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a b s t r a c t 

This paper presents a new model for Petri nets (PNs) which combines PN principles with 

the foundations of information theory for uncertain knowledge representation. The result- 

ing framework has been named Plausible Petri nets (PPNs). The main feature of PPNs re- 

sides in their efficiency to jointly consider the evolution of a discrete event system to- 

gether with uncertain information about the system state using states of information . The 

paper overviews relevant concepts of information theory and uncertainty representation, 

and presents an algebraic method to formally consider the evolution of uncertain state 

variables within the PN dynamics. To illustrate some of the real-world challenges relating 

to uncertainty that can be handled using a PPN, an example of an expert system is pro- 

vided, demonstrating how condition monitoring data and expert opinion can be modelled. 
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1. Introduction 

Plausible reasoning is a fundamental human capability that involves the manipulation of perceptions, signs, and in-

formation from uncertain surroundings, which allows us to render an uncertain knowledge representation of reality. For

many years, uncertain knowledge representation has attracted considerable attention from a large number of researchers in

the artificial intelligence (AI) community in order to make real-world knowledge suitable for processing by computers. For

decades, Bayesian networks [1] have played a leading role in plausible reasoning and knowledge representation in the AI

community [2] . Other formalisms were also used to enable reasoning under uncertainty, such as fuzzy conceptual graphs,

influence diagrams, Markov models, neural networks, and dynamic uncertainty causality graphs, to name but a few. See

[3] for a recent overview and [4] for a discussion of these methods. However, despite the efficiency that these methods

have demonstrated for uncertain knowledge representation and reasoning at a system level, their pragmatism is not suf-

ficient when features of real-life systems like synchrony, concurrency, and complexity are considered in the modelling. To

efficiently approach these modelling issues, an increasing number of researchers reported progress towards the modelling of

knowledge-based reasoning using Petri nets (PNs) [5] . PNs are bipartite directed graphs (digraphs), which are used to model

and analyse discrete event systems. The basic concepts relative to the theory of PNs are summarised in [6] , whereas a recent

broad historical perspective on this field is provided in [7] . A tutorial for practical engineering applications of PNs can be

found in [8] . PNs are well-suited to modelling knowledge representation at a system level since they provide a graphical
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support for interpretation, but also because they rely on mathematical principles which enable their implementation and

simulation in a rational manner. However, the main drawback of PNs is that they are not adequate to modelling uncertainty

when considered under the original definition proposed by Carl A. Petri [5] , since their dynamics are based on sequences of

Boolean operations. Thus, over the last three decades, researchers developed variants of the original PNs in order to handle

uncertain information. Of the many PN variants, Fuzzy Petri nets (FPNs) have received much attention, since they are of

particular interest for tackling fuzziness in systems modelling [9,10] . Following the pioneering FPN work in [11] , a num-

ber of contributions have been devoted to enhancing FPNs with improved rules of inference and uncertainty management,

e.g. [12,13] . See [14,15] for a discussion of the various FPN improvements, and [16,17] for recent literature reviews on this

topic. Moreover, other approaches appeared to consider not only fuzziness over the PN structure but also other types of

uncertainty like, for example, Possibilistic PNs [18,19] . 

None of the PN variants developed to handle uncertainty are well-suited to embedding plausible reasoning into the PN

formalism, nor do they consider the hybrid nature of real-world dynamical systems, consisting of a combination of discrete

and continuous processes whose evolution may be uncertain. In this context, this paper proposes a new class of models

within the PN paradigm, which has been developed by combining information theory principles with the PN technique. The

resulting framework has been named Plausible Petri Nets (PPNs). The pivotal idea behind PPNsis to consider two interacting

subnets: (1) the symbolic subnet , where the tokens are objects in the sense of integer moving units, as in classical PNs [5] ;

(2) the numerical subnet , where tokens are density functions (also referred to here as states of information ) about a state

variable. In PPNs, the uncertainty is accounted for through the states of information, which provide a mapping that assigns

to each possible numerical value of the state variable its relative plausibility [20,21] . The resulting model is hybrid since its

response is determined by the interaction between the continuous and discrete dynamics. 

In the literature, first attempts to represent system hybrid characteristics using PNs were proposed by [22,23] (revisited

afterwards in [24] and [25] , respectively). Hybrid Petri nets (HPNs) still constitute an active area of research today, since

they provide a satisfactory solution to the state explosion problem typically present in the PN-based analysis of engineering

systems [26] . Several formalisms falling in this category have been recently presented in the literature, mostly motivated

by particular engineering applications, e.g. see [27–29] . However, HPNs suffer from some restrictions for uncertain knowl-

edge representation since: (1) uncertainty cannot be fully accounted for, despite some approaches like [30,31] , which make

a partial attempt to model uncertainty by considering stochastic firing of transitions or by adding randomness to the nu-

merical subnet; (2) the numerical and symbolic subnets interact in a unidirectional manner (namely, the symbolic subnet

may influence the numerical subnet behaviour, whilst the opposite never occurs [26] ), which ultimately limits the knowl-

edge representation and reasoning capabilities. It is worth mentioning that a particular approach within the HPN paradigm,

referred to as Hybrid Particle Petri nets (HPPNs), was first presented in [32] and further developed in [33,34] to capture the

hybrid aspects of the system dynamics and also the uncertainties. Nonetheless, their formulations are based on a discreti-

sation of the numerical values through a limited set of weighted particles acting as moving tokens within the numerical

subnet, which limits their ability to represent the uncertainty. 

With the proposed PPNs, the uncertainty is rigorously accounted for through adaptive states of information about state

(numerical) variables defining a flow of uncertain information over time of execution. Hence, the net dynamics is not only

associated with the concept of adding and subtracting integer values (classical tokens) in congruence with the state of

the numerical subnet, but also with the operation of adding and subtracting states of information about the system state,

which represents a novelty with respect to previous HPN approaches reported in the literature. Moreover, the numerical and

symbolic subnets in PPNs interact in a bidirectional manner, which overcomes the aforementioned limitation of most of the

HPN approaches. 

Apart from introducing the concept of PPNs for uncertain knowledge representation, this paper also 

1. formally defines the PPN execution rules; 

2. analyses structural properties from an information theoretic approach; 

3. proposes a particle-based approximation for the states of information to confer versatility to the PPNs; 

4. provides a pseudocode implementation for PPNs; 

5. illustrates the applicability of PPNs through a numerical example about an expert system. 

Initial ideas about the PPN methodology have been first presented in a conference paper [35] but here we provide fuller

explanation, insightful examples, and extended results. The remainder of the paper is organised as follows. Section 2 briefly

overviews basic concepts about PNs and plausible reasoning before introducing the mathematical basis of PPNs. The gen-

eral formalism for the proposed PPNs and their execution rules, are mathematically described in Section 3 . In Section 4 ,

an algorithmic description of PPNs is provided. Section 5 illustrates our approach through a fault tolerant expert sys-

tem and Section 6 discusses the main findings and provides a comparative analysis with different PN paradigms. Finally,

Section 7 gives concluding remarks. 
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2. Basic concepts 

2.1. Petri nets 

PNs were introduced in the thesis dissertation Kommunikation mit Automaten by Carl Petri in 1962 [5] . From a math-

ematical perspective, PNs are bipartite directed graphs (digraphs) which are broadly used for modelling the dynamics of

systems. 

Definition 1 (Petri net [6] ) . A PN is defined as a tuple N = 

〈
P , T , F , W , M 0 

〉
, where: 

1. P = { p 1 , p 2 , . . . , p n p } is a finite set of places; 

2. T = { t 1 , t 2 , . . . , t n t } is a finite set of transitions, such that T ∩ P = ∅ and T ∪ P = ∅ ; 
3. F ⊆( P × T ) ∪ ( T × P ) represents a set of directed arcs connecting places to transitions and vice versa; 

4. W : F → N > 0 is a weight function, which assigns a value (1 by default) to each arc within F ; 

5. M 0 : P → N is the initial marking, which expresses the initial distribution of tokens over the set of places. 

The following notation will also be considered: 

• t is the set of input places of transition t , also referred to as the pre-set of t ; 

t • is the set of output places of transition t , also referred to as the post-set of t ; 

The dynamics of a PN can be described through a state equation defined as follows [6] : 

M k +1 = M k + A 

T u k (1)

where k ∈ N is the time index, and A is an n t × n p matrix typically referred to as the incidence matrix , which can be obtained

as the result of subtracting the backward incidence matrix (A 

−) from the forward incidence matrix (A 

+ ) , i.e.: 

A = A 

+ − A 

− (2)

where A 

+ = 

[ 
a + 

i j 

] 
, A 

− = 

[ 
a −

i j 

] 
, i = 1 , . . . , n t , j = 1 , . . . , n p . The element a + 

i j 
is the weight of the arc from transition t i ∈ T

to output place p j ∈ P , whereas a −
i j 

is the weight of the arc to transition t i from input place p j . The term u k =
(u 1 ,k , u 2 ,k , . . . , u n t ,k ) 

T is the firing vector , a vector of binary values whose i th component takes 1 if transition t i is fired,

and 0 otherwise. A necessary condition for t i to be fired is to have been enabled, which occurs if each input place of t i is

marked with at least a −
i j 

tokens. Mathematically: 

M( j) � a −
i j 

∀ p j ∈ 

•t i (3)

where M( j) ∈ N is the marking for place p j . 

In practical applications, transitions are typically assigned with time delays which are useful for performance evaluation

and scheduling problems of dynamical systems [6] . The resulting PNs are called Timed Petri nets if the delays are determin-

istic, and Stochastic Petri nets if the delays are randomly chosen by sampling distributions [36] . In such cases, a transition is

time-enabled once its time delay has passed provided that the condition given by Eq. (3) is satisfied. If more than one timed

transition is enabled, then an execution policy can be used to specify the procedure whereby the transition to fire is chosen

[6] . Typically, the execution policy is specified by the transition with the minimum time delay (race policy), although other

execution policies can also be applied [37] . 

