ScoutWav: Two-Step Fine-Tuning on Self-Supervised Automatic Speech
Recognition for Low-Resource Environments

Kavan Fatehi', Mercedes Torres Torres®, Ayse Kucukyilmaz*

1School of Computer Science, University of Nottingham
?B-hive Innovations

kavan.fatehi@nottingham.ac.uk, mtorrestorres@b-hiveinnovations.co.uk,
ayse.kucukyilmaz@nottingham.ac.uk

Abstract

Recent improvements in Automatic Speech Recognition
(ASR) systems obtain extraordinary results. However, there are
specific domains where training data can be either limited or not
representative enough, which are known as Low-Resource En-
vironments (LRE). In this paper, we present ScoutWav, a net-
work that integrates context-based word boundaries with self-
supervised learning, wav2vec 2.0, to present a low-resource
ASR model. First, we pre-train a model on High-Resource
Environment (HRE) datasets and then fine-tune with the LRE
datasets to obtain context-based word boundaries. The resulting
word boundaries are used for fine-tuning with a pre-trained and
iteratively refined wav2vec 2.0 to learn appropriate representa-
tions for the downstream ASR task. Our refinement strategy
for wav2vec 2.0 comes determined by using canonical correla-
tion analysis (CCA) to detect which layers need updating. This
dynamic refinement allows wav2vec 2.0 to learn more descrip-
tive LRE-based representations. Finally, the learned representa-
tions in the two-step fine-tuned wav2vec 2.0 framework are fed
back to the Scout Network for the downstream task. We carried
out experiments with two different LRE datasets: [-CUBE and
UASpeech. Our experiments demonstrate that using the target
domain word boundary after pre-training and automatic layer
analysis, ScoutWav shows up to 12% relative WER reduction
on the LR data.

Index Terms: Automatic Speech Recognition, Self-Supervised
Learning, Fine-tuning, Low-resource Environment

1. Introduction

Recently, there have been remarkable improvements in end-to-
end (E2E) automatic speech recognition (ASR) systems, which
need large amount of labeled speech to perform well, which
may be impossible for all applications. A low-resource envi-
ronment (LRE) is an environment in which training data and
labels are insufficient and difficult to collect [1], such as a new
language, such as Kyrgyz [2], or for a specific group of speakers
with different accents [1]. These highly-accurate performances
coupled with such large amount of labeled data proposes a need
to use unlabeled data in developing the ASR model for LREs.
Self-supervised learning (SSL) has been proposed to ac-
quire meaningful representations from unlabeled data, with
promising results in low and high resource ASR settings [3, 4].
In SSL, a large amount of unlabeled data is used to extract
representations, which are used as input to a final model for
a downstream task [3]. Recently, wav2vec 2.0 [5] was pro-
posed as a layer-based SSL model based on the Transformer
[6]. SSL models can obtain high-quality representations for the
ASR systems and achieve better performance by fine-tuning a
small amount of annotated in-domain data. However, one-step

fine-tuning is unable to adapt the pre-trained model to the down-
stream task, and there is still a performance gap in this area.

Recently, Wang et al. [7] have proposed a new low-latency
end-to-end (E2E) model, called the scout network (SN), which
showed state-of-the-art results in ASR systems. They hypoth-
esize that the speech segment which relates to the word is the
most valuable contextual information to provide an output to-
ken. Therefore, they proposed two different neural components,
the SN to detect the word boundary in the speech segments,
while the recognition network (RN) detects the sub-word by
considering the context from all frames before boundary pre-
diction. However, the lack of global context information in this
model decreases the performance of the ASR model.

In this paper, we demonstrate the use of out-of-domain
large-scale corpora to boost the performance of low-resource
(LR) ASR tasks. To address the training data bottleneck,
we propose a novel model, called ScoutWav that integrates
SSL with context-based word boundaries to obtain a high-
performance ASR model for LREs. ScoutWav utilizes an en-
hanced SN that involves a context vector embedding mecha-
nism to capture both local acoustic features and global context
attributes to obtain high-quality word boundary data for two-
stage fine-tuning. Initially, we pre-train a wav2vec 2.0 model
with a high-resource (HR) dataset and then fine-tune with LR
data to adapt the model for the downstream task. Since dif-
ferent layers in a Transformer architecture can capture differ-
ent ranges of linguistic information[3], we apply a wav2vec 2.0
layer analysis to detect poor layers, which do not sufficiently
capture acoustic-linguistic features. These poor layers are then
improved through a second fine-tuning step using context-based
word boundary data to embed globalization in ScoutWav. We
demonstrate the performance of ScoutWav model on two LRE
datasets.

