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Abstract

In schizophrenia, abnormal neural metabolite concentrations may arise from cortical damage following neuroinflammatory
processes implicated in acute episodes. Inflammation is associated with increased glutamate, whereas the antioxidant
glutathione may protect against inflammation-induced oxidative stress. We hypothesized that patients with stable
schizophrenia would exhibit a reduction in glutathione, glutamate, and/or glutamine in the cerebral cortex, consistent with a
post-inflammatory response, and that this reduction would be most marked in patients with “residual schizophrenia”, in
whom an early stage with positive psychotic symptoms has progressed to a late stage characterized by long-term negative
symptoms and impairments. We recruited 28 patients with stable schizophrenia and 45 healthy participants matched for age,
gender, and parental socio-economic status. We measured glutathione, glutamate and glutamine concentrations in the
anterior cingulate cortex (ACC), left insula, and visual cortex using 7T proton magnetic resonance spectroscopy (MRS).
Glutathione and glutamate were significantly correlated in all three voxels. Glutamine concentrations across the three voxels
were significantly correlated with each other. Principal components analysis (PCA) produced three clear components: an
ACC glutathione—glutamate component; an insula-visual glutathione—glutamate component; and a glutamine component.
Patients with stable schizophrenia had significantly lower scores on the ACC glutathione—glutamate component, an effect
almost entirely leveraged by the sub-group of patients with residual schizophrenia. All three metabolite concentration
values in the ACC were significantly reduced in this group. These findings are consistent with the hypothesis
that excitotoxicity during the acute phase of illness leads to reduced glutathione and glutamate in the residual phase of
the illness.

Introduction

Schizophrenia is a serious, episodic, and persisting illness,
with a characteristic time course in which acute episodes,
characterized by positive psychotic symptoms such as
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and social impairments tend to be prominent. There is
evidence for three potentially related pathophysiological
processes consistent with the characteristic time course of
illness.

Firstly, abnormally high levels of presynaptic striatal
dopamine occur in at least some patients, and are associated
with positive symptoms [1]. Treatment with dopamine
antagonists tends to alleviate these positive symptoms.
Secondly, the brain’s major excitatory neurotransmitter,
glutamate, is implicated [2]. One proposal is that hypo-
function of NMDA receptors (NMDAR) located on inhi-
bitory GABA inter-neurons leads to reduced activity of
these inter-neurons, resulting in increased pyramidal gluta-
matergic neurotransmission and the diverse symptoms
occurring in acute psychosis [3]. However, sustained glu-
tamatergic over-activity might lead to excitotoxic damage
resulting in residual negative symptoms, cognitive dys-
function, and occupational and social impairment [4].
Glutamatergic abnormalities in schizophrenia have been
found in brain tissue studies [5]; genetic association studies
[6]; and studies investigating the role of glutamatergic
agonists to combat NMDAR hypofunction and reduce
symptoms [7].

Thirdly, and potentially closely related to the glutama-
tergic hypothesis, is the theory of oxidative stress [8].
Oxidative stress can result either from the excessive pro-
duction of reactive oxygen species, which might be antici-
pated at times of glutamatergic over-activity, or from a
reduction in oxidative defences, and can damage cell
structures. Brain cells are particularly susceptible, owing to
their low antioxidant defences and high oxidative metabolic
activity. Glutathione, the brain’s major intracellular anti-
oxidant, thus has a vital role to play in maintaining brain
cell health. Evidence for a role for oxidative stress in
schizophrenia includes studies reporting reduced glu-
tathione blood levels [9], reduced post-mortem glutathione
concentrations [10, 11], and genetic evidence implicating
schizophrenia-related polymorphisms in genes involved in
glutathione synthesis [12].

Animal studies indicate a close relationship between
glutamate and glutathione. Persson et al. [13] showed that
glutathione synthesis was directly related to microglial
glutamate uptake and the release of glutamate metabolites.
Barger et al. showed that depletion in glutathione levels due
to oxidative stress is related to microglial glutamate release
[14]. In a review of the role of glutathione in protection
against neuronal death, Bains et al. [15] present evidence
that glutamatergic transmission activates biochemical
pathways that generate free radicals and/or lower defence
against damage by free radicals. Conversely, free radicals
can increase the concentration of glutamate in the synaptic
cleft by the release of glutamate or blockade of its re-
uptake. In particular, oxidative stress reduces the uptake of

SPRINGER NATURE

glutamate in astrocytes, a key step in the recycling of glu-
tamate [16]. This potentially creates a vicious cycle leading
to damage by free radicals unless the glutamatergic trans-
mission is associated with increase in glutathione.