2.2. Interpretation of uncertainty 

Consider a measurable space X ⊂ R 

d , where A ⊆ X is a subspace representing a certain event or proposition over X .

Most readers will be familiar with the concept of probability P (A ) as a Lebesgue measure of A , i.e.: 

P (A ) = 

∫ 
A 

f (x ) dx � 0 (4)

where f ( x ) is a density function , a Lebesgue integrable function that can be normalised such that 
∫ 
X f (x ) dx = 1 , which is

equivalent to saying that P (X ) = 1 . In this work, we adopt a subjective interpretation of probability as epistemic uncer-

tainty whereby f ( x ) represents the degree of belief of the various possible (plausible) values of the uncertain variable x ∈ X .

This interpretation is not well known in the engineering community, where there is a widespread belief that probability

only applies to aleatory uncertainty (inherent randomness) and not to epistemic uncertainty (incomplete information) [38] .

Examples of this epistemic uncertainty could arise in the case of the measurement of a state variable given by a noisy

sensor, or the consideration of several expert opinions on the value of such variable. Henceforth, under a plausibility-based

interpretation of uncertainty, probability cannot be viewed as an absolute measure of an event being true or false, but as a

multi-valued logic which expresses the relative plausibility of several possibilities [39] . 

Definition 2 (State of information [20] ) . The degree of belief about the values of the variable x ∈ X is referred to as the

state of information of x , which is represented using the density function f ( x ). 
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In this sense, P (A ) in Eq. (4) is interpreted as the plausibility of the set of possible values x ∈ A ⊆ X given a state of

information about them provided by f ( x ). From Definition 2 , the homogeneous density function μ( x ) � = 0 can be defined as

a particular density function to represent the state of complete ignorance about x ∈ X , henceforth providing a reference

probability model for x in the absence of any other information [20,40] . In case that X is a linear space, it is demonstrated

that μ(x ) = cte, i.e. μ( x ) represents a uniform density function over X . 

Suppose now that two states of information are available about the same variable x , namely f a ( x ) and f b ( x ), which we

may want to combine to obtain a single state of information. This can be achieved by extending the logic operators AND ( ∧ )

and OR ( ∨ ) from Boolean logic for logical propositions to the conjunction and disjunction of states of information, as follows.

Definition 3 (Conjunction of states of information [20] ) . Let f a ( x ) and f b ( x ) be two states of information about variable x ∈ X .

The density ( f a ∧ f b )( x ) represents the conjunction of states of information given by f a ( x ) and f b ( x ), which can be obtained as

[20] : (
f a ∧ f b 

)
(x ) = 

1 

α

f a (x ) f b (x ) 

μ(x ) 
(5) 

In the last equation, μ( x ) is the homogeneous density function, and α a normalising constant. 

Note that there might be cases where the calculation of the normalising constant α in Eq. (5) involves an intractable

integral. Furthermore, in practical engineering applications, the density functions f a ( x ) and f b ( x ) may be defined through

samples. Hence, sampling-based algorithms (e.g. particle methods) [41] can be used in these cases to circumvent the evalu-

ation of the normalising constant with a feasible computational cost. In particle methods, a set of N samples 
{

x (n ) 
}N 

n =1 
with

associated “weights” (relative likelihoods) 
{
ω 

(n ) 
}N 

n =1 
are used to obtain an approximation of the required density function

[e.g. ( f a ∧ f b )( x )], as follows: 

(
f a ∧ f b 

)
(x ) ≈

N ∑ 

n =1 

ω 

(n ) δ
(
x − x 

(n ) 
)

(6) 

where x ( n ) denotes the n th sample obtained from ( f a ∧ f b ) ( x ), δ is the Dirac delta, and ω 

( n ) is the weight of x ( n ) , which can

be obtained for the case of X being a linear space as follows [42] : 

ω 

(n ) = 

f a (x 

(n ) ) f b (x 

(n ) ) 
N ∑ 

n =1 

f a (x 

(n ) ) f b (x 

(n ) ) 

(7) 

A pseudocode implementation to obtain particles from the conjunction ( f a ∧ f b ) ( x ) is provided as Algorithm 1 . 

Algorithm 1 Particle approximation of conjunction of states of information. Ref. [43] is cited below. 

Inputs: N, f a (x ) , f b (x ) � {number of particles and states of information} 

Outputs: 

{ 
x (n ) , ω 

(n ) 
} N 

n =1 
, where x (n ) ∼ ( f a ∧ f b )(x ) 

Begin 

1: Sample 

{ (
˜ x (n ) 

a , ˜ ω 

(n ) 
a 

)} N 
n =1 

from f a (x ) � {e.g. use rejection sampling [43]} 

2: Set x (n ) ← 

˜ x (n ) 
a , n = 1 , . . . , N 

3: Obtain ˆ ω 

(n ) ← f b 
(
x (n ) 
)
, n = 1 , . . . , N � {unnormalised weights} 

4: Normalise weights ω 

(n ) ← 

ˆ ω (n ) ∑ N 
n =1 ̂  ω (n ) 

, n = 1 , . . . , N 

Definition 4 (Disjunction of states of information [20] ) . Let f a ( x ) and f b ( x ) be two states of information about variable

x ∈ X . ( f a ∨ f b ) ( x ) represents the disjunction of states of information given by f a ( x ) and f b ( x ), which can be expressed as a

normalised density function [20] : (
f a ∨ f b 

)
(x ) = 

1 

β

(
f a (x ) + f b (x ) 

)
(8)

where β is a normalising constant. 

A pseudocode implementation for the disjunction of states of information is provided using samples from f a ( x ) and f b ( x ),

and referred to as Algorithm 2 . Note that the disjunction operation can be easily extended to the case of multiple states of

information (e.g. f 1 (x ) , f 2 (x ) , . . . , f m 

(x ) ), as follows [40] : (
f 1 ∨ · · · ∨ f m 

)
(x ) = 

1 

β

m ∑ 

i =1 

f i (x ) (9) 
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Algorithm 2 Particle approximation of disjunction of states of information. Ref. [43] is cited below. 

Inputs: N, f a (x ) , f b (x ) � {number of particles and states of information} 

Outputs: 

{ 
x (n ) , ω 

(n ) 
} N 

n =1 
, where x (n ) ∼ ( f a ∨ f b )(x ) 

Begin 

1: Sample 

{ (
˜ x (n ) 

a , ˜ ω 

(n ) 
a 

)} N 
n =1 

from f a (x ) � {e.g. use rejection sampling [43]} 

2: Sample 

{ (
˜ x (n ) 

b 
, ˜ ω 

(n ) 
b 

)} N 
n =1 

from f b (x ) 

3: 

{ 
1 / 2 ˜ ω 

(n ) 
a ← ˜ ω 

(n ) 
a 

} N 
n =1 

� {Modify particle weights} 

4: 

{ 
1 / 2 ˜ ω 

(n ) 
b 

← ˜ ω 

(n ) 
b 

} N 
n =1 

� {Modify particle weights} 

5: Concatenate 

{ (
˜ x (n ) 

a , ̃  x (n ) 
b 

)} N 
n =1 

and renumber as 

(
˜ x (1) , ̃  x (2) , . . . , ̃  x (2 N) 

)
6: Concatenate 

{ (
˜ ω 

(n ) 
a , ˜ ω 

(n ) 
b 

)} N 
n =1 

and renumber as 

(
˜ ω 

(1) , ˜ ω 

(2) , . . . , ˜ ω 

(2 N) 
)

7: 

{ 
x (n ) , ω 

(n ) 
} N 

n =1 
← resampling 

{ 
˜ x (n ) , ˜ ω 

(n ) 
} 2 N 

n =1 

Fig. 1. Illustrative example of the conjunction (left) and disjunction (right) of states of information f a ( x ) and f b ( x ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which can be straightforwardly approximated using particles through Algorithm 2 by aggregating samples from

f 1 (x ) , f 2 (x ) , . . . , f m 

(x ) and considering 1/ m as the modifying constant for particle weights in steps 3 and 4. Fig. 1 provides

us with a conceptual illustration of the conjunction and disjunction of states of information over some arbitrary densities

f a ( x ) and f b ( x ). From left to right, the panels show the resulting density f ( x ) from the conjunction and disjunction operation,

respectively. In both cases, the result has been represented superimposed over f a ( x ) and f b ( x ) for clarity. 

Definition 5 (Conditional probability density [20,40] ) . Let us consider a state of information f ( x ) defined over X along with

the proposition x ∈ B, where B ⊆ X is a region of the x -space. Then, the conditional density function f (x | x ∈ B) can be

viewed as a special case of a conjunction of states of information between f ( x ) and a special density μB (x ) defined as: 

μB (x ) = 

{
kμ(x ) , if x ∈ B 

0 , otherwise 
(10)

where μ( x ) is the homogeneous density function, and k > 0 is a normalising constant. 

A practical instance of the aforementioned definition is given when B can be defined through a performance function

g : X → R , as a region of the x -space corresponding to the performance function exceeding some specified threshold level b ,

i.e. B = 

{
x ∈ X : g(x ) > b 

}
. By combining Eqs. (5) and (10) , the conjunction of states of information between f ( x ) and μB (x )

can be written as: 

( f ∧ μB )(x ) = k 1 
f (x ) kμ(x ) 

μ(x ) 
= k 2 f (x ) | x ∈B � f (x | x ∈ B) 

= 

{
f (x ) , if g(x ) > b 
(∅ ) , otherwise 

(11)

where k 1 , k 2 are normalising constants. Note that the result of the conjunction ( f ∧ μB )(x ) is equal to f ( x ) except for the

condition of being restricted upon the region B, since the relative information of f ( x ) with respect to μB (x ) is exactly the

information content of f ( x ) within B [20] . Fig. 2 provides us with an illustrative example of the conditional density function
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Fig. 2. Illustrative example of a conditional probability density f (x | x ∈ B) (shown in the right panel) obtained as indicated by Eq. (11) . Each subplot 

presents samples (circles) in the state space X ⊆ R 
2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of a bi-dimensional state variable (right panel) obtained as a conjunction of states of information between f ( x ) (left panel)

and μB (x ) , where f (x ) ∼ N 

(
[20 , 15] , �p 1 

)
being �p 1 = diag(5 2 , 3 2 ) . Here, the region B is defined as B = 

{
x = (x 1 , x 2 ) ∈ R 

2 :

15 � x 1 � 20 
}

. In this example, a total of N = 10 0 0 samples have been used in Algorithm 1 for the particle approximation

of the conjunction of the states of information. 

3. Plausible Petri nets 

A mathematical description of PPNs is provided below. 

3.1. Concept 

Definition 6 (Plausible Petri nets) . A PPN is defined as a 9-tuple M = 

〈
P , T , F , W , D , X , G, H, M 0 

〉
, where: 

1. P denotes the set of places which is partitioned into numerical places P 

(N ) ∈ N 

n 
(N ) 

p , and symbolic places P 

(S) ∈ N 

n 
(S) 

p ,

such that P 

(N ) ∪ P 

(S) = P , and P 

(N ) ∩ P 

(S) = ∅ . Superscripts n 
(N ) 

p , n 
(S) 

p represent the number of numerical and symbolic

places, respectively; 

2. T is the set of transitions which is partitioned into numerical transitions T (N ) ∈ N 

n 
(N ) 

t and symbolic transitions T (S) ∈

N 

n 
(S) 

t , where T (N ) ∪ T (S) = T , and T (N ) ∩ T (S) � = ∅ . Analogously, n 
(N ) 

t , n 
(S) 

t denote the number of numerical and symbolic

transitions, respectively. Those transitions that belong to T (N ) ∩ T (S) are referred to as mixed transitions; 

3. F denotes the set of arcs which contains ordered pairs of nodes that indicate the connections between transitions and

places, i.e. F ⊆( P × T ) ∪ ( T × P ), hence F ⊂ N 

n 
(N ) 

p + n (S) 

p × N 

n 
(N ) 

t + n (S) 

t ; 

4. W is a set of non-negative weights applied to each arc within F (1 by default). The set is partitioned into two subsets,

W 

(N ) and W 

(S) , each one corresponding to the numerical and symbolic subnet respectively, such that W 

(N ) ∪ W 

(S) = W ,

W 

(N ) ∩ W 

(S) = ∅ ; 
5. D is a set of switching delays for the symbolic and mixed transitions (0 by default); 

6. X ⊂ R 

d is the space of the state variable x and d the dimension of X ; 

7. G is a set of density functions associated with the numerical places and transitions; 

8. H is a set of equations representing the dynamics of the state variable x ∈ X . They can be of different types (e.g. differ-

ence equations, linear, nonlinear, deterministic, etc.) and represent the temporal evolution of the state variable x ; 

9. M 0 is the initial marking of the net, which is given by the pair of vectors M 

(N ) 
0 

and M 

(S) 
0 

for numerical and symbolic

places, respectively. 

Observe from Definition 6 that two subnets can be differentiated from the referred tuple M : (a) the numerical subnet

given by the tuple 
〈
P 

(N ) , T (N ) , E , W 

(N ) , X , F , H, M 

(N ) 
0 

〉
, which accounts for the numerical behaviour of the system; and (b) a

symbolic subnet defined by 
〈
P 

(S) , T (S) , E , W 

(S) , D , M 

(S) 
0 

〉
. 

3.2. Modelling assumptions and properties 

Let x k ∈ X represents the state variable of the system at time k ∈ N . The following are assumptions and interpretations

adopted to mathematically describe a PPN model: 
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Fig. 3. Illustration of a sample PPNwith two numerical places ( p (N ) 
1 

, p (N ) 
2 

), two symbolic places ( p (S) 
1 

, p (S) 
2 

), and one transition ( t 1 ). The dashed rectangles 

are to highlight the pre-set and post-set of transition t 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. As in PNs, symbolic places P 

(S) contain tokens which account for the discrete behaviour of the system; 

2. A numerical place p (N ) 
j 

contains a state of information about x k given by f p j (x k ) ∈ G, where f p j is a density function; 

3. Transition t i ∈ T (N ) carries information about x k through the corresponding state of information given by f t i (x k ) ∈ G; 

4. The arc weights a + 
i j 
, a −

i j 
∈ W 

(N ) ⊂ R 

+ provide us with a measure of the importance of the information that flows from/to

the corresponding transition. The incidence matrix for the numerical subnet is defined from W 

(N ) as A 

(N ) = 

[
a i j 

]
, where

a i j = a + 
i j 

− a −
i j 
, i = 1 , . . . , n 

(N ) 

t , j = 1 , . . . , n 
(N ) 

p ; 

5. Correspondingly, a 
′ + 
i j 

, a 
′ −
i j 

∈ W 

(S) ⊂ N denote the arc weights for the symbolic subnet, where the incidence matrix A 

(S) =[ 
a 

′ 
i j 

] 
is obtained as a 

′ 
i j 

= a 
′ + 
i j 

− a 
′ −
i j 

, i = 1 , . . . , n 
(S) 

t , j = 1 , . . . , n 
(S) 

p ; 

6. The marking comprises two column vectors: M 

(N ) 
k 

for the numerical subnet, and M 

(S) 
k 

for the symbolic one, so that M k =(
M 

(N ) 
k 

, M 

(S) 
k 

)
. Mathematically, M 

(N ) 
k 

is expressed through a column vector of density functions, specified by M 

(N ) 
k 

=(
f 

p 1 
k 

(x k ) , f 
p 2 
k 

(x k ) , . . . , f 
p n (N ) 

p 
k 

(x k ) 
)T 

. Similarly, M 

(S) 
k 

is expressed through a column vector of integer values so that its

j -th component represents the number of tokens visiting p (S) 
j 

at k ; 

7. The system evolves in discrete-time with rate k ∈ N . The system dynamics of both subnets are coupled through mixed

transitions , whose firing allows us to sequentially activate/deactivate the referred subnets in a synchronised manner. 

A PPN model is shown in Fig. 3 for illustration purposes. A double line is adopted to represent the nodes which belong

to the numerical subnet, and a single line for the rest. 

Definition 7 (Transition firing of PPNs) . Transition t i ∈ T is fired at discrete time k if: 

1. Time delay τ i has elapsed and each symbolic place from the pre-set of t i has enough tokens according to their input arc

weight (mathematically, ∀ p (S) 
j 

∈ 

•t i , M 

(S) 
k 

( j) � a 
′ −
i j 

), for t i ∈ T (S) ; 

2. The conjunction of states of information between f t i (x k ) and each of the density functions of the numerical places

from the pre-set of t i , does not yield a null-probability to any subspace B ⊂ X . Mathematically, ∀ p (N ) 
j 

∈ 

•t i , 
∫ 
B 
(

f p j ∧
f t i 
)
(x k ) dx k > 0 , which in this case applies for numerical transitions, i.e., t i ∈ T (N ) ; 

3. Conditions (1) and (2) are both satisfied when t i is a mixed transition, i.e. t i ∈ (T (S) ∩ T (N ) ) . 

Note from Condition (1) that t i ∈ T (S) is timed enabled when time delay τ i has elapsed, whereas it is logically enabled

when the condition M 

(S) 
k 

( j) � a 
′ −
i j 

, ∀ p (S) 
j 

∈ 

•t i , is met. Once fired, t i removes a 
′ −
i j 

tokens from each j th pre-set place, as a

usual discrete transition. Note also that because symbolic transitions in PPNs are defined as timed, hence execution policies

might apply as in Timed Petri nets and Stochastic Petri nets [37] . Their definition and specification within the context of

PPNs is out of the scope of this paper. For simplicity but no loss of generality, we assume here that a conflict resolution

policy (e.g. race policy ) applies when more than one timed transition is enabled. An enabling memory policy can be used to

keep the transition delay values until they become disabled (see further details in [37] ). 

Finally, it is worth noting from Condition 2) that a necessary and sufficient condition for the integral 
∫ 
B 
(

f p j ∧
f t i 
)
(x k ) dx k > 0 is that 

∫ 
B f 

p j (x k ) dx k > 0 and 

∫ 
B f 

t i (x k ) dx k > 0 [20] 

Lemma 1. Any numerical transition with μ( x ) as associated probability density will always be fired irrespective of the states of

information from its numerical pre-set. After firing, the pre-set will remain intact in terms of information. 
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Fig. 4. Two illustrative examples of a PPNof one transition ( t 1 ) not being fired. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof. Let transition t i be such that f t i (x k ) = μ(x k ) and p (N ) 
j 

a place that belongs to the pre-set of t i . By definition [20] ,(
f p j ∧ μ

)
(x k ) = f p j (x k ) � = ∅ , hence Condition 2 is automatically fulfilled. 

Example 1. Definition 7 is conceptually illustrated using two examples in Fig. 4 . For simplicity, the net architecture for the

PPN of this example is the same as that used in Fig. 3 . Note that in panel (a), t 1 is not enabled due to insufficient tokens

in p (S) 
1 

, whereas in (b) the conjunction 

(
f p 1 ∧ f t 1 

)
(x k ) is not possible. A p 1 and A t 1 from Fig. 4 represent the subsets of X 

where the densities f p 1 (x k ) and f t 1 (x k ) are defined, respectively. 

Definition 8 (Information flow dynamics) . The firing of any transition t i always consumes from all its input arcs at the same

time. The following are rules which also apply when a numerical or mixed transition t i ∈ T (N ) is fired: 

1. An input arc from place p (N ) 
j 

to transition t i conveys a state of information given by a −
i j 

(
f p j ∧ f t i 

)
(x k ) , which remains in

p (N ) 
j 

after transition t i has fired; 

2. An output arc from t i to p (N ) 
j 

∈ t i 
• conveys a state of information given by a + 

i j 

(
f 

•t i ∧ f t i 
)
(x k ) , where f 

•t i (x k ) is the re-

sulting density from the disjunction of the states of information of the pre-set of t i . As stated by Eq. (9) , the normalised

version of f 
•t i (x k ) can be obtained as: 

f 
•t i (x k ) = 

1 

β

(
f p 1 + f p 2 + · · · + f p m 

)
(x k ) (12) 

where p 1 , p 2 , . . . , p m 

∈ 

• t i are numerical places from the pre-set of t i and β is a normalising constant; 

3. The state of information resulting in place p (N ) 
j 

∈ t i 
• after firing t i , is the disjunction of the states of information f p j (x k ) ,

the previous state of information, and a + 
i j 

(
f t i ∧ f 

•t i 
)
(x k ) , the information produced after firing transition t i . Mathemati-

cally f p j (x k +1 ) = 

(
f p j ∨ a + 

i j 

(
f t i ∧ f 

•t i 
))

(x k ) . 

