Supplementary material: A unified stochastic modelling framework for the spread of nosocomial infections

Martín López-García^{1*}, Theodore Kypraios²

¹School of Mathematics, University of Leeds, LS2 9JT Leeds, UK ²School of Mathematical Sciences, University of Nottingham, NG7 2RD Nottingham, UK

 11^{th} May 2018

Abstract

In this Supplementary material, we discuss about how systems of equations in Ref. [1] can be represented in matrix form and iteratively solved. Moreover, we report here parameter values considered in case studies 1-5 in Ref. [1], obtained from Refs. [2, 3, 4, 5, 6], and summarise in Table S6 the function rates $\lambda_j(i_1, \ldots, i_M)$, $\mu_j(i_1, \ldots, i_M)$ and $\delta(i_1, \ldots, i_M)$ for these case studies.

1 Matrix-oriented solutions

 1.1 Number of infections caused by an individual at compartment *j* until he/she
 is removed or the outbreak is detected

⁵ The objective here is to compute probabilities

$$\nu_{(i_1,...,i_M)}^{(j)}(n) = \mathbb{P}(R_{(i_1,...,i_M)}^{(j)} = n), \quad n \ge 0,$$

⁶ by solving the systems of equations given by [1, Eq. (3)].
⁷ We can rewrite this system into a matrix equation of the
⁸ form

$$\mathbf{D}^{(j)}\boldsymbol{\nu}^{(j)}(n) = \mathbf{e}^{(j)}(n), \qquad (1)$$

where matrix $\mathbf{D}^{(j)}$ is independent of the value $n \ge 0$, while column vectors $\boldsymbol{\nu}^{(j)}(n)$ and $\mathbf{e}^{(j)}(n)$ depend on this value. In particular,

$$\begin{aligned} (\mathbf{D}^{(j)})_{(i_1,\dots,i_M),(i_1,\dots,i_k-1,\dots,i_M)} &= \frac{1}{\theta_{(i_1,\dots,i_M)}} \mu_k \left(i_k \mathbf{1}_{k \neq j} \right. \\ &+ (i_k - 1) \mathbf{1}_{k = j} \right), \quad 1 \le k \le M, \\ (\mathbf{D}^{(j)})_{(i_1,\dots,i_M),(i_1,\dots,i_k+1,\dots,i_M)} &= \frac{1}{\theta_{(i_1,\dots,i_M)}} \left(\lambda_k \right. \\ &+ \sum_{l=1, \ l \neq j}^M \lambda_{lk} i_l + (i_j - 1) \lambda_{jk} \right) (N_k - i_k), \quad 1 \le k \le M, \\ (\mathbf{e}^{(j)}(n))_{(i_1,\dots,i_M)} &= \frac{1}{\theta_{(i_1,\dots,i_M)}} \left(\mathbf{1}_{n > 0} \sum_{k=1}^M (N_k - i_k) \lambda_{jk} \right. \\ &\times \nu^{(j)}_{(i_1,\dots,i_k+1,\dots,i_M)} (n - 1) + \mathbf{1}_{n = 0} (\mu_j + \delta(i_1,\dots,i_M)) \right). \end{aligned}$$

⁹ Dimensionality of system in Eq. (1) is not $\#C = \prod_{k=1}^{M} (N_k + 1)$, but $N_j \prod_{k=1, k \neq j}^{M} (N_k + 1)$, since probabilities $\nu_{(i_1,\ldots,i_M)}^{(j)}(n)$ are only defined for states $(i_1,\ldots,i_M) \in C$ with $i_j > 0$. Moreover, we are storing in Eq. (1) probabilities $\nu_{(i_1,\ldots,i_M)}^{(j)}(n)$ in the column vector

$$\boldsymbol{\nu}^{(j)}(n) = \begin{pmatrix} \nu_{(0,0,\dots,0,0)}^{(j)}(n) \\ \nu_{(0,0,\dots,0,1)}^{(j)}(n) \\ \nu_{(0,0,\dots,0,2)}^{(j)}(n) \\ \vdots \\ \nu_{(0,0,\dots,0,N_M)}^{(j)}(n) \\ \nu_{(0,0,\dots,1,0)}^{(j)}(n) \\ \nu_{(0,0,\dots,1,1)}^{(j)}(n) \\ \nu_{(0,0,\dots,1,2)}^{(j)}(n) \\ \vdots \\ \nu_{(N_1,N_2,\dots,N_{M-1},N_M)}^{(j)}(n) \end{pmatrix}$$

so that each row in this matrix system represents a state 14 $(i_1,\ldots,i_M) \in \mathcal{C}$, with $i_i > 0$. Due to the lexico-15 graphic order followed above when ordering these states 16 by rows, each state (i_1, \ldots, i_M) with $i_j > 0$ corresponds to the $\sum_{k=1}^{M} (1_{k \neq j} i_k + 1_{k=j} (i_j - 1)) \prod_{p=k+1}^{M} (1_{p \neq j} (N_p + 1) + 1_{p=j} N_p)^{th}$ row (*i.e.*, equation) in Eq. (1). Finally, since 17 18 19 matrix $\mathbf{D}^{(j)}$ is significantly sparse, for numerical results in 20 [1, Section 3] we solve this system of linear equations by 21 using the *scipy.sparse.linalg* Python package. This involves 22 solving Eq. (1) for n = 0, and then iteratively solving it for 23 values $n \geq 1$ using probabilities $\nu_{(i_1,...,i_M)}^{(j)}(n-1)$, which are 24 stored in column vector $\boldsymbol{\nu}^{(j)}(n-1)$ previously computed. 25

^{*}Author for correspondence (m.lopezgarcia@leeds.ac.uk)

261.2Number of infections caused by an27individual at compartment j, among28individuals at compartment k, until29he/she is removed or the outbreak is30detected

³¹ The objective here is to compute probabilities

$$\nu_{(i_1,\ldots,i_M)}^{(j)}(k;n) \ = \ \mathbb{P}(R_{(i_1,\ldots,i_M)}^{(j)}(k)=n), \quad n \geq 0,$$

³² by solving the systems of equations given by [1, Eq. (2)]. ³³ Again, we can construct and iteratively solve matrix sys-

34 tems of the form

$$\mathbf{D}^{(j)}(k)\boldsymbol{\nu}^{(j)}(k;n) = \mathbf{e}^{(j)}(k;n),$$

where

$$\begin{aligned} (\mathbf{D}^{(j)}(k))_{(i_1,\dots,i_M),(i_1,\dots,i_{l-1},\dots,i_M)} &= \frac{1}{\theta_{(i_1,\dots,i_M)}} \mu_l \left(i_l \mathbf{1}_{l \neq j} \right. \\ &+ (i_l - 1) \mathbf{1}_{l = j} \right), \quad 1 \le l \le M, \\ (\mathbf{D}^{(j)}(k))_{(i_1,\dots,i_M),(i_1,\dots,i_{l+1},\dots,i_M)} &= \frac{1}{\theta_{(i_1,\dots,i_M)}} \left(\mathbf{1}_{l \neq k} \left(\lambda_l \right. \\ &+ \sum_{p=1}^M \lambda_{pl} i_p \right) (N_l - i_l) + \mathbf{1}_{l = k} (\lambda_l + \sum_{p=1, p \neq j}^M \lambda_{pl} i_p \right. \\ &+ \lambda_{jl} (i_j - 1)) \left(N_l - i_l \right) \right), \quad 1 \le l \le M, \\ (\mathbf{e}^{(j)}(k;n))_{(i_1,\dots,i_M)} &= \frac{1}{\theta_{(i_1,\dots,i_M)}} \left(\mathbf{1}_{n > 0} (N_k - i_k) \lambda_{jk} \right. \\ &\times \nu_{(i_1,\dots,i_k+1,\dots,i_M)}^{(j)} (k;n-1) + \mathbf{1}_{n = 0} (\mu_j + \delta(i_1,\dots,i_M)) \right) \end{aligned}$$

and where probabilities $\nu_{(i_1,...,i_M)}^{(j)}(k;n)$ are stored in the column vectors $\boldsymbol{\nu}^{(j)}(k;n)$, as in subsection 1.1 of this Supplementary Material.

³⁸ 2 Parameter values for case studies ³⁹ 1-5

⁴⁰ In Tables S1-S5, we report parameter values considered ⁴¹ in case studies 1-5 in Ref. [1], directly obtained from ⁴² Refs. [2, 3, 4, 5, 6]. In Table S6, we summarise the ⁴³ functional forms of rates $\lambda_j(i_1, \ldots, i_M)$, $\mu_j(i_1, \ldots, i_M)$ and ⁴⁴ $\delta(i_1, \ldots, i_M)$ for case studies 1-5, according to the cor-⁴⁵ responding model assumptions and model parameters de-⁴⁶ scribed in Ref. [1].

47 **References**

- [1] López-García M, Kypraios T (2018) A unified stochastic modelling framework for the spread of nosocomial infections. Journal of the Royal Society Interface, xx: XXX-XXX.
- [2] Artalejo, JR (2014) On the Markovian approach for
 modeling the dynamics of nosocomial infections. Acta
 Biotheoretica, 62: 15-34.

	Meaning	Value
N_p	Number of patients	20
N_{HCW}	Number of HCWs	3
μ	Patient discharge rate	0.1
γ	Patient detection rate	0.1
μ'	HCW hand-washing rate	14
β	HCW-to-patient colonization rate	$\frac{1}{6}$
β'	Patient-to-HCW contamination rate	$\frac{1}{6}$
σ	Fraction of admitted patients colonized	0.01

Table S1: Parameter values from Artalejo (2014) [2], for the spread of MRSA in an hypothetical intensive care unit. Time units: *days*. Case study 1

	Meaning	RICU
N_P	Number of patients	7
N _{HCW}	Number of HCWs	14
N_V	Number of volunteers	2
φ	Fraction of admitted patients colonized	0.165
$\frac{1}{\delta_U}$	Length of stay, non-colonized patients	7
$\frac{1}{\delta_C}$	Length of stay, colonized patients	13
η	Hygienic level, HCW-patient	0.46
ξ	Hygienic level, volunteer-patient	0.23
β_{PH}	Patient-HCW contact rate	0.72
β_{PV}	Patient-volunteer contact rate	0.20
γ_H	HCW hand-washing rate	24
γ_V	Volunteer hand-washing rate	12

Table S2: Parameter values from Wang et al. (2011) [3], for the spread of MRSA in the Respiratory Intensive Care Unit (RICU) at Beijing Tongren Hospital. Time units: *days*. Case study 2

	Meaning	Value
N_p	Number of patients	20
N_s	Number of HCWs	5
N_e	Number of surfaces	100
ϕ	Fraction of admitted patients colonized	0.1
γ	Discharge rate, non-colonized patients	0.1
γ'	Discharge rate, colonized patients	0.05
μ	Staff decontamination rate	24
κ	Surfaces decontamination rate	1
β_{sp}	Staff-to-patient colonization rate	0.3
β_{se}	Staff-to-surface contamination rate	2
β_{ps}	Patient-to-staff contamination rate	2
β_{pe}	Patient-to-surface contamination rate	2
β_{es}	Surface-to-staff contamination rate	2
β_{ep}	Surface-to-patient colonization rate	0.3

Table S3: Parameter values from Wolkewitz et al. (2008) [4], for an VRE outbreak in the onco-haematological unit at the University Medical Center Freiburg in Germany. Time units: *days*. Case study 3

[3] Wang J, Wang L, Magal P, Wang Y, Zhuo J, Lu X, Ruan S (2011) Modelling the transmission dynamics of meticillin-resistant Staphylococcus aureus in Beijing Tongren hospital. Journal of Hospital Infection, 79: 302-308.

55

56

57

58

59

[4] Wolkewitz M, Dettenkofer M, Bertz H, Schumacher

		Rate function			
CS	M	$\mu_j(i_1,\ldots,i_M)=\mu_j i_j$	$\lambda_j(i_1,\ldots,i_M) = (N_j - i_j) \left(\lambda_j + \sum_{k=1}^M \lambda_{kj} i_k\right)$		$\delta(i_1,\ldots,i_M)$
1	2	$\mu_1 = (1 - \sigma)\mu, \ \mu_2 = \mu'$	$\lambda_1 = \sigma \mu, \lambda_2 = 0$	$\lambda_{12} = \beta', \lambda_{21} = \beta$	$\delta(i_1, i_2) = \gamma i_1$
2	3	$\mu_1 = \delta_C (1 - \varphi), \mu_2 = \gamma_H$	$\lambda_1 = \delta_U \varphi, \lambda_2 = 0$	$\lambda_{12} = \frac{1-\eta}{N_P} \beta_{PH}, \ \lambda_{13} = \frac{1-\xi}{N_P} \beta_{PV}$	$\delta(i_1, i_2, i_3) = 0$
		$\mu_3 = \gamma_V$	$\lambda_3 = 0$	$\lambda_{21} = \frac{1-\eta}{N_P} \beta_{PH}, \lambda_{23} = 0$	
				$\lambda_{31} = \frac{1-\xi}{N_P} \beta_{PV}, \lambda_{32} = 0$	
3	3	$\mu_1 = \gamma'(1 - \phi), \ \mu_2 = \mu$	$\lambda_1 = \gamma \phi, \lambda_2 = 0$	$\lambda_{12} = \frac{\beta_{ps}}{N_p}, \lambda_{13} = \frac{\beta_{pe}}{N_p}$	$\delta(i_1, i_2, i_3) = 0$
		$\mu_3 = \kappa$	$\lambda_3 = 0$	$\lambda_{21} = rac{eta_{sp}}{N_s}, \lambda_{23} = rac{eta_{se}}{N_s}$	
				$\lambda_{31} = rac{eta_{ep}}{N_e}, \lambda_{32} = rac{eta_{es}}{N_e}$	
4	4	$\mu_j = \nu(1 - p_C), \ 1 \le j \le 4$	$\lambda_j = \nu p_C + \lambda, \ 1 \le j \le 4$	$\lambda_{jk} = \beta_{DR}, 1 \le j \ne k \le 4$	$\delta(i_1,\ldots,i_4)=0$
				$\lambda_{jj} = \beta_{SR}, 1 \le j \le 4$	
5	11	$\mu_j = \gamma, \ 1 \le j \le 4$	$\lambda_j = 0, 1 \le j \le 11$	$\lambda_{51} = \lambda_{15} = \lambda_{62} = \lambda_{26} = \beta_{AP1}$	$\delta(i_1,\ldots,i_{11})=0$
		$\mu_j = \mu, 5 \le j \le 11$		$\lambda_{73} = \lambda_{37} = \lambda_{84} = \lambda_{48} = \beta_{AP1}$	
				$\lambda_{91} = \lambda_{19} = \lambda_{92} = \lambda_{29} = \beta_{AP2}$	
				$\lambda_{10,3} = \lambda_{3,10} = \lambda_{10,4} = \lambda_{4,10} = \beta_{AP2}$	
				$\lambda_{11,1} = \lambda_{1,11} = \lambda_{11,2} = \lambda_{2,11} = \beta_{Peri}$	
				$\lambda_{11,3} = \lambda_{3,11} = \lambda_{11,4} = \lambda_{4,11} = \beta_{Peri}$	
				For others (j,k) : $\lambda_{jk} = 0$	

Table S6: Functional forms for case studies 1-5 (CS 1-5)

	Meaning	Value
N_p	Number of patients	9
ν	Discharge rate	0.1
p_C	Fraction of admitted patients colonized	0.01
β_{DR}	Cross-colonization rate, different rooms	0.0238
β_{SR}	Cross-colonization rate, same room	0.0366
λ	Spontaneous colonization rate	0.0037

Table S4: Parameter values from López-García (2016) [5], for an MRSA outbreak in an intensive care unit with four rooms. Parameter values ν and p_C from Artalejo et al. (2014) [2]. Time units: days. Case study 4

	Meaning	Value
β_{AP1}	Patient-AP1 transmission rate	0.35
β_{AP2}	Patient-AP2 transmission rate	0.12
β_{Peri}	Patient-peripatetic transmission rate	0.07
μ	Hand-washing rate for all HCWs	1 - 24
γ^{-1}	Length of stay for all patients	10

Table S5: Parameter values from Temime et al. (2009) [6], for a bacterial outbreak in an hypothetical intensive-care unit. Time units: *days*. Case study 5

M, Huebner J (2008) Environmental contamination as
an important route for the transmission of the hospital pathogen VRE: modelling and prediction of classical
interventions. Infectious Diseases: Research and Treatment, 1.

- [5] López-García M (2016) Stochastic descriptors in an
 SIR epidemic model for heterogeneous individuals in
 small networks. Mathematical Biosciences, 271: 42-61.
- [6] Temime L, Opatowski L, Pannet Y, Brun-Buisson C,
 Boëlle PY, Guillemot D (2009) *Peripatetic health-care*

workers as potential superspreaders. Proceedings of the National Academy of Sciences, 106: 18420-18425.