Other evidence implicates NMDA receptors in the
interaction between glutathione and glutamate. In a recent
review article, Hardingham and Do [17] presented evidence
indicating that NMDAR hypofunction and oxidative stress
may be reciprocally linked. For instance, glutathione
enhances NMDAR responses whereas its depletion results
in NMDAR hypofunction [18]. Furthermore, NMDAR
hypofunction can also lead to oxidative damage [19]. Baxter
et al. [20] demonstrated that synaptic activity, mediated via
NMDA receptors, boosts the synthesis and utilization of
glutathione, thereby adjusting antioxidant capacity to meet
the elevated needs of active neurons. These studies indicate
that in an equilibrium state there is likely to be a close
coupling between glutamate and glutathione.

Magnetic resonance spectroscopy (MRS) allows bio-
chemical concentrations of glutathione, glutamate, and
other metabolites to be measured non-invasively in vivo.
One MRS study found reduced glutathione in the medial
prefrontal cortex (mPFC) in schizophrenia patients com-
pared with healthy controls [21]. Another recent study
reported reduced glutathione only in schizophrenia patients
carrying a risk variant of the gene coding for the rate-
limiting enzyme in glutathione synthesis [22]. Four other
studies reported no statistically significant differences in
glutathione levels in the posterior medial frontal cortex [23],
mPFC [24] or anterior cingulate cortex (ACC) [25, 26].
However, two out of the four found a trend toward reduced
glutathione in schizophrenia [24, 25] and in one, lowered
levels of glutathione were associated with negative symp-
toms [24]. On balance, these studies of predominantly well-
established cases of schizophrenia indicate a tendency
toward reduced glutathione. In contrast, a study of first-
episode cases reported elevated glutathione in medial tem-
poral lobes [27] raising the possibility that glutathione
abnormalities might vary with phase of illness. However, it
should be noted that this study used a lenient threshold for
the inclusion of glutathione metabolite fits.

Because glutamate released during neurotransmission is
recycled via glutamine in glial cells, glutamine may index
glutamate neurotransmission. However, glutamate and
glutamine each participate in several other distinct cell
processes and hence may not be closely coupled [28]. MRS
studies of glutamate and glutamine concentrations in schi-
zophrenia have been inconsistent, with some studies
reporting an increase, others reporting a decrease or no
abnormality ([29-35], for reviews see [36, 37]). One meta-
analysis found that glutamate is reduced and glutamine is
increased in the ACC in patients with schizophrenia, and
both decrease more markedly with age in patients [38]. A
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more recent meta-analysis found higher medial-frontal Glx
(glutamate + glutamine) levels in high-risk subjects [39].
Three recent studies used ultra-high field strength (7T)
MRS, as its greater spectral resolution and signal-to-noise
ratio help to distinguish between these two metabolites.
Two studies investigated the ACC/mPFC and one of these
studies found increased glutamine/glutamate ratio [40]
while the other found no significant abnormalities in
glutamate levels in schizophrenia [41]. A third study
found reduced glutamate in the occipital cortex in
schizophrenia patients compared to healthy controls [42].
These studies provide some evidence of elevated
glutamine levels in ACC/mPFC, especially in the
early phase of illness. Overall, these studies indicate
that glutamate may be unchanged or reduced, especially in
more chronic cases, depending on the persistence of
symptoms or other factors associated with long-term illness
[29-37].

