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As a new on-orbit detection platform, the space robot could ensure stable and reliable operation of spacecraft in complex space
environments. The tracking accuracy of the space manipulator end-effector is crucial to the detection precision. In this paper, the
Cartesian path planning method of velocity level inverse kinematics based on generalized Jacobian matrix (GJM) is proposed. The
GJM will come across singularity issue in path planning, which leads to the infinite or incalculable joint velocity. To solve this
issue, firstly, the singular value decomposition (SVD) is used for exposition of the singularity avoidance principle of the damped
least squares (DLS) method. After that, the DLS method is improved by introducing an adaptive damping factor which changes
with the singularity. Finally, in order to improve the tracking accuracy of the singularity-robust algorithm, the objective function is
established, and two adaptive parameters are optimized by genetic algorithm (GA). The simulation of a 6-DOF free-floating space
robot is carried out, and the results show that, compared with DLS method, the proposed method could improve the tracking
accuracy of space manipulator end-effector.

1. Introduction

With the development of space technology, the demand
for longer life and higher reliability of future spacecraft
is increasing. On-orbit detection has currently become a
crucial technology which can guarantee the stability and
reliability of spacecraft in complex environment of space
[1]. At present, typical on-orbit detection platforms include
XSS [2] and MiniAERCam [3]. Due to good mobility, space
robot, as a new on-orbit platform, will play an important
role in on-orbit detection [4]. Through the motion of the
space manipulator, the sensors like line structure light sensor
carried by the end-effector can accurately track the specified
detection trajectory and achieve the detailed detection of the
spacecraft surface. