25, ν = 1.5, l  =  0.1 and u(x) = 0.0 for all x ∈ D∗. Some draws from 
the prior are displayed in figure  9 (middle row). The log-permeability field is plotted in  
figure 9 (top-left) is a random draw from the prior that we use as the truth u† for the present 
experiments.

We use one dense configuration of MΥ = 100 measurement locations {xΥm }
MΥ

m=1 for the 
observation of the moving domain given in terms of (78); these locations are displayed in 
figure 9 (bottom-left). We have selected a large number of measurements locations assuming 
that the moving domain can be densely observed with high-resolution cameras or dielectric 
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sensors. In addition, we consider three possible configurations of M  =  9, M  =  25 and M  =  49 
pressure sensors {xm}M

m=1, whose locations are shown in the left-middle to right panels of 
figure 9 (bottom). The summary of measurement configurations that we investigate are sum-
marised below:

(M = 0, D(t) : �), (M = 9, D(t) : �), (M = 25, D(t) : �), (M = 49, D(t) : �),
(M = 9, D(t) : X ), (M = 25, D(t) : X ), (M = 49, D(t) : X ), 

(80)

where ✓ (resp. X ) indicates whether the moving domain D(tn) has been observed via (78).
We use the true log-permeability to numerically solve the forward model (1)–(9) via the 

CV/FEM code described above. Then, for each of these measurement configurations, synth-
etic data with a realistic choice of 2.5% Gaussian noise are generated in a similar manner to 
the one described in section 3.4.1. In order to avoid inverse crimes, synthetic data are com-
puted on a finer grid than the one we use for the Bayesian inversion via REnKA. These are 
shown in the middle and right panels of figure 9 (top). Snapshots of the true pressure field 
p† at the initial time t0 and observation times {tn}N

n=1 (in seconds) are displayed in figure 10 
alongside with the corresponding true moving domain D†(tn).

For the application of REnKA we use a fixed number of J  =  150 with tunable parameter 
Jthresh = J/3. For clarity of the notation, in the expression for the ensemble mean and variance 

Figure 9. Top-left: true log permeability (log[m2]). Top-middle: computational domain 
for the generation of synthetic data. Top-right: computational domain for the inversion 
(via REnKA). Middle row: random draws from the Gaussian prior µ0 (log[m2]); bottom 
row: measurement configuration for the moving front MΥ = 100 (left); pressure 
measurement configuration with (from left to right) M  =  9, M  =  25 and M  =  49 
sensors.
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(54), we then omit the index J as appropriate. The following numerical investigations are 
focused on the following quantities defined at each observation time tn (n = 1, . . . , N ):

 (A)  a measure of the uncertainty provided by the L2(D∗)-norm of the ensemble variance σ2
n  

relative to the prior, i.e.

Σn ≡
||σ2

n ||L2(D�)

||σ2
0 ||L2(D�)

; (81)

 (B)  a normalized L2(D†(tn))-error with respect to the truth defined by

εΥn ≡ 1
|D†(tn)|

||u† − un||L2(D†(tn)). (82)

We report quantities in (A) and (B) averaged over 15 experiments corresponding to differ-
ent selection of the initial ensemble from the prior. The motivation for using the normalized 
L2(D†(tn))-error instead of the relative error as defined in (56) is discussed in section S2 of 
the supplementary material SupMat.

For the configuration with (M = 49, D(t) : �) the ensemble mean and (log) variance of 
each posterior µn approximated with REnKA are displayed in figure 11. We note that as more 
observations (in time) are assimilated, the ensemble mean better captures the spatial features 

Figure 10. Snap shots of the true pressure field (Pa) and the true moving domain D†(tn) 
for the initial time t0 and the observation times {tn}7

n=1 (s).
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Figure 11. Ensemble mean and variance of µn obtained via REnKA at each observation 
time. The true moving boundary has been included at each of these observation times.

Figure 12. Top: true-log permeability. Bottom: ensemble mean and variance of µ7 
obtained via REnKA at the final observation time t7.
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of the truth while the (variance) uncertainty is reduced in the region of the true moving domain 
D†(tn). In figure 12 we show the ensemble mean and (log) variance of the final time posterior 
µ7 approximated via REnKA for different choices of the number of pressure sensors and with 
the inversion of the moving domain (✓). Note that the pure inversion of the moving domain 
(i.e. M  =  0 pressure sensors) results in an informative measure of the log-permeability. It is 
clear that the accuracy in the estimation of the log-permeability improves with the number of 
pressure sensors.