We reasoned that if decreases in glutathione and gluta-
mate in the stable phase are a consequence of damage
arising in a preceding acute phase, a sample of stable
patients would be more likely to demonstrate a reduction in
these neurochemicals than a more heterogeneous sample.
We also predicted that any reduction in these neurochem-
icals would be most marked in cases of residual schizo-
phrenia. ICD-10 defines residual schizophrenia as a chronic
stage of the illness, in which there has been a progression
from an early stage with positive psychotic symptoms to a
later stage characterized by long-term negative symptoms
and impairments, but reduced frequency and severity of
positive symptoms [43]. Although the DSM-IV [44] does
not explicitly define residual schizophrenia, it describes
as typical a course of the illness in which positive
symptoms diminish while negative symptoms persist. If
residual schizophrenia reflects neural damage due to
oxidative stress, reduced levels of glutamate and
glutathione should be most marked in patients with
residual schizophrenia.

As much of the MRS evidence in schizophrenia relates to
the ACC, this was our primary region of interest. Insular
cortex together with ACC forms the Salience Network,
which is hypothesized to play an important role in schizo-
phrenia [45]. Moreover, evidence indicates progressive
structural changes in the insula early in the illness [46].
We therefore placed a voxel in the left insula. While
much of the focus has been on the frontal cortex, it is
possible that abnormalities in glutamatergic neuro-
transmission are widespread and include the visual cortex
[47]. Hence, we chose the visual cortex as our third region
of interest.

Since animal studies have demonstrated a close link
between glutathione and glutamate uptake into both microglia
and astrocytes, and NMDA receptor function, we also

predicted that glutathione and glutamate levels in the brain
would be correlated across all subjects. Although our primary
hypothesis concerns glutathione and glutamate, the under-
lying hypothesis is that in the residual state there is dimin-
ished neural metabolic integrity arising from a toxic process in
the acute phase of illness [4]. We might therefore predict
that other metabolites would also exhibit reductions
correlated with reductions in glutathione and glutamate.
We therefore examined the correlations between
glutathione, glutamate, and other metabolites reflecting cel-
lular metabolic processes.

Methods
Participants

Patients aged 18-55 with a diagnosis of schizophrenia or
schizoaffective disorder were referred to the study by
community-based mental healthcare teams in Nottingham-
shire, Derbyshire and Lincolnshire, England (for inclusion
and exclusion criteria, see SA1 (Supplement).

All patients were in a stable phase of illness, defined as a
change of no more than 10 points in their Social and
Occupational Functioning Assessment Scale (SOFAS)
score (defined in DSM-IV [44]) between assessment
6 weeks prior to and immediately prior to study participa-
tion. Patients with a documented history of prominent
positive symptoms of schizophrenia but currently exhibiting
no substantial positive symptoms were deemed to satisfy
ICD-10 criteria for residual schizophrenia if they exhibited
appreciable negative symptoms, and/or impaired occupa-
tional and/or social function. Operational criteria are spe-
cified formally in SA2.

Most patients were receiving psychotropic medication.
The median defined daily dose (DDD) [48] was calculated
separately for antipsychotics, mood stabilizers including
lithium, and antidepressants. No patient had had a change in
any of these medications 6 weeks prior to participating in
this study.

Healthy participants with no personal or family history
of psychotic disorders were recruited from the local
community via posters, and matched group-wise to
the patient group for age, gender, and parental socio-
economic status (SA3). Exclusion criteria were as for
the patients.

All participants were assessed on scanning day for
handedness, social and occupational functioning, and 1Q. A
clinical interview by a trained team member using a stan-
dardized symptom assessment was video-recorded (SA4).

This study was approved by the National Research
Ethics Committee. All participants gave informed consent
and received an inconvenience allowance.

SPRINGER NATURE
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Fig. 1 Average voxel placements (ACC anterior cingulate cortex, Ins
left insula, Vis visual cortex) across all subjects overlaid on an MNI
brain; illustrative 'H spectra with baseline and residuals from a voxel
located in the ACC of subjects from all three groups (healthy controls,

Image acquisition

Scans were conducted at the Sir Peter Mansfield Imaging
Centre, University of Nottingham, using a 7 Tesla Philips
Achieva scanner (Philips Medical Systems, Best, The
Netherlands), a volume transmit head coil, and a 32-channel
receive head coil. MRS data were collected using a 'H-
MRS single voxel short TE STEAM (STimulated Echo
Acquisition Mode) sequence (TE/TM/TR = 17/17/2000 ms)
with eight phase cycle steps, 4096 samples, and a 4 kHz
bandwidth. Two-hundred and eighty-eight spectra were
collected using the Multiply Optimized Insensitive Sup-
pression Train (MOIST) technique for water suppression.
Two spectra were collected without water suppression in
order to correct for absolute concentrations using water
referencing. A B field map was acquired and parcellated
shimming was used to enhance By homogeneity [49]. The
primary voxel of interest (VOI) (20 x 18 x 25mm?®) was
placed in the ACC; a second VOI (40 x 12 x 18mm3) was
placed in the left insula; and third VOI (20 x 22 x 20mm?)
in the visual cortex. See Fig. 1 for a sample spectrum
and voxel placements. An anatomical Tl MPRAGE
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residual schizophrenia, and non-residual schizophrenia) and corre-
sponding fits from LCModel for glutamine (Gln), glutamate (Glu), and
glutathione (GSH)

image (TE/TR = 3.4/7.3 ms) was acquired for each subject
(1 mm isotropic resolution, 256 X256 x 180 matrix,
flip angle 8°) to aid placement of the VOIs and for co-
registration.

Data processing

For details of the procedure for estimating the metabolite
concentrations in the three voxels see SAS. Briefly, the ana-
tomical image was segmented into grey matter, white matter,
and cerebrospinal fluid. MRS data acquired independently
from the 32 channels were combined using an optimized coil
combination method [50]. Metabolite concentrations were
estimated using LCModel [51]. Data exceeding a threshold of
SD = 20% for the Cramer-Rao Lower Bound estimate of the
precision of the quantification were excluded from the ana-
lysis. Metabolite concentrations were normalized to the con-
centration of water calculated from unsuppressed water
spectra, since variations in water content within the sample
are expected to be much smaller than the variations in the
metabolite level [52]. Tissue volume fractions determined
from the segmented images were used to correct metabolite
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Table 1 Mean glutathione (GSH), glutamate (Glu), and glutamine (Gln) concentrations (measured in millimolar (mM) and corrected for tissue fraction) in healthy controls (HC); all patients with

stable schizophrenia (All Stable SZ), and in patients with residual schizophrenia (Residual SZ) each of the three regions—anterior cingulate cortex (ACC), left insula, and visual cortex.

HC vs Residual SZ

HC vs All Stable SZ

Residual SZ

All Stable SZ

HC

Hedge’s g (LCL, UCL)

p

df

t

Diff.

Hedge’s g (LCL, UCL)

p

t df

N M (SD) Diff.

N M (SD)

N M (SD)

ACC

~0.87 (—1.53, —0.22)
~0.66 (—1.31, —0.01)
~0.83 (—1.49, —0.17)

55 0.008
55 0.044

52 0.013

—-0.26 2.731
—0.53 2.061
—0.26 2.581

0.7 (~1.19, —0.21)
~0.26 (—0.74, 0.22)
~0.55 (—1.04, —0.05)

2.890 70 0.005

—0.21
—-0.20

45 175 031) 27 1.55(026) 12 1.49 (0.23)

Glutathione

1.092 70 0.278

12 5.68 (0.73)

27 6.01 (0.66)
27 12

45 621 (0.81)

42

Glutamate

67 0.028

—0.18 2.241

1.66 (0.31) 1.48 (0.36) 1.40 (0.30)

Glutamine

Insula

~0.09 (—0.73, 0.55)

0.21 (—0.43, 0.85)
~0.02 (—0.68, 0.64)

55 0.784

—0.02 0.276

0.11

~0.17 (—0.65, 0.31)
~0.09 (—0.56, 0.39)

—0.04 0.695 70 0.489

45 172 (020) 27 1.68 (0.26) 12 1.70 (0.24)

Glutathione

—0.659 55 0.513

0.067

0.364 70 0.717

-0.05
0.02

12 6.56 (0.6)
11

27 6.39 (0.68)

26

45  6.44 (0.51)

44

Glutamate

53 0.947

—0.01

0.325 68 0.746 0.08 (—0.41, 0.56)

1.59 (0.30) 1.56 (0.24)

1.57 (0.28)

Glutamine

Visual

—0.24 (—-0.91, 0.42)

~0.06 (—0.72, 0.6)
—0.44 (—1.1, 0.23)

54 0.464

54 0.857
53 0.192

—0.05 0.738

—0.03
—0.11

~0.18 (=0.66, 0.30)
~0.21 (—0.69, 0.28)
~0.30 (=0.78, 0.19)

0.739 69 0.462
0.845 69 0.401

—0.03
—0.11

—0.07

1.46 (0.24)
5.37 (0.55)
1.19 (0.30)

45 150 (0.17) 26 1.47 (020) 11

Glutathione

0.181

11

26 5.30 (0.51)

26

45 5.40 (0.51)

44

Glutamate

1.320

1.213 68 0.229

11

1.2 (0.23) 1.22 (0.25)

Glutamine

Differences between HC and All Stable SZ means, and between HC and Residual SZ means are given (HC mean—Patient mean) together with #-test results and effect size estimates (Hedge’s g,

with 95% confidence limits). Assumptions of normality and homoscedasticity were satisfied in all comparisons

concentrations for partial volume effects and relaxation
attenuation in each voxel [53]. Tissue composition and MRS
data quality measures are reported in ST1-ST3.

Statistical analyses

As Pearson correlation coefficients between the nine metabo-
lite concentration values (three metabolites in three voxels)
were substantial even after adjustment for potential con-
founders, we used principal component analysis (PCA) to
identify latent metabolite variables, and extracted scores for
each component (see Results and SA7 for details). The PCA
was weighted by group size; missing values were replaced
by the mean. Statistical analyses were performed using SPSS
22 (IBM).

To determine, firstly, whether mean metabolite compo-
nent scores in patients with stable schizophrenia differ
from mean scores in healthy controls, and secondly, whe-
ther this difference is significantly leveraged by the sub-
group of patients with residual schizophrenia, we
regressed each component score in turn on two participant
variables using a hierarchical regression model. In Block 1,
we entered a binary dummy variable, “Stable Schizo-
phrenia”, coded 1 for a patient with schizophrenia and 0
otherwise. In Block 2, we entered an additional binary
dummy variable, “Residual Schizophrenia”, coded 1 for a
patient meeting criteria for residual schizophrenia, and 0
otherwise.

To facilitate comparison with other studies, we also
used independent samples #-tests to test for differences
in metabolite concentrations between controls and (1) all
patients, and (2) patients with residual schizophrenia.
We also calculated Pearson correlations between glu-
tathione, glutamate, glutamine, creatine, myo-inositol, and
n-acetyl aspartate, and between metabolite PCA component
scores and age; and antipsychotic DDD.

Results
Participants

Data from 45 healthy participants and 28 patients with
schizophrenia were included in the analysis. Thirteen of the
patients met criteria for residual schizophrenia (see SA6 for
details of exclusions and a discussion relating to our sample
size, clinical and demographic features of the sample are
reported in ST4).

LCModel results

Means for glutathione, glutamate, and glutamine con-
centrations (estimated by LCModel and corrected for tissue

SPRINGER NATURE
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Fig. 2 Correlation between glutathione (GSH) and glutamate (Glu)
concentrations in the three regions (anterior cingulate cortex (ACC),
visual cortex, and insula) in the three groups (healthy controls, patients
with residual schizophrenia, and patients with non-residual schizo-
phrenia). Values represent standardized residuals after covarying for
gender in the ACC and insula; and gender and spectral line-width in
the visual cortex. Note: For the correlation between GSH and Glu in
the ACC in healthy controls and in the insula in patients with residual
schizophrenia, data did not satisfy the assumption of multivariate
normality. Therefore, bootstrapped bias-corrected accelerated 95%
confidence intervals were computed (10,000 samples), and the corre-
lations remained significant

fraction) in each of the three voxels are given in Table 1 for
healthy controls, all patients with stable schizophrenia and
in the sub-group of patients with residual schizophrenia (for
other metabolites see ST5).

SPRINGER NATURE

Table 2 Weighted principal components analysis (PCA) loadings for
glutathione, glutamate, and glutamine in the whole sample. Bold font
indicates loadings greater than 0.6.

3 principal components explaining 64.82% of the variance (varimax
rotation)

Variables Component loadings

Component | ~ Component 2 ~ Component 3

Ins glutathione 0.746 0.254 0.116
Ins glutamate 0.808 0.184 —0.059
Vis glutathione 0.738 0.028 0.013
Vis glutamate 0.835 0.070 —0.096
ACC glutathione 0.160 0.871 0.010
ACC glutamate 0.210 0.804 —0.080
ACC glutamine —0.070 0.382 0.725
Ins glutamine —0.004 —0.076 0.759
Vis glutamine 0.026 —0.168 0.697

Correlations and confounds

As metabolite concentrations tended to be systematically
higher in men than in women, we adjusted the values for
gender (see SA7 for details). We found significant bivariate
Pearson correlations between adjusted glutathione and
glutamate in all three voxels (p <0.05) (Fig. 2). Glutamine
levels were significantly correlated across all three voxels,
with r-values ranging from 0.28 to 0.36 (p <0.05). The
pattern of correlations between metabolites in the patient
and control groups examined separately was similar to that
in the combined group.

The PCA of the nine adjusted metabolite concentration
values (glutathione, glutamate, and glutamine in each of the
three voxels, ACC, Insula, and Visual) resulted in three
components with an eigenvalue greater than 1. Component
loadings after varimax rotation are given in Table 2. The
first component (accounting for 28% of the variance) loaded
positively on glutathione and glutamate measures in the
visual and insula voxels. The second component (18.7% of
the variance) loaded positively on glutathione and glutamate
in the ACC and the third component (18% of the variance)
loaded positively on glutamine measures in all three voxels.
Separate PCA in patient and control groups identified three
similar components with the same metabolite loadings
exceeding 0.5 on corresponding components in each group.

There were no significant correlations between metabo-
lite component scores and antipsychotic dose in either
patient group, nor were there significant correlations with
age. Significant positive correlations were observed
between several of the metabolites, specifically between
glutathione, glutamate, NAA, creatine in the ACC (ST6).
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Fig. 3 Panel a shows mean component scores for the second PCA
component loading on glutathione and glutamate concentrations in the
ACC. Error bars represent 95% confidence intervals. There were no
significant differences in variances between any groups or sub-groups.
Panel b shows the effect sizes for differences in mean metabolite

Hierarchical models

Our primary hypothesis concerned the ACC, glutathione,
and glutamate. The second PCA component, loading on
glutathione and glutamate scores in the ACC, was therefore
our first dependent variable. When “Stable Schizophrenia”
was entered as a predictor, the R? of the model was 0.07, F
(1, 71)=5.332, p=0.024, a small effect size, j2:0.08.
The regression coefficient was significantly negative, indi-
cating that mean component score was significantly lower
in patients than in controls. When “Residual Schizophrenia”
was included in the model, the R? of the model increased to
0.12, a medium effect size, fz =0.14. This R? increase was
statistically significant, F(23, 70) =4.114, p =0.046. The
regression coefficient for “Residual Schizophrenia” was
significantly negative, indicating that mean score in patients
with residual schizophrenia was significantly lower than in
either the other patients or than healthy controls. In this
model, “Stable Schizophrenia” was no longer a significant
predictor, indicating that patient—control difference in the
first model was being leveraged almost entirely by the
presence in the patient group of the patients with residual
schizophrenia. These results are shown graphically in
Fig. 3a.

For the first and third PCA components (glutathione
and glutamate in the Insula and Visual voxels; glutamine
in all three voxels), neither predictor accounted for

Effect sizes (Hedge's g, 95% Cl)

=15 -1.0 -0.5 0.0 0.5

Glutathione

Glutamate

Glutamine

M All Patients vs Controls M Residual SZ vs Controls

concentrations in the ACC between healthy controls and all patients
(green bars) and the sub-group of patients with residual schizophrenia
(blue bars). Error bars represent 95% confidence limits of the effect
size.

significant variance in component scores. Normality
and homoscedasticity assumptions were satisfied in all
models.