Example 2. Fig. 5 provides an example of rules (1)–(3) by using a PPN model of one transition, three numerical places,

and two symbolic places. The markings at times k and k + 1 are highlighted by the panels. At k + 1 , the places p (N ) 
1 

and

p (N ) 
2 

are updated with the information coming from transition t 1 through a conjunction of states of information weighted

according to ( a −
11 

, a −
12 

), respectively. Observe also that the state of information resulting in place p (N ) 
3 

after firing transition

t 1 , is the joint information between the information that existed in p (N ) 
3 

at k , and that produced by transition t 1 through

the intersection with its pre-set, i.e. a + 
13 

(
f t 1 ∧ f 

•t 1 
)
(x k ) = a + 

13 

(
f t 1 ∧ ( f p 1 ∨ f p 2 ) 

)
(x k ) . 
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Fig. 5. Illustration of the information flow dynamics of PPNs. (a) Time k , before firing transition t 1 . (b) After firing transition t 1 at time k + 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 1 (Pre-set maximum information content) . Under the assumption that X is a linear space, then there exists an upper

bound value of the information content that will arise at time k + 1 in the numerical places from the pre-set of transition t i ∈ T (N )

after firing at time k. It can be obtained as: 

•I max ,t i = log 

[
m ∏ 

j=1 

(
a −

i j 

μ4 α3 
i j 

E f t i 

[ (
f p j 
)2 
] 
E f 

p j 

[ (
f t i 
)2 
] )a −

i j 
]

(13)

where E 

f t i 
[ ·] , E 

f 
p j [ ·] , represent the expectation with respect to f t i and f p j respectively, μ = cte is the homogeneous density

function of X , and αij are the normalising constants resulting from the conjunctions 
(

f t i ∧ f p j 
)
(x k ) . Places p 1 , . . . , p j , . . . , p m 

∈
P 

(N ) belong to the pre-set of transition t i . 

Proof. See Appendix A . 

Remark 1. •I max ,t i 
represents the maximum learning capacity of the pre-set of transition t i after being fired at k , which is

expressed in terms of amount of information. 

Theorem 2 (Post-set maximum information content) . Under the assumption that X is a linear space, then the maximum in-

formation content that will arise in the numerical places from the post-set of t i ∈ T (N ) after firing at time k, can be evaluated as:

I •max ,t i 
= log 

[
m ∏ 

j=1 

b i j 

μ

(
E f 

p j 

[ 
f p j + a + 

i j 
f conj ,t i 

] )b i j 
(

E f conj ,t i 

[ 
f p j + a + 

i j 
f conj ,t i 

] )1 −b i j 
]

(14)

where b i j = 

1 
1+ a + 

i j 

, and f conj ,t i = 

(
f t i ∧ f 

•t i 
)
(x k ) , the normalised density function resulting from the conjunction of states of in-

formation between f t i (x k ) and f 
•t i (x k ) (recall Definition 8 ). Places p 1 , . . . , p j , . . . , p m 

∈ P 

(N ) belong to the post-set of transition

t i . 

Proof. See Appendix B . 

Remark 2. I •max ,t i 
gives us a measure of the maximum learning capacity of the post-set of transition t i after being fired at

time k . 

3.3. PPN dynamics 

In PPNs, the marking evolution of the symbolic subnet has been given in Eq. (1) . For the dynamics of the numerical

subnet, the rules provided in Definition 8 can be applied. Notwithstanding, a more compact definition is possible for the

marking evolution of the numerical subnet through a matrix representation, as follows. 

Definition 9 (Marking evolution of the numerical subnet) . The marking M 

(N ) 
k +1 

can be obtained as a function of the marking

at time k through the following state equation: 

M 

(N ) 
k +1 

= 

[
M 

(N ) 
k 

◦ γk + 

( n (N ) 
t ∑ 

i =1 

(a + 
i 
) T � c i + (A 

−) T ◦ B 

)
· v k 

]
◦ βk (15)



332 M. Chiachío et al. / Information Sciences 453 (2018) 323–345 

 

 

 

 

 

 

 

 

 

 

 

 

where 

1. v k = 

(
v 1 ,k , v 2 ,k , . . . , v n (N ) 

t ,k 

)T 

is the firing vector for the numerical subnet (numerical and mixed transitions) at time k . Its

i th element v i, k is equal to 1 if transition t i is fired, and 0 otherwise; 

2. A 

− = 

[ 
a −

i j 

] 
, i = 1 , . . . , n 

(N ) 

t , j = 1 , . . . , n 
(N ) 

p is the backward incidence matrix of the numerical subnet; 

3. a + 
i 

= 

(
a + 

i 1 
, a + 

i 2 
, . . . , a + 

in (N ) 
p 

)T 

, a column vector corresponding to the i th row of the forward incidence matrix of the numer-

ical subnet; 

4. c i is an n (N ) 
t –dimensional row vector of states of information defined by: 1 c i = ( f t i ∧ f 

•t i ) · δi� , where δi � is a vector whose

elements are the Kronecker delta of variables i and � , which makes all elements zero except for i = �, � = 1 , . . . , n 
(N ) 

t ; 

5. B is an (n (N ) 
p × n (N ) 

t ) matrix whose ( i, j )th element is given by f p j ∧ f t i ; 

6. γk is an n 
(N ) 

p – dimensional column vector of binary constants, i.e. γk = 

(
γ (1) 

k 
, . . . , γ ( j) 

k 
, . . . , γ

(n 
(N ) 
p ) 

k 

)T 

, where γ ( j) 
k 

is given

by: 

γ ( j) 
k 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 , if 
∑ n (N ) 

t 

i =1 
a + 

i j 
v i,k > 0 

1 , if 
(∑ n (N ) 

t 

i =1 
a + 

i j 
v i,k = 0 & 

∑ n (N ) 
t 

i =1 
a −

i j 
v i,k = 0 

)
0 , if 

(∑ n (N ) 
t 

i =1 
a + 

i j 
v i,k = 0 & 

∑ n (N ) 
t 

i =1 
a −

i j 
v i,k > 0 

)
;

(16) 

7. βk = 

(
β(1) 

k 
, . . . , β( j) 

k 
, . . . , β

(n 
(N ) 
p ) 

k 

)T 

, a vector of numerical constants defined as: 

β( j) 
k 

= 

1 

γ ( j) 
k 

+ 

n (N ) 
t ∑ 

i =1 

(a + 
i j 

+ a −
i j 
) v i,k 

(17) 

In Eq. (15) , the symbols 〈 �, ◦, · 〉 are used to denote the outer product, the Hadamard product, and the inner product

of matrices [44] , respectively. Observe that the summation of outer products 
∑ n 

(N ) 

t 
i =1 

(a + 
i 
) T � c i in Eq. (15) renders an (n 

(N ) 

p ×

n 
(N ) 

t ) matrix, i.e.: 

n (N ) 
t ∑ 

i =1 

(a + 
i 
) T � c i = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

a + 
11 

f t 1 ∧ f 
•t 1 a + 

21 
f t 2 ∧ f 

•t 2 · · · a + 
n (N ) 

t 1 
f 

t 
n 
(N ) 
t ∧ f 

•t 
n 
(N ) 
t 

a + 
12 

f t 1 ∧ f 
•t 1 a + 

22 
f t 2 ∧ f 

•t 2 · · · a + 
n (N ) 

t 2 
f 

t 
n 
(N ) 
t ∧ f 

•t 
n 
(N ) 
t 

. . . 
. . . 

a + 
1 n (N ) 

p 

f t 1 ∧ f 
•t 1 a + 

2 n (N ) 
p 

f t 2 ∧ f 
•t 2 · · · a + 

n (N ) 
t n (N ) 

p 

f 
t 

n 
(N ) 
t ∧ f 

•t 
n 
(N ) 
t 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(18) 

such that its ( i, j )th element is a weighted density function that represents the state of information added to output place

p (N ) 
j 

after transition t i has been fired. 

Lemma 2. The density functions within marking M 

(N ) 
k +1 

obtained using Eq. (15) are normalised provided that M 

(N ) 
k 

is also com-

prised of normalised density functions. 

Proof. See Appendix C . 

Observe that βk acts as a vector of normalising constants required for M k +1 to be a vector of bona fide densities. Ob-

serve also that the evaluation of the referred normalising constants can be bypassed when using a particle method for the

approximation of the density functions, as explained in Section 2 . 

Example 3. Fig. 6 represents a PPN which is used here to illustrate the PPN dynamics described above. The initial

marking M 

(S) 
0 

comprises three tokens in p (S) 
1 

. The probability densities for marking M 

(N ) 
0 

are Gaussians given by: f 
p 1 
0 

=
N (20 , 5) , f 

p 2 
0 

= N (15 , 5) , f 
p 3 
0 

= N (10 , 5) . Transition t 1 is a mixed transition such that f t 1 = N (25 , 5) . According to the

graph given by Fig. 6 , the incidence matrices used for calculations of the numerical and symbolic subnets are: 

A 

(N ) = 

(
0 0 1 

)
−
(
1 2 0 

)
= 

(
−1 −2 1 

)
(19a) 
1 Hereinafter, the argument ( x k ) from f ( x k ) is dropped for clarity. 
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Fig. 6. PPN of the Example 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

(S) = 

(
0 1 

)
−
(
1 0 

)
= 

(
−1 1 

)
(19b)

respectively. In this example, matrix B is calculated as: 

B = 

( 

f p 1 ∧ f t 1 

f p 2 ∧ f t 1 

f p 3 ∧ f t 1 

) 

(20)

and hence 

(A 

−) T ◦ B = 

( 

1 · f p 1 ∧ f t 1 

2 · f p 2 ∧ f t 1 

0 · f p 3 ∧ f t 1 

) 

(21)

On the other hand, vector c i here is a one-dimensional row vector given by ( f t 1 ∧ f 
•t 1 ) = (N (25 , 5) ∧ f 

•t 1 ) , where 

f 
•t 1 
0 

= f p 1 ∨ f p 2 = 1 / 2 

(
N (15 , 5) + N (20 , 5) 

)
(22)

Next, the term 

∑ n 
(N ) 

t 
i =1 

(a + 
i 
) T � c i from Eq. (15) can be obtained as: 

n 
(N ) 

t ∑ 

i =1 

(a + 
i 
) T � c i = (a + 1 ) 

T 
� c 1 = 

( 

0 

0 

1 

) 

�

(
f t 1 ∧ f 

•t 1 
0 

)
= 

⎛ 

⎜ ⎝ 

0 · f t 1 ∧ f 
•t 1 
0 

0 · f t 1 ∧ f 
•t 1 
0 

1 · f t 1 ∧ f 
•t 1 
0 

⎞ 

⎟ ⎠ 

(23)

As a first step, we want to evaluate the marking at k = 1 . Eqs. (1) and (15) are applied in confluence with the rule for

transition firing (recall Definition [7] ) for the system state evolution ( k = 0 → k = 1 ) as follows: 

M 

(N ) 
1 

= 

⎛ 

⎝ 

⎛ 

⎝ 

γ (1) 
0 

· f p 1 
0 

γ (2) 
0 

· f p 2 
0 

γ (3) 
0 

· f p 3 
0 

⎞ 

⎠ + 

( 

0 

0 

f t 1 ∧ f 
•t 1 
0 

) 

+ 

( 

f p 1 
0 

∧ f t 1 

2 · f p 2 
0 

∧ f t 1 

0 

) 

⎞ 

⎠ ◦

⎛ 

⎝ 

β(1) 
0 

β(2) 
0 

β(3) 
0 

⎞ 

⎠ = 

⎛ 

⎝ 

f p 1 
0 

∧ f t 1 
1 
2 

· 2 · f p 2 
0 

∧ f t 1 

1 
2 

·
((

f t 1 ∧ f 
•t 1 
0 

)
+ f p 3 

0 

)
⎞ 

⎠ (24)

where γ0 = 

(
0 , 0 , 1 

)T 
and β0 = 

(
1 , 1 / 2 , 1 / 2 

)T 
, which have been obtained according to Eqs. (16) and (17) , respectively. Thus,

by substituting f 
p j 
0 

, j = { 1 , 2 , 3 } into Eq. (24) , the marking M 1 = 

(
M 

(N ) 
1 

, M 

(S) 
1 

)
is obtained as follows: 

M 

(N ) 
1 

= 

( N (20 , 5) ∧ N (25 , 5) 
N (15 , 5) ∧ N (25 , 5) 

1 
2 

·
(
N (25 , 5) ∧ f 

•t 1 
0 

+ N (10 , 5) 
)
) 

, M 

(S) 
1 

= 

(
2 

1 

)
(25)

where f 
•t 1 
0 

has been previously defined in Eq. (22) . Next, the process is repeated until the PPN stops at k = 3 , however the

analytical expressions have been omitted here for clarity. Instead, the results for the numerical places have been represented

for states k = 0 to k = 3 in Fig. 7 . A summary of the results for the analysis of the PPN model, along with some terms used

to evaluate Eqs. (1) and (15) , are provided in Table 1 . Observe that the results for symbolic marking, active transitions, and

γk -constants are column vectors although they are not explicitly reflected as so in Table 1 for clarity. 

Beside, an exercise is carried out to evaluate the response of the PPN shown in Fig. 6 at k = 1 by adopting the homoge-

neous density function as state of information for t 1 , i.e. f t 1 = μ(x ) . Note that by Lemma 1 , transition t 1 is always enabled

in this case provided that at least one token is in p (S) 
1 

, which occurs for k = 0 to k = 3 . Also, matrix B = ( f p 1 , f p 2 , f p 3 ) 
T 

and
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Fig. 7. Results from the evaluation of Eq. (15) over the numerical subnet of the PPN given in Fig. 6 . Four states are represented using increasing grey tones 

until the final state at k = 3 (solid line). 

Table 1 

Some outputs from the evaluation of the PPN shown in Fig. 6 . 

State M 

(S) 
k 

γk βk v k 

k = 0 (starts) (3 , 0) (0 , 0 , 1) (1 , 1/2 , 1/2) (1) 

k = 1 (2 , 1) (0 , 0 , 1) (1 , 1/2 , 1/2) (1) 

k = 2 (1 , 2) (0 , 0 , 1) (1 , 1/2 , 1/2) (1) 

k = 3 (stops) (0 , 3) (0 , 0 , 1) (1 , 1/2 , 1/2) (0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c 1 = 

(
f 

•t 1 
0 

)
= ( f p 1 ∨ f p 2 ) = 1 / 2 ( f p 1 + f p 2 ) , hence Eq. (24) can be rewritten as: 

M 

(N ) 
1 

= 

( ( 

0 

0 

f p 3 
0 

) 

+ 

( 

0 

0 

f 
•t 1 
0 

) 

+ 

( 

f p 1 
0 

2 · f p 2 
0 

0 

) ) 

◦

⎛ 

⎝ 

1 

1 
2 

1 
2 

⎞ 

⎠ = 

⎛ 

⎜ ⎝ 

f p 1 
0 

f p 2 
0 

[1 pt] 1 
2 

·
(

f 
•t 1 
0 

+ f p 3 
0 

)
⎞ 

⎟ ⎠ 

(26) 

which finally leads to: 

M 

(N ) 
1 

= 

( N (20 , 5) 
N (15 , 5) 

1 
2 

·
(

f 
•t 1 
0 

+ N (10 , 5) 
)
) 

, M 

(S) 
1 

= 

(
2 

1 

)
(27) 

where f 
•t 1 
0 

= 1 / 2 
(
N (20 , 5) + N (15 , 5) 

)
. Observe that, according to Lemma 1 , the pre-set places p (N ) 

1 
and p (N ) 

2 
remain intact

in terms of information, i.e. their respective states of information are invariant after firing t 1 . 

4. PPN algorithm 

The analysis of the numerical part of a PPN requires the evaluation of conjunction of states of information which are

affected by normalising constants (recall Eq. (5) ). The calculation of such normalising constants involves the evaluation of

integrals which are intractable except for exceptionally simple nets using some parametric density functions as states of

information (e.g. Gaussians). To alleviate this drawback and confer the required versatility to our PPN methodology, particle

methods are proposed to approximate the conjunction and disjunction of states of information, as described in Section 2.2 .

In this section, a pseudocode implementation of PPNs is provided as Algorithm 3 , which combines the PPN methodology

with the particle approximation for the conjunction and disjunction of states of information. Three main blocks comprise

the pseudocode, namely: transition firing, information exchange , and marking evolution , which have been highlighted for bet-

ter clarity. Note that in the PPN algorithm, the normalising constants from Eq. (17) have been omitted since the particle

approximation bypasses them through resampling. Otherwise, use Eq. (17) to obtain the corresponding constant after step

32 and modify the output resulting from step 33 accordingly. 

5. Application example 

The PPN methodology proposed above is exemplified here to illustrate its potential in modelling dynamic hybrid sys-

tems. To this end, the ageing of an engineering component or sub-system is proposed to be analysed by an idealised expert

system using condition-based monitoring from sensors along with information coming from expert knowledge. Fig. 8 illus-

trates the idealised expert system through a PPN consisting of five numerical places ( p (N ) 
1 

to p (N ) 
5 

), five symbolic places

( p (S) 
1 

to p (S) 
5 

), four mixed transitions ( t 1 to t 4 ), and one symbolic transition labelled as t 5 . The numerical places comprise
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Algorithm 3 Plausible Petri nets algorithm. 

Inputs: M = 

〈
P , T , F , W , D , X , G, H, M 0 

〉
, � {Tuple of defining elements for the PPN} 

Outputs: M k 

begin ( k � 0 ): 

1: Set ˜ f 
p j 
k 

= (∅ ) , j = 1 , . . . , n (N ) 
p � {Auxiliary densities} 

2: � Transition firing (recall Def. 7) 

3: for all t i ∈ T do 

4: Require τi ∈ D has passed 

5: Initialise u i,k , v i,k as u i,k = 1 , v i,k = 1 

6: for all p j ∈ 

•t i do 

7: switch t i do 

8: case t i ∈ T (S) 

9: if M 

(S) 
k 

( j) < a ′ 
i j 

then u i,k = 0 

10: end if 

11: case t i ∈ T (N ) 

12: if f p j ∧ f t i = ∅ then v i,k = 0 

13: end if 

14: case t i ∈ T (N ) ∩ T (S) 

15: if u i,k = 0 or v i,k = 0 then u i,k = 0 , v i,k = 0 

16: end if 

17: end for 

18: � Information exchange 

19: if t i ∈ T (N ) then 

20: Obtain f 
•t i � {Use Algorithm 2} 

21: Evaluate f 
•t i ∧ f t i � {Use Algorithm 2} 

22: for all p (N ) 
j 

∈ P 

(N ) do 

23: Evaluate f t i ∧ f p j � {Use Algorithm 1} 

24: Set ˜ f 
i j 

k 
← a −

i j 

(
f t i ∧ f p j 

)
, a −

i j 
∈ W 

(N ) 

25: Set ˜ f ii 
k 

← a + 
i j 

(
f 

•t i ∧ f t i 
)
, a + 

i j 
∈ W 

(N ) 

26: Update ˜ f 
p j 
k 

← 

˜ f 
p j 
k 

∨ v i,k 
(

˜ f 
i j 

k 
∨ 

˜ f ii 
k 

)
27: end for 

28: end if 

29: end for 

30: � Marking evolution 

31: for all p (N ) 
j 

∈ P 

(N ) do 

32: Evaluate γ ( j) 
k 

from Eq. (16) 

33: Obtain f 
p j 
k +1 

← γ ( j) 
k 

f 
p j 
k 

∨ 

˜ f 
p j 
k 

34: Set M 

(N ) 
k +1 

( j) ← f 
p j 
k +1 

35: end for 

36: for all p (S) 
j 

∈ P 

(S) do 

37: M 

(S) 
k +1 

( j) ← M 

(S) 
k 

( j) + 

n 
(S) 
t ∑ 

i =1 

a ′ 
ji 

u i,k , a ′ 
ji 

∈ W 

(S) 

38: end for 

39: Set M 

(S) 
k +1 

= 

(
M 

(S) 
k +1 

(1) , . . . , M 

(S) 
k +1 

(n (S) 
p ) 
)T 

40: Set M 

(N ) 
k +1 

= 

(
M 

(N ) 
k +1 

(1) , . . . , M 

(N ) 
k +1 

(n (N ) 
p ) 
)T 

41: M k +1 = 

(
M 

(N ) 
k +1 

, M 

(S) 
k +1 

)
42: M k ← M k +1 
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Fig. 8. Plausible Petri net of the example in Section 5 . 

Table 2 

Description of the numerical places of the PPN shown in Fig. 8 . 

ID Source of information Initial state of information Dynamic equation 

p (N ) 
1 

Sensor s f p 1 
0 

∼ N 

(
20 , 3 

)
Eq. (28) 

p (N ) 
2 

Expert 1 f p 2 
0 

∼ N 

(
16 , 2 

)
–

p (N ) 
3 

– ( ∅ ) Eq. (28) 

p (N ) 
4 

Expert 2 f p 4 
0 

∼ N 

(
16 , 1 

)
–

p (N ) 
5 

– ( ∅ ) –

 

 

 

 

 

 

 

 

 

 

 

the states of information about a state variable x k ∈ R , given by the PDFs f 
p 1 
k 

to f 
p 5 
k 

respectively. In this example, the state

variable in places p (N ) 
1 

and p (N ) 
3 

is assumed to evolve over time k ∈ N following a dynamic equation x k = h k (x k −1 , θ ) given

by: 

x k = e −θk x k −1 + w k (28) 

where θ is an uncertain decay parameter whose values are modelled as a Gaussian centred at 0.005 with 50% of coefficient

of variation. The term w k represents white-noise type measurement error from a sensor s , with standard deviation given by

σs = 1 . In view of Fig. 8 , the proposed expert system also encompasses information from experts in places p (N ) 
2 

and p (N ) 
4 

,

represented by the PDFs f 
p 2 
k 

and f 
p 4 
k 

, respectively. Table 2 lists the initial state of information of x k within the numerical

places, along with the corresponding function representing the dynamics of x k for each place. With the proposed system

configuration, nodes { p (S) 
1 

, p (N ) 
1 

, p (N ) 
2 

, t 1 } are intended to constitute the first supervisory layer for the state variable x k . 

In this example, the mixed transitions t i , i = { 1 , 3 , 4 } , are defined based on condition (recall Definition 5 ) using indicator

functions for the regions of the state space C i ⊆ X , i.e., f t i ∼ I C i (x k ) , that assigns a value of 1 when x k ∈ C i and 0 otherwise,

where: 

C 1 = 

{
x k ∈ X : E f p 1 (x k ) � ε1 

}
(29a) 

C 3 = 

{
x k ∈ X : E f p 3 (x k ) � ε2 

}
(29b) 

C 4 = 

{
x k ∈ X : H(x k ) > ξ

}
(29c) 

In Eqs. (29a) and (29b) , E 

f 
p j (x k ) denotes the expectation of x k with respect to f p j , j = { 1 , 3 } respectively, where ε1 = 17 ,

ε = 7 , and ξ = 2 . 25 , are threshold values. The function H : X → R in Eq. (29c) denotes the differential entropy (DE) of
2 
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Table 3 

Description of the transitions of the PPN shown in Fig. 8 . 

ID Type Rule State of information Action 

t 1 Mixed E f p 1 ( x k ) � 17 f t 1 ∼ I C 1 (x k ) Switches to “Warning condition”

t 2 Numerical — f t 2 ∼ μ(x k ) Aggregates Expert 2 information 

t 3 Mixed E f p 3 ( x k ) � 7 f t 3 ∼ I C 3 (x k ) Switches to “Fail condition”

t 4 Mixed H ( x k ) > 2.25 f t 4 ∼ I C 4 (x k ) Switches to “Fail condition”

t 5 Symbolic τ 5 ≥ 20 (delay) Not applicable Switches to “Fail condition”

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x k , which is obtained by calculating 2 1/2ln [(2 πe ) var ( x k )] as a measure quantifying the uncertainty of x k . Transition t 2 is

defined through a homogeneous density function (recall Lemma 1 ), hence its firing is conditioned upon place p (S) 
2 

receiving

a token. An overview of the complete set of transitions is provided in Table 3 . 

Initially at k = 0 , the system starts in the “Good” condition represented by one token at p (S) 
1 

, thus M 

(S) 
0 

=
( 1 , 0 , 0 , 0 , 0 ) T . Subsequently, the state variable x k starts evolving over time following the dynamic model given by Eq. (28) in

p (N ) 
1 

. Once the expected value of x k in place p (N ) 
1 

has reached the threshold value ε1 , then transition t 1 is fired provided

that the conjunction between the information from Expert 1 and t 1 is possible; next, the system turns to a “Warning” con-

dition. At this time, the resulting information from p (N ) 
1 

and p (N ) 
2 

along with the information from Expert 2, is transferred

to place p (N ) 
3 

. The firing of t 1 activates a second supervisory layer based on nodes { p (N ) 
3 

, p (N ) 
4 

, p (N ) 
5 

, t 2 , t 3 , t 4 } along with

their corresponding symbolic nodes, as indicated by the graph in Fig. 8 . In this second supervisory layer, a decision is made

conditioned upon: (1) the quality of the information in p (N ) 
3 

, 2) the position of the mean of x k with respect to the threshold

value ε2 ∈ R , and finally (3) the total time spent by the system under the warning state. The DE, which was defined above,

is used as a quality indicator of the information in place p (N ) 
3 

, so that t 3 is activated if the DE of x k ∼ f p 3 is higher than

ξ . Note that the degradation process, for which the most up-to-date information after t 1 is fired is given by f 
p 3 
k 

at p (N ) 
3 

,

will continue until any of the transitions t 3 , t 4 , t 5 are activated whereupon the system turns to the ”Fail” state, and all the

information is collected in p (N ) 
5 

. Finally note also that p (S) 
3 

helps in synchronising transitions t 3 and t 4 , so as to avoid them

being activated before the information from Expert 2 has arrived in p (N ) 
3 

. 

Algorithm 3 has been applied to evaluate the system state evolution described through the marking M k , k > 0. A total of

N = 10 0 0 particles have been used to approximate the conjunction and disjunction of states of information using Algorithms

1 and 2 , respectively. The results for the numerical places p (N ) 
1 

and p (N ) 
3 

are depicted in Fig. 9 for k = 0 to k = 25 (see panels

from the left). Observe that at k = 9 , transition t 1 is fired since the conjunction 

(
f p 1 ∧ I C 1 

)
(x k ) = f p 1 

(
x k | E (x k ) � 17 

)
� = ∅

and the other transition firing conditions are met (recall Definition 7 ). Once t 1 is fired, then the information coming from

Expert 2 is incorporated and the resulting state of information is subsequently transferred to p (N ) 
3 

(see Fig. 9 c). According

to the proposed PPN methodology and considering the net architecture in Fig. 8 , the state of information arising at p (N )
3 

( k = 10 ) is equal to 
(
( f p 1 ∨ f p 2 ) ∧ I C 1 

)
∨ 2 f p 4 = 1 / 4 

(
f 
(
x k | E (x k ) � 17 

)
+ f p 2 (x k ) + 2 f p 4 (x k ) 

)
. Observe also from Fig. 9 c the

higher plausibility values shown through darker grey tones, which reveal the influence of the information from Expert 2

on reducing the uncertainty. Note finally from Fig. 9 c that transition t 3 is activated at k = 15 because the condition x k ∈ C 4
is met at that time, i.e. the DE of the state of information given by f p 3 is higher than ξ = 2 . 25 at k = 15 , as shown in

Fig. 9 e. Next, the system turns to the “Fail” condition and the joint state of information about x k is finally collected in place

p (N ) 
5 

. A summary of the results for the analysis of the PPN model is provided in Table 4 . The symbolic marking and active

transitions (2 nd and 3 rd column of Table 4 ) are column vectors, although they are not explicitly reflected as so in this table

for clarity. The fourth column indicates the sequence of main events, like activation of the information from experts and/or

firing of numerical transitions. A representative set of CPU times required by Algorithm 3 to evaluate the k th step of the

PPN model shown in Fig. 8 , are indicated in the sixth column of Table 4 . These values, which have been obtained using a

3.5 GHz double-core system, reveal that the PPN algorithm can efficiently evaluate the marking evolution of a PPN as the

one shown in Fig. 8 with a feasible computational burden. 

6. Discussion 

In Section 5 , an application example has been provided to illustrate the dynamics of the proposed PPNs and the different

types of information that can be managed, for example, uncertain information from sensors and expert opinions, which

confers to PPNs the versatility to solve problems by reasoning about uncertain knowledge. In this section, a comparative

analysis is carried out by examining the behaviour of the PPN depicted in Fig. 8 under different scenarios, in order to confer

a basis for discussion. As a first exercise, the influence of the uncertainty about x k on the system response is investigated. To

this end, the PPN is evaluated by considering the same configuration as in Section 5 with the exception that the information
2 This expression for the differential entropy is actually an upper-bound approximation to the actual differential entropy, where the exactness is achieved 

when the density function is Gaussian. 
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Fig. 9. Representation of the evolution over time of the states of information about the variable x k in places p (N ) 
1 

(panels [a] and [b]), and p (N ) 
3 

(panels [c] 

and [d]). The uncertainty evolution is represented using grey shadows and red dash-dot lines over the ± std probability band. In lower panels ([e] and [f]), 

the differential entropy (DE) of x k ∼ f p 3 is shown using a dotted-squared line. The green triangles are used to help visualise the time when a transition is 

activated based on the condition being monitored, as described in the text. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

from sensor s comes with a white-noise type error σs = 0 . 5 , i.e., half of the error initially considered in Section 5 . The results

are shown in Fig. 9 (right-side panels). Note from panels (b) and (d) that darker grey tones are obtained as a result of the

lower dispersion of the PDFs occurring at respective places p (N ) 
1 

and p (N ) 
3 

, because of the reduced noise. The latter can be

corroborated by comparatively examining the DE plots from panels (e) and (f). In terms of PPN behaviour, note also that the

transition t 4 is fired since condition C 3 is met, which means that, in this case, the system identifies the Fail state because

the expected information from p (N ) 
3 

has reached the second threshold ε2 = 7 within the period of evaluation k = 0 → 25 ,

whilst the DE remains lower than the specified threshold ξ = 2 . 25 for this period, as shown in Fig. 9 d and 9 f. Observe that

the response of the PPN to such a change in the system configuration (which might represent in practice the renewal of

sensor s to an upgraded version) is different from the one shown in Section 5 , where the Fail state was identified due to

the high uncertainty about x , then transition t was fired. These results are satisfactory in the sense that they confirm that
k 3 
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Table 4 

Summary of the results from the analysis of the PPN shown in Fig. 8 using 

Algorithm 3 . 

State M 

(S) 
k 

v k Event State CPU time 

[s] 

k = 0 (1 0 0 0 0) (0 0 0 0 0) – Good 0.79 

k = 1 (1 0 0 0 0) (0 0 0 0 0) – Good 0.82 

�
. . . �

k = 9 (1 0 0 0 0) (1 0 0 0 0) t 1 fired Good 0.91 

k = 10 (0 1 0 1 0) (0 1 0 0 0) Activate E 2 Warning 0.79 

k = 11 (0 0 1 1 0) (0 0 0 0 0) – Warning 0.78 

�
. . . �

k = 15 (0 0 1 1 0) (0 0 1 0 0) t 3 fired Warning 0.81 

k = 16 (0 0 0 0 1) (0 0 0 0 0) – Fail 0.82 

Fig. 10. Panel (a): Histogram representation of the distribution of discrete times when the PPN from Fig. 8 reaches the Fail state. In panel (b), the results are 

obtained for the case that expert information from p (N ) 
4 

is null, i.e. f p 4 = ∅ . Kernel density estimates are shown using dashed-red lines. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a PPN can autonomously adapt its behaviour based not only on the numerical values of the state variable, but also on its

information content (e.g. the amount of uncertainty). 

Next, as a second discussion exercise, a numerical experiment is carried out to investigate the influence of expert knowl-

edge in the system response. In particular, the PPN shown in Fig. 8 is comparatively evaluated with and without considera-

tion of the information from Expert 2 by choosing f p 4 = N (16 , 1) and f p 4 = ∅ , respectively. The interest here is in compar-

atively obtaining the time when the expert system identifies the Fail state under both situations. Fig. 10 shows the results

obtained considering 200 independent runs of the PPN algorithm. The results reveal that the information from Expert 2

delays the PPN in reaching the Fail state with respect to the case when information from Expert 2 is absent. Such behaviour

can be explained in terms of the uncertainty present in p (N ) 
3 

with and without information from Expert 2, such that when

f p 4 = ∅ , then the threshold ξ = 2 . 25 is reached prematurely in comparison to the case when f p 4 = N (16 , 1) . This result

corroborates the role of the information from Expert 2 on reducing the uncertainty, as explained in the last section. Both

exercises, together with the results given in Section 5 , reveal the influence of the information and its uncertainty in the

overall response of the system represented by the PPN, and in particular reveal how the numerical and symbolic subnets

interact to control the execution of the overall system. 

In addition to the numerical exercises explained above, a comparative study is considered here to enrich the discussion

and to highlight the main differences between our PPNs and the most relevant PN paradigms from the literature. The com-

parison is carried out in terms of the knowledge represented, uncertainty, type of tokens, available matrix representation of

the marking evolution, and possibility to represent time. The results are summarised in Table 5 . Note that one of the main

differences to remark from Table 5 is that, unlike classical approaches like PNs, SPNs, and HPNs, PPNs can handle uncertainty

within their formulation. However, in the author’s opinion, the most important advantage in this context is the way that

PPNs represent the uncertainty through states of information acting as moving tokens for the numerical subnet. This confers

the flexibility of our PPNs to represent uncertain knowledge in a more principled approach (i.e., the information from a

sensor or from an expert is more easily and versatilely represented through a PDF, rather than through a fuzzy set, like in

FPNs, or through a possibility distribution, like in π-PNs). Also, the use of PDFs as tokens enables us to use the principles of

information theory and statistics to treat, process, analyse, and combine these PDFs for our convenience, for example, when

modelling the information flow between nodes. Moreover, unlike the HPN paradigm, PPNs allow the numerical and symbolic



3
4

0
 

M
.
 C

h
ia

ch
ío
 et

 a
l.
 /
 In

fo
rm

a
tio

n
 Scien

ces
 4

5
3
 (2

0
18

)
 3

2
3

–
3

4
5
 

Table 5 

Synoptic table about characteristics of main Petri nets variants. 

Paradigm 

Kind of information 

represented 

Uncertainty Tokens Matrix representation Time factor 

PNs Discrete Not considered Dots, as moving units Yes Considered in Timed Petri nets 

SPNs Discrete Partially considered through 

probability of firing of 

transitions using PDFs 

Dots, as moving units Yes Considered in Timed Stochastic 

Petri nets 

FPNs Fuzzy production rules. 

Imprecise or vague 

information about truth of 

propositions 

Fuzzy theory Dots (only one token is allowed 

per place). Tokens are 

associated to truth of 

propositions 

Not generally used, however 

several works provide matrix 

representation, e.g. 

[12,45–47] 

Not generally considered 

except for Timed Fuzzy Petri 

nets [48] 

π-PNs Distributions indicating 

possibility of an imprecise 

proposition 

Based on Dubois and Prade’s 

possibility theory [49] 

Dots as possibilistic tokens. 

Tokens distributed over a set 

of possible locations with 

associated degree of truth 

No Not considered 

HPNs Combination of discrete and 

continuous processes (hybrid 

systems) 

Not generally considered, 

except in particular versions 

like in [30,31] 

Real values (numerical subnet) 

and dots (symbolic subnet) 

No Considered in Timed Hybrid 

Petri nets [7] 

HPPNs Combination of discrete and 

continuous processes (hybrid 

systems), approximated by a 

limited set of particles 

Based on weighted particles for 

numerical values. Symbolic 

uncertainty is also 

considered by pseudo-firing 

of tokens 

Can be numerical (particles), 

symbolic, and hybrid tokens 

No Naturally considered through 

the dynamic equations of the 

numerical subnet 

PPNs Combination of discrete and 

uncertain continuous 

processes (hybrid systems) 

Degree of belief of the possible 

(plausible) values of 

uncertain variables that 

represent the continuous 

processes [39,42] 

States of information [20] 

(PDFs) for numerical subnet, 

and dots (for the symbolic 

subnet) 

Yes Naturally considered through 

the dynamic equations of the 

numerical subnet 

PNs: Classical Petri nets, SPNs: Stochastic Petri nets, FPNs: Fuzzy Petri nets, π-PNs: Possibilistic Petri nets, HPNs: Hybrid Petri nets, HPPNs: Hybrid Particle Petri nets. 
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subnets to interact in a bidirectional manner, as was previously mentioned above and also in Section 1 , which confers the

modeller higher versatility to represent hybrid engineering systems. 

7. Conclusions 

A novel hybrid approach for PNs has been proposed in this paper, which has been named Plausible Petri nets (PPNs),

since it can effectively represent plausible (uncertain) information in pervasive computing environments modelled by

PNs. The PPN methodology has been formally described using matrix equations, and an algorithmic description has been

provided as pseudocode to ease implementation. Three illustrative examples have been provided to help the reader to easily

conceptualise the PPN procedure, and an application example has been used to demonstrate some of the challenges faced

in a real-world application of PPNs. 

The main conclusions of this work are as follows: 

1. PPNs act as a hybrid system combining symbolic items (classical tokens that can represent external factors like resource

availability, data arrival, etc.), and numerical values which represent uncertain knowledge about the system state through

states of information; 

2. We have seen how the information about the system state evolves and, in general, changes through information flow

dynamics based on conjunction and disjunction of states of information; 

3. The examples revealed that PPNs are capable of modelling cybersystems of different nature, since they can receive, store,

exchange, and process information so as to use it for control; 

4. The difficulty in the analytical evaluation of the conjunction of states of information has been highlighted as main draw-

back of PPNs. However, particle methods have been proposed to alleviate this difficulty with a feasible computational

cost, although they come with a price of information loss due to the approximation by particles. The computational cost

can be exacerbated in the presence of highly-dimensional state variables (say d > 10); 

5. Building on this work, a future research direction is to formally explore further structural aspects of the resulting hybrid

system, as well as to investigate efficient implementations to handle highly-dimensional spaces. Moreover, another future

direction of research would be to investigate the adaptiveness of PPNs, i.e. their potential use for learning from data about

the system state. 
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Appendix A. Proof of Theorem 1 

Let us denote by I 
p j 
k +1 

the Shannon’s information content that arises at place p (N ) 
j 

∈ 

•t i at k + 1 , after transition t i is fired

at time k . By definition of Shannon’s information content [20,50] : 

I 
p j 
k +1 

= 

∫ 
a −

i j 

(
f p j ∧ f t i 

)
log 

a −
i j 

f p j ∧ f t i 

μ
dx k (30)

where f p j ∧ f t i is assumed to be normalised. By Eq. (5) : 

https://doi.org/10.13039/501100000266
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∫ 
a −

i j 

(
f p j ∧ f t i 

)
log 

a −
i j 

f p j ∧ f t i 

μ
d x k = 

∫ 
a −

i j 

f p j f t i 

αi j μ
log 

a −
i j 

f 
p j f t i 

αi j μ

μ
d x k = 

∫ 
a −

i j 

f t i f p j 

αi j μ

(
log 

a −
i j 

αi j μ
+ log 

f t i f p j 

μ

)
dx k = 

a −
i j 

[ 
log 

a −
i j 

αi j μ
+ log 

1 

μ
+ 

∫ 
f p j f t i 

αi j μ
log 
(

f t i 
)
d x k + 

∫ 
f p j f t i 

αi j μ
log ( f p j ) d x k 

] 
(31) 

where we made use of the normalisation condition of f p j ∧ f t i , i.e. 
∫ f 

p j f t i 
αi j μ

dx k = 1 . Observe from the last equation that: ∫ 
f p j f t i 

αi j μ
log 
(

f t i 
)
dx k = E conj 

[
log 
(

f t i 
)]

, (32a) 

∫ 
f p j f t i 

αi j μ
log ( f p j ) dx k = E conj 

[
log ( f p j ) 

]
, (32b) 

where E conj 

[
·
]

denotes the expectation with respect to the probability density function given by the conjunction f t i ∧
f p j . Henceforth, Eq. (31) can be rewritten as: 

I 
p j 
k +1 

= a −
i j 

[ 
log 

a −
i j 

αi j μ2 
+ E conj 

[
log ( f p j ) 

]
+ E conj 

[
log 
(

f t i 
)]] 

(33) 

By Jensen’s inequality, 

I 
p j 
k +1 

� a −
i j 

[ 
log 

a −
i j 

αi j μ2 
+ log 

(
E conj 

[
f p j 
])

+ log 

(
E conj 

[
f t i 
])] 

(34) 

since the logarithm is concave. In the last equation, the logarithm of the expectation of f p j can be expressed as: 

log 

(
E conj 

[
f p j 
])

= log 

∫ 
f p j 

f t i f p j 

αi j μ
dx k = log 

(
1 

αi j μ

∫ 
f p j f p j f t i dx k ︸ ︷︷ ︸ 
E 

f 
t i 

[(
f 

p j 

)2 ]
)

= log 
1 

αi j μ
+ log E f t i 

[ (
f p j 
)2 
] 

(35) 

In an analogue manner, log 

(
E conj 

[
f t i 
])

= log 1 
αi j μ

+ log E 

f 
p j 

[ (
f t i 
)2 
] 
, so that Eq. (34) can be rewritten as: 

I 
p j 
k +1 

� a −
i j 

[ 
log 

a −
i j 

μ4 α3 
i j 

+ log E f 
p j 

[ (
f t i 
)2 
] 

+ log E f t i 

[ (
f p j 
)2 
] ] 

(36) 

= log 

[
a −

i j 

μ4 α3 
i j 

E f t i 

[ (
f p j 
)2 
] 
E f 

p j 

[ (
f t i 
)2 
] ]a −

i j 

Finally, we extend the last expression to the places p 1 , . . . , p m 

∈ 

•t i to consider the joint information from the pre-set of t i 
denoted by •I t i , as follows: 

•I t i = 

m ∑ 

j=1 

I 
p j 
k +1 

� log 

[
m ∏ 

j=1 

(
a −

i j 

μ4 α3 
i j 

E f t i 

[ (
f p j 
)2 
] 
E f 

p j 

[ (
f t i 
)2 
] )a −

i j 
]

= 

• I max ,t i (37) 

as we wanted to demonstrate. 

Appendix B. Proof of Theorem 2 

The content of information that arises in place p (N ) 
j 

∈ t i 
• after the transition t i is fired, is expressed as [20,50] : 

I 
p j 
k +1 

= 

∫ 
b i j 

(
f p j + a + 

i j 
f conj ,t i 

)
log 

(
b i j 

μ

(
f p j + a + 

i j 
f conj ,t i 

))
dx k 

The last equation can be split into a sum of integrals as: 

I 
p j 
k +1 

= b i j 

(∫ 
f p j log 

(
b i j 

μ
( f p j + a + 

i j 
f conj ,t i ) 

)
dx k + a + 

i j 

∫ 
f conj ,t i log 

(
b i j 

μ
( f p j + a + 

i j 
f conj ,t i ) 

)
dx k 

)
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After certain manipulations, the last equation can be expressed as: 

I 
p j 
k +1 

= b i j 

∫ 
f p j log 

(
f p j + a + 

i j 
f conj ,t i 

)
dx k + 

a + 
i j 

b i j ︸ ︷︷ ︸ 
1 −b i j 

∫ 
f conj ,t i log 

(
f p j + a + 

i j 
f conj ,t i 

)
dx k + (a + 

i j 
+ 1) b i j ︸ ︷︷ ︸ 

1 

log 
b i j 

μ
= 

log 
b i j 

μ
+ b i j E f 

p j 

[ 
log 
(

f p j + a + 
i j 

f conj ,t i 
)] 

+ (1 − b i j ) E f conj ,t i 

[ 
log 
(

f p j + a + 
i j 

f conj ,t i 
)] 

By Jensen’s inequality, 

I 
p j 
k +1 

� log 
b i j 

μ
+ b i j log E f 

p j 

[ 
f p j + a + 

i j 
f conj ,t i 

] 
+ (1 − b i j ) log E f conj ,t i 

[ 
f p j + a + 

i j 
f conj ,t i 

] 
which finally leads to: 

I 
p j 
k +1 

� log 

[
b i j 

μ

(
E f 

p j 

[ 
f p j + a + 

i j 
f conj ,t i 

] )b i j 
(

E f conj ,t i 

[ 
f p j + a + 

i j 
f conj ,t i 

] )1 −b i j 

]
(38)

By extending to the m places that belong to the post-set of t i and after some manipulation, then the joint information I •t i 
from the post-set of t i can be finally expressed as: 

I •t i = 

m ∑ 

j=1 

I 
p j 
k +1 

� log 

[
m ∏ 

j=1 

b i j 

μ

(
E f 

p j 

[ 
f p j + a + 

i j 
f conj ,t i 

] )b i j 
(

E f conj ,t i 

[ 
f p j + a + 

i j 
f conj ,t i 

] )1 −b i j 
]

= I •max ,t i 
(39)

Appendix C. Proof of Lemma 2 

We need to demonstrate that each probability density from M 

(N ) 
k +1 

integrates to unity. By taking integrals in Eq. (15) : ∫ 
M 

(N ) 
k +1 

dx k +1 = [∫ 
M 

(N ) 
k 

◦ γk d x k + 

∫ ( 

n (N ) 
t ∑ 

i =1 

(a + 
i 
) T � c i 

) 

v k d x k + 

∫ (
(A 

−) T ◦ B 

)
v k d x k 

]
◦ βk (40)

First, note that the integral 

∫ 
M 

(N ) 
k 

◦ γk dx k = 

⎛ 

⎜ ⎝ 

γ (1) 
k 
. . . 

γ
(n (N ) 

p ) 

k 

⎞ 

⎟ ⎠ 

(41)

by the assumption that the density functions from M 

(N ) 
k 

are normalised. Next, the second term of the rightmost part of

Eq. (40) can be evaluated as follows: 

∫ ( 

n (N ) 
t ∑ 

i =1 

(a + 
i 
) T � c i 

) 

v k dx k = (42)

∫ 
⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

a + 
11 

v 1 ,k 
(

f t 1 ∧ f 
•t 1 
)

· · · a + 
n (N ) 

t 1 
v 

n (N ) 
t ,k 

(
f 

t 
n 
(N ) 
t ∧ f 

•t 
n 
(N ) 
t 

)
. . . 

a + 
1 n (N ) 

p 

v 1 ,k 
(

f t 1 ∧ f 
•t 1 
)

· · · a + 
n (N ) 

t n (N ) 
p 

v 
n (N ) 

t ,k 

(
f 

t 
n 
(N ) 
t ∧ f 

•t 
n 
(N ) 
t 

)

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

dx k = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

∑ n (N ) 
t 

i =1 
a + 

i 1 
v i,k 

. . . 

∑ n (N ) 
t 

i =1 
a + 

in (N ) 
p 

v i,k 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

(43)

We can proceed analogously to evaluate the next integral, so that: 

∫ (
(A 

−) T ◦ B 

)
· v k dx k = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

∑ n (N ) 
t 

i =1 
a −

i 1 
v i,k 

. . . 

∑ n (N ) 
t 

i =1 
a −

in (N ) 
p 

v i,k 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

(44)
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Finally, by making substitutions of Eqs. (41) , (42) , and (44) into (40) , then: 

∫ 
M 

(N ) 
k +1 

dx k +1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

γ (1) 
k 

+ 

∑ n (N ) 
t 

i =1 

(
a −

i 1 
+ a + 

i 1 

)
v i,k 

. . . 

γ
(n (N ) 

p ) 

k 
+ 

∑ n (N ) 
t 

i =1 

(
a −

in (N ) 
p 

+ a + 
in (N ) 

p 

)
v i,k 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

◦

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 

γ (1) 
k 

+ ∑ n 
(N ) 
t 

i =1 ( a −i 1 + a + i 1 ) v i,k 
. . . 

1 

γ
(n 

(N ) 
p ) 

k 
+ ∑ n 

(N ) 
t 

i =1 

(
a −

in 
(N ) 
p 

+ a + 
in 

(N ) 
p 

)
v i,k 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

1 

. . . 

1 

⎞ 

⎟ ⎟ ⎠ 

as we wanted to demonstrate. 
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