2. Related Work

SSL has been known as a paradigm for learning general data
representations from unlabeled examples, then fine-tuning the
model on labeled data [S]. wav2vec [8] used the Contrastive
Predictive Coding (CPC) loss function for pre-training speech
representations by predicting the near future frames in the
acoustic sequence. The vg-wav2vec [9] model integrated
wav2vec approach with Bidirectional Encoder Representations
from Transformers (BERT) [10] to obtain BERT-like speech
representations through two-stage training. wav2vec 2.0 [5]
enhanced vg-wav2vec approach through a single-stage training
by masking the input speech data into the latent space and then
solving a contrastive task which is defined over a quantization of
the latent representations. TERA [11] is a self-supervised pre-
training method that utilizes alteration along time, frequency,



and magnitude to pre-train Transformer Encoders on a large
amount of unlabeled speech. Hidden unit BERT (HuBERT)
[6] is an SSL method, which uses an offline clustering step
to provide noisy labels for a BERT-like prediction loss. How-
ever, Transfer learning techniques for LR ASR has emerged as a
paradigm to transfer knowledge from HR languages to LR lan-
guages and have been extensively studied. Some recent models
have attempted to transfer acoustic models with a shared phone
layer [12] or separate phoneme layers [13].

A considerable amount of literature has been published
on the processing of end-to-end attention-based ASR. Stream-
based ASR models, which are considered in the scope of this
work, can be classified into look-ahead-based [14] and chunk-
based models [15]. Look-ahead models apply a window for
each frame to obtain the crucial context information, while in
chunk-based approach the input audio segment is divided into
several fixed-length chunks. Most studies in these categories
use windows shifting, e.g. MoCha [16], and parametric Gaus-
sian attention [17].

In addition, researchers have shown an increased interest in
applying Transformer for online processing [18] in which local
context can play an important role in addressing the issue of in
acoustic modeling. In [19] a new masking technique has been
proposed to improve the efficient training of the Transformer
model. In [7] a low-latency streaming approach is presented
for Transformer-based models, which consists of two separate
networks, the scout network (SN) and the recognition network
(RN). SN detects where a word starts and ends, and finally any
end-to-end ASR model can be used as the RN to predict the
next sub-word by utilizing all the information of the previous
frames. This model has suffered from a lack of using global
context information, which led to degrade performance of the
ASR model in general. In this paper, we explore contextual
information by adding context vectors to the Scout network ap-
proach to obtain global channel, speaker and linguistic to pro-
vide context-based word boundary to resolve this issue to pre-
vent performance degradation in ASR model.

3. Proposed Approach

ScoutWav is an end-to-end ASR model which integrates
context-based word boundary with a layer analysis module to
efficiently adapt a wav2vec 2.0 pre-trained model to a target
downstream ASR task in a low-resource environment. The
overall ScoutWav training procedure is shown in Figure 1.
Obtaining context-based representations is the main aim of the
ScoutWav approach to increase the performance of the high-
resource ASR model in low-resource environments. The pro-
posed model consists of two modules: a) building context-based
word boundaries and b) layer analysis-based fine-tuning. In
the first module, we pre-train a SN on high-resource data and
then fine-tune the model with low-resource (LR) data to achieve
context-based word boundaries for the target task. In the second
module, we pre-train wav2vec 2.0 with the high-resource (HR)
dataset and fine-tune with the LR dataset to adapt the model
for the target LR task. After fine-tuning wav2vec 2.0, we ap-
ply a layer analysis to detect the poor layers. These poor layers
are then improved by a second stage of fine-tuning using the
context-based word boundary data to enhance and adapt those
layers to the low-resource target ASR task.
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Figure 1: ScoutWav structure and training procedure

3.1. Build Context-Based Word Boundary

In this section, we summarize how a high-resource ASR model
can be adapted for a LR task by capturing the most valuable
global and local contextual information. The most valuable
contextual information for preparing the annotated output text
can be obtained from the speech segment that is related to the
target word [7]. Therefore, a look-ahead-based SN model is
used to detect the word boundary in the speech segment to iden-
tify where a word starts and ends. SN consists of CNN layers
for pre-processing of the input sequence followed by N, self-
attention layers. Then, a combination of the linear layer and
a sigmoid layer is used to detect the probability of the bound-
ary p;. The output of the current frame depends on the previous
one. To train the model, the following cross-entropy loss is min-
imized to optimize the model for the word-boundary structure:

Loss = Ebilog(pi) = Zbilog(Sigmoid(th)) ,

where b; € 0,1, h;, and W are the ground truth of the word
boundary, the output of the hidden sequence, and the trainable
matrices, respectively.

In LREs, the context information at each boundary should
be adapted to the LR task to have reasonable performance in
the target environment. An SN does not capture global contex-
tual information when detecting the word boundary, reducing
the overall performance of the ASR model in both high- and
low-resource settings. In contrast, ScoutWav utilizes two sets of
context vectors in each self-attention layer, that are calculated
through all previous frames to capture not only local acous-
tic information, but also global context features. This allows
ScoutWav to adapt reasonably well to the LR downstream task.
The first set of the context vectors are calculated in each layer
of each block and fed into the upper layer of the current lay-
ers. The second vector is obtained by concatenating all vectors
in the current layer to share the global characteristics, speaker,
and linguistic between the layers to enhance the adaptation pro-
cedure of the model into the LRE. We calculate the multihead
self-attention as follows:

MHD(Q",K", V") = Concat(head, - - - , head, )W

head; = Attention(Q"Wg ;, K"Wxg ;, V"Wy,)

where W are trainable matrices. In the first layer, Ql, K1,
and V! are represented as a feature matrix which include block
input and context vector. For context vector initialization, the



positional encoding is adapted with rearranging for each layer,
and only the output of each encoder layer is utilized. In the
following layers, @), K, and V' are enhanced with two sets of
context information vectors that are calculated from the previ-
ous layer, a context vector from each encoder of the previous
layer, and a summarized context vector from all encoders in the
current layer. By adding context information vector to SN, we
generate an improved scout model which is able to detect more
accurate word boundaries.

In order to adapt the SN model to the LR task, we pre-train
the improved SN with high-resource data and then fine-tune it
with a LR dataset. Our context vector mechanism allows the
model to capture the context-based word boundaries.

3.2. Layer Analysis-Based Fine-tuning

In this section, we summarise how we adapt the wav2vec 2.0
approach by integrating layer analysis of the model and two-
step fine-tuning mechanism to achieve a higher performance
for LREs. The wav2vec 2.0 framework maps the raw audio se-
quence into a high-level contextual representation through a set
of convolutional layers followed by self-attention layers, which
are trained with a contrastive objective. Investigating the Trans-
former layers of the BERT model in natural language process-
ing indicated that different blocks behave differently and cap-
ture different levels of information; the earlier blocks represent
syntactic information, while the high-level ones present high-
level semantic information [2]. Therefore, such a layer analysis
over wav2vec 2.0 helps to have a better insight of layers be-
havior to enhance and fit the model for the low-resource ASR
setting. To get a better understanding of layer behavior, we use
Canonical Correlation Analysis (CCA) [20] inspired by [3] over
different layers of wav2vec 2.0 and detect poor layers, which
may not be well suited for the LR target ASR task. Then the
context-based word boundaries obtained from the previous sec-
tion are used for the second stage of the model fine-tuning to
improve the performance of the poor layers.

We use Canonical Correlation Analysis (CCA) [20] as a
measure to detect which layer of the wav2vec 2.0 model may
not well suited for the target low-resource ASR task. CCA is
a statistical approach to represent the maximum correlations
between linear combinations of two continuous value vectors.
Therefore, CCA can be used to calculate the similarity between
the representations of the layers and the acoustic feature vector
to evaluate how the different layers of the model are adapted
to the downstream target task. CCA takes n pairs of vectors
(z1,91), -, (Tn,yn) as input and return a correlation score
as a measure of similarity between two vectors. In ScoutWav,
we use Deep CCA (DCCA) [21] to dig the complex relation-
ship between to view if data by passing into a deep network
and then the output of the network fed into CCA to measure the
similarity. The DCCA solution can be defined as follows:

arg max p = tr(Wi f1(X7) f2(X %) Wa)

WG A + W =1 )
W (f2(XP) (X)) 12 )Wo = 1

where fi; and fo are two DNN networks, fi(X') and
f2(X?) are DNN outputs which are interpreted by CCA to cal-
culate the similarity score. The ¢r calculates the total correla-
tion; Wi and W» are corresponding weight matrix embedded;
r1 and ro are regularization constants. The similarity score is
between 0 and 1, where 1 is the maximum similarity.