Independent samples t-tests

Results from independent samples #-tests on the nine
unadjusted metabolite concentrations (glutathione, gluta-
mate, and glutamine in each of the three voxels) are given in
Table 1. Group mean metabolite concentrations were sig-
nificantly lower in the patients than in the controls for both
glutathione and glutamine in the ACC, and significantly
lower for all three metabolites in the ACC in the subset of
patients with residual schizophrenia. Effect sizes are plotted
in Fig. 3b.

Discussion

Patients with stable schizophrenia had lower levels of
glutathione and glutamate in the ACC, as measured by
component scores representing variance shared between
glutathione and glutamate in the ACC. This is consistent
with our hypothesis that this group would include
patients in whom excitotoxic damage during acute
florid illness has led to subsequent reductions in
mental and neural activity mediated by glutamatergic

SPRINGER NATURE
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neurotransmission [3, 4]. Our hypothesis is further sup-
ported by the finding that for the sub-group of patients
defined a priori as having residual schizophrenia, the
effect size was larger, and indeed was largely responsible
for the difference in scores between patients and controls.
This finding is consistent with prior evidence indicating
increased glutamatergic transmission early in the
illness but diminished glutamate in older or more
functionally impaired cases [29-37]. All three metabo-
lites measured in the ACC were significantly lower in
the group with residual schizophrenia than in the
control group.

Glutathione and glutamate were significantly correlated
with each other in all three brain regions. These high cor-
relations are consistent with the hypothesis of a mechanistic
link between antioxidant and glutamatergic systems in the
human brain such that under steady-state conditions, low
levels of glutathione are associated with low levels of glu-
tamatergic neurotransmission [17]. In principle, the use
of the unsuppressed water signal as a reference for meta-
bolite signal normalization might introduce spurious cor-
relations between glutathione and glutamate signals.
However, provided variations in the water content within
the sample are much smaller than the variations in the
metabolite levels, variance shared between normalized
metabolite signals can be assumed to arise largely from
shared variance in metabolite concentrations [52]. It is
noteworthy that there were no significant group differences
in grey and white matter tissue composition in the three
voxels (ST1).

Positive correlations exceeding an uncorrected threshold
within each voxel were observed with all metabolites
assessed apart for glutamine. After correction for multiple
comparisons, correlations between glutathione, glutamate,
NAA, creatine, and myo-inositol in the ACC remained
significant. Component scores on a principal component
representing variance shared between these five metabolites
(ST7) were significantly reduced in residual schizophrenia
compared with healthy controls. This suggests that these
metabolites reflect metabolic integrity of cells (see SAS8 for
further discussion).

Ultra-high field MRS distinguishes between glutamate
and glutamine, facilitating measures of glutathione and
glutamate that are largely independent of glutamine levels.
We found no significant correlations between glutamate and
glutamine within any of the three voxels. However, we
found significant correlations between glutamine levels
across all three voxels, and all three glutamine measures
loaded on a single component. This may be unsurprising,
given the primary role of glutamine in glutamate recycling,
a process likely to be cortex-wide.

Several limitations could be addressed in future studies.
Firstly, given the evidence that glutathione and glutamate
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levels in the brain are affected by a risk variant of the gene
coding for the glutathione synthesis enzyme, the role of
genetic influences should be investigated [22]. Secondly,
although we controlled for current antipsychotic medica-
tion intake and metabolite concentrations, possible con-
founding effects of long-term medication use should be
considered. Thirdly, these results need to be interpreted
with caution due to the potential differences in T1 and T2
relaxation times between different individuals and groups
and their effects on neurochemical concentrations. Prag-
matic constraints precluded measurement of water and
metabolite T1 and T2 relaxation times in individual sub-
jects. Instead, we used a short TE (17 ms) to minimize
the effects of any potential differences in T2 relaxation
times. While we cannot disregard the possibility of
some remaining effects of relaxation time differentials, we
note that our results are metabolite-specific, while
systematic between-group differences in relaxation
times would likely impact all metabolite concentrations
equally.

Lastly, although the total number of patients was sub-
stantial, the cell size of the residual sub-group was small.
Future studies with larger cell sizes should be conducted to
compare sub-groups patients with different symptom pro-
files. Mostly importantly, our findings should motivate
longitudinal studies using 7T MRS to follow neurochemical
changes in individual patents across the phases of their
illness.
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