From the plot of εΥ displayed in figure 13 (left), we note that, at the latest observation times 
(n = 6, 7), there is a clear improvement in the accuracy with increasing the number of pressure 
locations. Similar to the 1D case, we also observe that the benefit of inverting measurements 
from the moving domain is only noticeable when the number of pressure sensors is relatively 
small (M  =  9). This configuration of sensors is more realistic in practical settings. It is also 
worth noticing that, at the earliest observation times (n = 1, 2) when the front has not reached 
most pressure sensors, inverting measurements from the moving domain provides additional 
information of the log-permeability to the one provided only by pressure measurements.

As more observations (in time) are assimilated, the reduction of the uncertainty in terms 
of the ensemble variance can be observed from the plot of Σn displayed in figure 13 (middle). 
From this plot we also note that the variance decreases as we increase the number of pressure 
sensors. The added value of measurements from the moving domain is also quite substantial 
and more noticeable for a small number of pressure sensors. In fact, note that smaller uncer-
tainty has been achieved by inverting only the front (M  =  0) compared to the inversion of only 
pressure data from M  =  9 sensors. Here we also find that, at the earliest observation times, the 
additional inversion of measurements of the moving domain results in further reductions of 
the uncertainty in comparison to the inversion of only pressure data. While this investigation 
was conducted with a realistic choice of measurement noise (2.5%), further studies should 
be conducted to understand the effect of the noise level on the uncertainty estimates of log-
permeability in the 2D case.

Finally, the computational cost (see expression (76)) of approximating the sequence of pos-
teriors {µ7

n=1} via REnKA is displayed in figure 13 (right). This cost is expressed in terms of 
the number of G7 forward model evaluations which, in turn, correspond to solving the moving 
boundary problem from t  =  0 to the last observation time t7. Furthermore, this cost has been 
normalised by the number of particles J used in REnKA. This normalisation enables us to 
provide a rough estimate of the scalable (with respect to J) computational cost of the REnKA 
(76) if each evaluation of the forward map (see step 2(b) in algorithm 1) is conducted in 
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Figure 13. Performance of REnKA (J  =  150) for the the approximation of the 
posterior measures {µn}7

n=1 with measurement configurations from (80). Left: log εΥn  
from (82). Middle: relative norm of the variance Σn (81). Right: scalable (with respect 
to J) computational cost of REnKA.
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parallel. As discussed in section 3.3, increasing the number of measurements results in more 
tempering distributions (i.e. iterations) in the REnKA scheme. Therefore the computational 
cost increases with the number of measurements. However, for a realistic choice of pressure 
sensors M  =  9, we note that cost of inverting measurements of both front location and pres-
sure sensor results (in average) in a scalable cost of 21 iterations. Since the number of particles 
that we use for REnKA is relatively low (J  =  150), such scalability with respect to the number 
of particles is reasonable with a high-end computer cluster and can be achieved within a few 
minutes.

6. Summary and conclusions

In this work we studied the Bayesian inverse problem that arises from inferring physical prop-
erties in a setting for porous media flow with a moving boundary. Our investigation is focused 
on the inference of log-permeability from measurements of pressure and observation of the 
(moving) domain occupied by resin during the resin injection stage of RTM relevant to the 
fabrication of composite materials. We adopted the infinite-dimensional Bayesian approach 
to inverse problems where the aim is to characterise, at each observation time, the posteriors 
that arise from conditioning the log-permeability on pressure/front measurements. The sim-
plicity of the 1D RTM model enabled us to show existence of the Bayesian posteriors in the 
aforementioned infinite-dimensional setting. These posteriors were then probed numerically 
with the dimension-independent SMC sampler for inverse problems from [22]. Our numerical 
experiments indicated that very large number of particles were needed to accurately approxi-
mate the Bayesian posteriors. This resulted in a high computational cost unfeasible for practi-
cal RTM settings.

In order to reduce computational cost of Bayesian inversions for practical RTM settings, 
we proposed a regularising ensemble Kalman algorithm (REnKA) that we motivated from the 
adaptive tempering SMC sampler of [22]. The proposed REnKA is based on Gaussian approx-
imations of the sequence of Bayesian posteriors and thus, in general, asymptotic convergence 
of posterior expectations cannot be ensured. Nevertheless, our numerical results demonstrated 
that REnKA is robust with respect to tuneable parameters and provides reasonably accurate 
estimates of the posterior mean and variance with a computational cost affordable for practical 
RTM processes.

While measurements have been widely used with ad-hoc approaches to estimate per-
meability of preform in RTM, to the best of our knowledge, this work constitutes the first 
investigation that uses a Bayesian inverse modeling framework for random moving boundary 
problems. From the numerical investigations that we conducted some conclusions and recom-
mendations can be made with relevant implications to practical RTM settings. In particular, 
our synthetic experiments indicated that, when a small number of sensors (5 sensors in 1D 
and 9 sensors in 2D) are used to measure pressure, observing the front/moving domain can 
substantially reduce the uncertainty (variance) of the estimates of the log-permeability. This 
is particularly relevant in real experiments when the number of pressure sensors are usually 
limited. However, when the inversion is conducted with only measurements of the moving 
front, the reconstruction of the main spatial features of the true permeability are not recovered 
accurately.

Our results also display the benefit of the proposed sequential approach in updating our 
knowledge of the log-permeability as soon as measurements become available. Indeed, invert-
ing measurements of pressure and front frequently in time, enabled us to reduce the uncer-
tainty in the log-permeability. While the reduction of the uncertainty is mainly achieved within 
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the region occupied by the resin at a given time, a decrease in the uncertainty (with respect to 
the prior) can also be observed in an unfilled region close to the front. Such a reduction of this 
uncertainty via the Bayesian posteriors can be valuable for decision-making purposes with the 
aim of an active control of RTM in real time. Further, we note that the proposed sequential 
approach is also beneficial in terms of obtaining more accurate estimates with respect to the 
truth than those obtained if the algorithm is modified to (iteratively) invert data all-at-once. 
More precisely, we conducted numerical experiments where we inverted, simultaneously, 
the entire set of data collected during a given time window for given synthetic experiment. 
Our results (not displayed) suggest that the sequential approach outperforms the all-at-once 
approach, producing estimates with smaller errors with respect to the truth and smaller vari-
ances of the log-permeability.

Finally, our numerical investigations show that the observation noise in pressure measure-
ments and front location have a substantial effect on the estimates of log-permeability and its 
uncertainties. Indeed, it comes as no surprise that more accurate measurements (e.g. 1%) result 
in estimates of log-permeability concentrated around the truth. Again, giving the limitation of 
deploying many pressure sensors within a real RTM scenario, it is then essential to use high 
precision pressure sensors to achieve enough confidence in the posterior uncertainties of the 
inferred permeability.

Although the context of this work is related to the resin injection in RTM processes, the 
Bayesian framework at the core of the proposed methodology, and the corresponding Gaussian 
approximations emerged from the proposed REnKA are generic, flexible, and thus transfer-
able to a wide class of inverse problems constrained by PDEs with moving boundaries.
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Appendix A. Proof of theorem 2.2

For the proof of theorem 2.2 we consider the dimensionless version of (19) and (20) that we 
derive in the following subsection.

A.1. Dimensional analysis

Let us consider the following change to dimensionless variables:

x → x/x∗, t → t/tf , p(x, t) → p(x, t)/p0,
u(x) → u(x)− u0, Υ(t) → Υ(t)/x∗,

 
(A.1)

where tf is a reference time and u0 is a reference (constant) log-permeability. For simplicity 
we choose

p0eu0 tf
µ(x∗)2 = 1, ϕ = 1, pI = 2p0,

which enable us to transform (19) and (20) into
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Υ(t) = W−1
u (t), t > 0 (A.2)

p(x, t) =

{
2 − Fu(x)

Fu(Υ(t)) , t � 0, x ∈ D(t) ≡ (0,Υ(t)),
1 t � 0, x ∈ [0, 1] \ D(t),

 (A.3)

where, with a slight abuse in the notation, the variables p, u, Υ, x and t are now the dimension-
less variables. Similarly, the dimensionless filling time (21) is given by

τ∗ =

∫ x∗

0
Fu(ξ)dξ. (A.4)

Let us note from (A.2) and (18) that

dΥ
dt

(t) =
1

Fu(Υ(t))
. (A.5)

Recall that {tn}N
n=1 is the collection of observation times with 0 < t1 < t2 < · · · < tN  and 

{xm}M
m=1 are the pressure measurement locations (0 < x1 < · · · < xM � x∗). We now prove 

two technical lemmas which are needed for the proof of theorem 2.2.

A.2. Technical lemmas

For all u ∈ X ≡ C[0, x∗], we define the norm

||u|| ≡ max
x∈[0,x∗]

|u(x)|,

and denote by (Υu, pu) the corresponding solutions of the dimensionless moving boundary 
problem (A.2) and (A.3). Similarly, the filling time given by (A.4) is denoted by τ∗,u.

Lemma A.1. For all u ∈ X ≡ C[0, x∗], there exists a constant Au such that

|Υu(t)−Υu(̂t)| � Au|t − t̂| (A.6)

for all t, t̂ ∈ [t1, τ∗,u]. The constant Au may depend only on ||u||, t1 and x∗.

Proof. Let u ∈ X and t ∈ [t1, τ∗,u]. From (A.5) and (18) it is clear that Υu(t) is increasing 
and satisfies Υu(t) � Υu(τ∗,u) = x∗. Therefore,

Fu(Υ
u(t)) =

∫ Υu(t)

0
e−u(z)dz �

∫ x∗

0
e−u(z)dz � x∗e||u||. (A.7)

Then, from (A.5) we have that

dΥu

dt
(t) =

1
Fu(Υu(t))

�
1
x∗

e−||u||, (A.8)

which implies

Υu(t) �
t

x∗
e−||u||. (A.9)

Similarly, note that
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Fu(Υ
u(t)) =

∫ Υu(t)

0
e−u(z)dz � Υu(t)e−||u|| �

t
x∗

e−2||u||, (A.10)

and so

dΥu

dt
(t) =

1
Fu(Υu(t))

�
x∗

t
e2||u|| �

x∗

t1
e2||u||, (A.11)

for all t ∈ [t1, τ∗,u]. The Mean Value theorem combined with (A.11) yields (A.6). □ 

Lemma A.2. For all u, v ∈ X, there exists a constant Bu,v, such that

|Υu(t)−Υv(t)| � Bu,v||u − v||, (A.12)

| pu(xm, t)− pv(xm, t)| � Bu,v||u − v||, (A.13)

for all t ∈ [t1,min{τ∗,u, τ∗,v}] and all m = 1, . . . , M. Moreover,

|τ∗,u − τ∗,v| � Bu,v||u − v||. (A.14)

The constant Bu,v may depend only on ||u||, ||v||, t1 and x∗.

Proof. From the mean value theorem it is not difficult to see that

|Fu(x)− Fv(x)| � xemax{||u||, ||v||}||u − v|| � x Mu,v||u − v||, (A.15)

where

Mu,v ≡ emax{||u||, ||v||}.

It is also not difficult to see that

|Fv(Υ
u(t))− Fv(Υ

v(t))| �
∣∣∣
∫ Υv(t)

Υu(t)
e−v(z)dz| � |Υu(t)−Υv(t)|e||v|| � Mu,v|Υu(t)−Υv(t)|.

 (A.16)

From (A.15) and (A.16), and the fact that Υu(t) � x∗, we have

|Fu(Υ
u(t))− Fv(Υ

v(t))| � |Fu(Υ
u(t))− Fv(Υ

u(t))|+ |Fv(Υ
u(t))− Fv(Υ

v(t))|

� Mu,v

[
x∗||u − v||+ |Υu(t)−Υv(t)|

]
.

 

(A.17)

From (A.11) we get

1
Fu(Υu(t))

1
Fv(Υv(t))

�
[x∗

t1

]2
e2||u||e2||v|| �

[x∗

t1

]2
M4

u,v. (A.18)

Therefore
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∣∣∣dΥu

dt
(t)− dΥv

dt
(t)

∣∣∣ � |Fu(Υ
u(t))− Fv(Υ

v(t))|
Fu(Υu(t))Fv(Υv(t))

�
[x∗

t1

]2
M5

u,v

[
x∗||u − v||+ |Υu(t)−Υv(t)|

]
.

We recall that Υu(0) = Υv(0) = 0 and use Gronwall’s inequality to conclude that

|Υu(t)−Υv(t)| � exp

[∫ t

0

[x∗

t1

]2
M5

u,vds

] ∫ t

0

(x∗)3

(t1)2 M
5
u,v||u − v||ds

= exp

[
t
[x∗

t1

]2
M5

u,v

]
t
(x∗)3

(t1)2 M
5
u,v||u − v||.

 

(A.19)

From (A.4) we see that

t � min{τ∗,u, τ∗,v} = min

{∫ x∗

0
Fu(ξ)dξ,

∫ x∗

0
Fv(ξ)dξ

}
� (x∗)2Mu,v

 

(A.20)

which we combine with (A.19) to obtain

|Υu(t)−Υv(t)| � Cu,v||u − v||, (A.21)

where

Cu,v ≡ exp

[
(x∗)4

t2
1

M6
u,v

]
(x∗)5

(t1)2 M
6
u,v. (A.22)

Hence, (A.11) is proved.
Let us now consider the case xm > Υu(t) and xm > Υv(t), then

| pu(xm, t)− pv(xm, t)| = 0 (A.23)

for all t ∈ [0,min{τ∗,u, τ∗,v}]. Assume now that xm � Υu(t), xm � Υv(t), and let us note that

Fu(Υ
u(t)) =

∫ Υu(t)

0
e−u(z)dz �

∫ xm

0
e−u(z)dz = Fu(xm). (A.24)

Therefore, from (A.3), (A.11), (A.24), (A.15), (A.17) and (A.21), we find

| pu(xm, t)− pv(xm, t)| � 1
Fv(Υv(t))

∣∣∣∣∣Fv(xm)− Fu(x) +
Fu(xm)

Fu(Υu(t))
(Fu(Υ

u(t))− Fv(Υ
v(t)))

∣∣∣∣∣

�
x∗

t1
e2||v||

[
|Fv(xm)− Fu(xm)|+ |Fu(Υ

u(t))− Fv(Υ
v(t))|

]

�
x∗

t1
M3

u,v

[
xm||u − v||+ x∗||u − v||+ |Υu(t)−Υv(t)|

]

�
x∗

t1
M3

u,v(2x∗ + Cu,v)||u − v||.

 

(A.25)
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Consider now the case xm � Υu(t), xm > Υv(t). From (A.3) and (A.24) that pu(xm, t) � 1. 
Therefore,

| pu(xm, t)− pv(xm, t)| = pu(xm, t)− 1 =
1

Fu(Υu(t))
(Fu(Υ

u(t))− Fu(xm))

=
1

Fu(Υu(t))
(Fu(Υ

u(t))− Fu(Υ
v(t)) + Fu(Υ

v(t))− Fu(xm)).

 (A.26)

Since Fu(Υ
v(t))− Fu(xm) < 0 (recall Υv(t) < xm) and Fu(Υ

u(t)) � Fu(Υ
v(t)), it then fol-

lows from (A.16), (A.11) and (A.21) that

| pu(xm, t)− pv(xm, t)| < 1
Fu(Υu(t))

(Fu(Υ
u(t))− Fu(Υ

v(t))) �
x∗

t1
M3

u,v|Υu(t)−Υv(t)|

�
x∗

t1
M3

u,vCu,v||u − v|| � x∗

t1
M3

u,v(2x∗ + Cu,v)||u − v||.

Hence, (A.12) is proved.

Finally, from (A.4) and (A.15), it is easy to see that

|τ∗,u − τ∗,v| �
∫ x∗

0
|Fu(ξ)− Fv(ξ)|dξ �

1
2
(x∗)2Mu,v||u − v||. (A.27)

We combine (A.21), (A.23), (A.25)–(A.27) and then (A.12)–(A.14) follows with

 
Bu,v ≡ min

{
Cu,v,

x∗

t1
M3

u,v(2x∗ + Cu,v),
1
2
(x∗)2Mu,v

}
.

□ 

A.3. Proof of theorem 2.2

Given t � t1 fixed, we first establish continuity of the following map u → Υu(t ∧ τ∗,u). Let 
u, v ∈ X and without loss of generality assume that τ∗,v � τ∗,u. Note that

|Υu(t ∧ τ∗,u)−Υv(t ∧ τ∗,v)| � |Υu(t)−Υv(t)|It<τ∗,v + |Υu(t)−Υv(τ∗,v)|It∈[τ∗,v,τ∗,u]

+ |Υu(τ∗,u)−Υv(τ∗,v)|It>τ∗,u . (A.28)

Since Υu(τ∗,u) = Υv(τ∗,v) = x∗, the previous expression reduces to

|Υu(t ∧ τ∗,u)−Υv(t ∧ τ∗,v)| � |Υu(t)−Υv(t)|It<τ∗,v + |Υu(t)−Υv(τ∗,v)|It∈[τ∗,v,τ∗,u]. (A.29)

We observe that we can write

Υu(t)−Υv(τ∗,v) =
1
2
[Υu(t)−Υu(τ∗,u)] +

1
2
[Υu(t)−Υu(τ∗,v)]. (A.30)

Then by lemmas A.1 and A.2, we obtain

|Υu(t)−Υv(τ∗,v)| � Au|t − τ∗,u|+Au|t − τ∗,v|
= Au(τ

∗,u − t) +Au(t − τ∗,v) = Au(τ
∗,u − τ∗,v) � AuBu,v||u − v|| (A.31)

for all t ∈ [τ∗,v, τ∗,u]. We combine (A.31) with (A.28) and use lemma A.1 again to obtain

|Υu(t ∧ τ∗,u)−Υv(t ∧ τ∗,v)| � Bu,v(1 +Au)||u − v|| (A.32)
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for all t � t1 which establishes the continuity of u → Υu(t ∧ τ∗,u) and, in particular, of 
GΥ

n (u) = Υu(tn ∧ τ∗,u) for all n = 1, . . . , N .
Similarly, we now prove the continuity of u → pu(xm, t ∧ τ∗,u). We note that

| pu(xm, t ∧ τ∗,u)− pv(xm, t ∧ τ∗,v)| � | pu(xm, t)− pv(xm, t)|It<τ∗,v

+| pu(xm, t)− pv(xm, τ∗,v)|It∈[τ∗,v,τ∗,u] + | pu(xm, τ∗,u)− pv(xm, τ∗,v)|It>τ∗,u .
 

(A.33)

From (A.3) it follows

| pu(xm, t)− pv(xm, τ∗,v)| =
∣∣∣ Fu(xm)

Fu(Υu(t))
− Fv(xm)

Fv(Υv(τ∗,v))

∣∣∣

�
1

Fu(Υu(t))

[∣∣∣Fu(xm)− Fv(xm)
∣∣∣+ Fv(xm)

Fv(x∗)
|Fv(Υ

v(τ∗,v))− Fu(Υ
u(t))|

]

 

(A.34)

for all t ∈ [τ∗,v, τ∗,u]. Using (A.31) as well as similar arguments to the ones used before, we 
obtain

|Fu(Υ
u(t))− Fv(Υ

v(τ∗,v))| � |Fu(Υ
u(t))− Fu(Υ

v(τ∗,v))|+ |Fu(Υ
v(τ∗,v))− Fv(Υ

v(τ∗,v))|
� Mu,v|Υu(t)−Υv(τ∗,v)|+ |Fu(x∗)− Fv(x∗)|
� Mu,v|Υu(t)−Υv(τ∗,v)|+ x∗ Mu,v||u − v|| � Mu,v(AuBu,v + x∗)||u − v||.

 

(A.35)

We use (A.35), (A.11) and the fact that Fv(xm) � Fv(x∗) to rewrite (A.34) as follows

| pu(xm, t)− pv(xm, τ∗,v)| � x∗

t1
M2

u,v

[
xmMu,v +Mu,v(AuBu,v + x∗)

]
||u − v||

� 2
x∗

t1
M3

u,v

[
x∗ +AuBu,v

]
||u − v||.

 (A.36)
From similar arguments it is easy to see that

| pu(xm, τ∗,u)− pv(xm, τ∗,v)| =
∣∣∣Fu(xm)

Fu(x∗)
− Fv(xm)

Fv(x∗)

∣∣∣

�
1

Fu(x∗)

[∣∣∣Fu(xm)− Fv(xm)
∣∣∣+ Fv(xm)

Fv(x∗)
|Fv(x∗)− Fu(x∗)|

]

�
x∗

t1
M2

u,v

[
xmMu,v + x∗Mu,v|

]
||u − v|| � 2

(x∗)2

t1
M3

u,v||u − v||.

 (A.37)

We use (A.36) and (A.37) and lemma A.2 to conclude that

| pu(xm, t ∧ τ∗,u)− pv(xm, (t ∧ τ∗,v))| �
[
Bu,v + 4

x∗

t1
M3

u,v(x
∗ +AuBu,v)

]
||u − v||

 (A.38)
which proves the continuity of u → pu(xm, t ∧ τ∗,u) for all t � t1. The continuity of G p

n (u) then 
follows. □ 

Appendix B. SMC sampler and pcn-MCMC algorithm

In algorithm 2 we display the pcn-MCMC method that we use for the mutation step in the 
SMC sampler of [22] discussed in section 3.2 and summarized in algorithm 3 below.
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Algorithm 2. pcn-MCMC to generate samples from a µn,r -invariant Markov kernel.