In this stage, the wav2vec 2.0 is pre-trained with HR data
and then fine-tuned with the LR target data. Then the layer
analysis procedure is applied through each layer with a word
embedding vector to detect the poor layers. Finally, the context-
based word boundaries are used as second-stage fine-tuning to
fit the poor layers to the target task and improve the performance
of the model.

4. Experiments
4.1. Datasets

We examine the performance of ScoutWav in the low-resource
environments with two LR datasets. We use the Industrial Co-
bots Understanding Behavior (I-CUBE) dataset as one of our
LR datasets. I-CUBE is a Human-Robot Collaboration dataset,
where participants were asked to interact with an actor posing
as a robot (following the Wizard of Oz protocol) using natural
language [22]. They had to instruct and ultimately teach this
robot how to sort different garments into four baskets as if they
were sorting their own laundry. During the experiments, the
robot would also respond to the participant’s actions with its
own actions or speech. Video recordings of each session were
collected, resulting in a total of 42 videos, which represents 300
minutes of transcribed audio.

The second LRE dataset we use is the UASpeech dataset
[23], which is the largest corpus of dysarthric speech in Amer-
ican English. It is a collection of 541 read speech recordings
from 19 individuals with cerebral palsy. Furthermore, we use
LibriSpeech (LS) [24], Wall Street Journal (WSJ) [25], TED-
LIUM v3 (TL) [26], and Mozilla Common Voice (CV) [27] as
our HR datasets.

4.2. Experiment Setup

For the WSJ, the models were trained on the SI-284 set and
evaluated on the eval92 set. We trained the models with Lib-
riSpeech, by using 960 hours of training data, and evaluated
with data from both clean and contaminated testsets. Finally,
for TED and CV datasets, we used 10-fold cross-validation and
reported average and standard deviation WER across all folds.
The input acoustic features were 80-dimensional filterbanks,
extracted with a hop size of 10 ms and a window size of 25 ms,
which were normalized with the mean and variance. For the
WSIJ setup, the number of output classes was 52, including the
26 letters of the alphabet, space, noise, symbols such as period,
an unknown marker. To predict the probability distribution of
all characters in the alphabet, we use the CTC loss function and
use AdamW optimizer [28] as a hyperparameter setting with an
initial learning rate of 0.001. The text is tokenized using Sen-
tencePiece [29] and we set the vocabulary size to 500. We run
the second-stage fine-tuning stage for 20 epochs. We also use
beam width K = 10, boundary decision threshold o = 0.0005,
language model weight o = 0.5 and length penalty 5 = 2.0.
We use Montreal forced aligner [30] to define phone and word
segment. Finally, we pre-train and fine-tune wav2vec 2.0 in two
different settings; Base setting with 12 layers and Large setting
with 24 layers of the encoder.

4.3. Results

We carried out a word error rate (WER) comparison on different
datasets to evaluate our proposed context-based word bound-
ary detection model in ScoutWav with SN and a chunk-based
model. In ScoutWav, we pre-train each model with HR data
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Figure 2: Layer analysis of wav2vec 2.0 with different pre-training and fine-tuning
with I-CUBE data.

and then fine-tune with the target LR in-domain data. The re-
sults are summarized in Table 1, which shows that ScoutWav
outperforms other models for both the I-CUBE and UASpeech
datasets. The best performance is achieved after pre-training
with LibriSpeech. This indicates a correlation between the
model performance and the amount of pre-training data. In
summary, adding contextual information to obtain local and
global features enables ScoutWav to detect more accurate word
boundaries compared to SN and chunk-based method.

Table 1: Word error rate (WER) for detecting context-based word boundary on
different datasets with different models.

High-Resource Data

Model LR Libri | WSJ | TED | CV
Data

SN I-CUBE 16.41 | 18.83 | 17.39 | 20.17
UASpeech | 28.87 | 30.12 | 29.73 | 33.48

Chunk- I-CUBE 19.81 | 21.35 | 20.93 | 22.87
Based UASpeech | 31.18 | 33.98 | 32.35 | 34.11

I-CUBE 14.29 | 16.37 | 17.28 | 19.87

UASpeech | 25.93 | 28.17 | 26.53 | 30.13

ScoutWav

In the second stage of our experiments, we evaluated how
different layers of the pre-trained and fine-tuned wav2vec 2.0
model represents different attributes of the input acoustic. Fig-
ure 2 compares the results obtained from wav2vec 2.0 pre-
training on four high-resource datasets and then fine-tuning
with I-CUBE data and finally applying the second stage of fine-
tuning with context-based word boundaries. Figure 2 shows
DCCA scores to denote layer-to-input similarity in all pre-
training datasets for the Base setting (using 12 layers). The
DCCA trends are similar for the Large setting. The figure
demonstrates that the first layers (1-3) and last layers (9-12) de-
viate from input, hence are classed as poor layers; while mid-
dle layers (5-8) are more similar to the input data and we can
identify these as more suited representations for the final target
task. After applying the second step fine-tuning on poor lay-
ers with word boundaries, the results show a improvement in
the last layers. An interesting finding is the correlation between
the accuracy of the context-based word boundary and the layer
improvement: The context-based word boundary accuracy was
the lowest in the CV dataset, which is mirrored by the inferior
improvement rate for CV.

The analysis of the wav2vec 2.0 layers with the UASpeech
dataset are shown in Figure 3. Similar to the results achieved
with I-CUBE, the second step fine-tuning with obtained word
boundaries helps the model to extract more contextual infor-
mation from the first and last layers of the model that lead to
improve the performance of the ASR model in the LRE.

Figure 2 and Figure 3 indicate that the last layers of the
model have the largest improvement after the second fine-tuning
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Figure 3: Layer analysis of wav2vec 2.0 with different pre-training and fine-tuning
with UASpeech data.

Table 2: Word error rate (WER) results for different methods in two LREs. Best
performing models are highlighted.

LRE Method | Libri | WSJ | TED | CV
ScoutWav |15 3 | 1673 | 1521 | 17.89
Base
rcupe | SOUWav |6 10 | 1308 | 1257 | 1778
Large

wav2vec 2.0
Base
wav2vec 2.0

17.38 | 16.61 | 1545 | 18.42

11.61 | 14.73 | 13.64 | 17.22

Large
QuartzNet | 2651 | 2975 | 2839 | 3153
ScoutWav |10 46 | 2201 | 1938 | 24.55
Base
UASpeech SCE“‘W’“ 1332 | 15.29 | 14.93 | 18.35
arge
wav2vee 20 [ 16 07 | 2304 | 2131 | 2518
Base
wavzvec 20 [ 58 | 1623 | 15.19 | 18.87
Large

QuartzNet | 29.15 | 34.93 | 31.79 | 36.79

step, which indicates that that the pre-trained and fine-tuned
model is significantly improved by the context-based word
boundary fine-tuning to embed task-specific information.

Finally, Table 2 presents results for the LR setup, where
the second fine-tuning step was performed on the pre-trained
and fine-tuned ScoutWav model and compared with wav2vec
2.0 and QuartzNet[31]. In the LR setup, the Large Scout-
Wav model can achieve a WER of 10.14% on I-CUBE and
13.32% on UASpeech, which are respectively 12% and 6.7%
relative improvement on the than next best score of the Large
wav2vec 2.0 model. The superiority of ScoutWav persists
across most of settings on different datasets, where Base Scout-
Wav is 0.7% and 7.7% higher than Base wav2vec 2.0 on I-
CUBE and UASpeech, respectively. In addition, ScoutWav also
outperforms QuartzNet by a large margin in all setups.

5. Conclusions

This paper presents ScoutWav, an end-to-end LR ASR model
that relies on two fine-tuning steps to adapt the HR ASR model
for the task in the target domain of LR. We propose a context-
based word boundary mechanism to capture both global and
local acoustic properties, which enable ScoutWav to detect ac-
curate word boundary in LREs. A layer analysis module is used
to detect poor performance layers in our model. By perform-
ing the second fine-tuning step with context-based word bound-
ary, ScoutWav shows a significant improvement in performance
over two well-known ASR models.
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