   Select β ∈ (0, 1) and an integer Nµ.
   for j = 1, . . . , J  do

   Initialize ν( j)(0) = û( j)
n,r

        while α � Nµ do
           (1) pcN proposal. Propose uprop from

                 uprop =
√

1 − β2ν( j)(α) + (1 −
√

1 − β2)u + βξ, with ξ ∼ N(0, C)
           (2) Set ν( j)(α+ 1) = uprop with probability a(ν( j)(α), u) and ν( j)(α+ 1) = ν( j)(α) 
with probability 1 − a(ν( j)(α), u), where

                a(u, v) = min
{

1, ln,r(uprop,yn)
ln,r(v,yn)

}

   with ln,r defined in (46)
           (3) α ← α+ 1
        end while
   end for

Algorithm 3. SMC algorithm for high-dimensional inverse problems.

   Let {u( j)
0,0}J

j=1 ∼ µ0 be the initial ensemble of J particles.
   Define the tunable parameters Jthresh and Nµ.
   for n = 1, . . . , N  do
        Set r  =  0 and φn,0 = 0
        While φn,r < 1 do
           r → r + 1

           Compute the nth likelihood (29) ln(u
( j)
n,r−1, yn) (for j = 1, . . . , J)

           Compute the tempering parameter φn,r :
           if minφ∈(φn,r−1,1) ESSn,r(φ) > Jthresh then
             set φn,r = 1.
           else
             compute φn,r  such that ESSn,r(φ) ≈ Jthresh

             using a bisection algorithm on (φn,r−1, 1].
           end if

           Computing weights from expression (44) W( j)
n,r ≡ W( j)

n,r−1[φn,r]

           Resample. Let ( p(1)
n , . . . , p(Np)

n ) ∈ R(W(1)
n,r , . . . , W(Np)

n,r ),

           Set û( j)
n,r ≡ u( p( j)

n )
n,r−1  and W( j)

n,r = 1
J

           Mutation. Sample u( j)
n,r ∼ Kn,r(û

( j)
n,r , ·) via algorithm 2.

        end while

        Set u( j)
n+1,0 ≡ u( j)

n,r . Approximate µn by µJ
n ≡ 1

J

∑J
j=1 δu( j)

n,r
   end for

Appendix C. Numerical implementation of the 1D forward model

In this section we discuss the key aspects of the numerical implementation of the dimension-
less version of the 1D RTM forward model derived in appendix A.1.
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Note that Fu defined in (18) can we written as

Fu(x) ≡
∫ x

0
e−u(z)dz =

∫ 1

0
e−u(z)H(x − z)dz, (C.1)

where

H(x) =
{

0, if x < 0,
1, if x � 0,

is the Heaviside function. In order to approximate (A.2) and (A.3), we discretize the domain 
[0, 1] with S subintervals with end points defined by xs+1/2 = [1/2 + s]∆x (s = 0, . . . S), 
where ∆x = x∗/S  and the centers of the cells are xs =

xs−1/2+xs+1/2

2 . Let us consider a piece-
wise constant approximation of the unknown u defined on the centers of the cells, i.e.

u(x) ≈
∑
s=1

usχ[xs−1/2,xs+1/2],

where us = u(xs). Therefore, (C.1) can be approximated by

Fu(x) ≈
S∑

s=1

e−us

[
1
2
+

1
2
tanh r(x − xs)

]
∆x, (C.2)

where we have replaced H(x) with its smooth approximation Ĥ(x) = 1
2 + 1

2 tanh rx (with 
r  =  300) [6].

We consider a temporal domain [0, 0.4] discretized with K points tk = k∆t, where 
∆t ≡ tf /K . An implicit backward Euler scheme applied to the dimensionless version of (16) 
yields

1
∆t

(Υk+1 −Υk)−
1

Fu(Υk+1)
= 0, Υ0 = 0, (C.3)

where Υk ≡ Υ(tk). For the approximation of (C.3), we use (C.2). The solution of the resulting 
nonlinear equation is implemented in MATLAB by means of the routine fzero. Once Υk is 
computed, we evaluate the pressure field from

p(x, tk) = 2 − Fu(x)
Fu(Υk)

 (C.4)

at the mesh points xs+1/2 defined earlier.
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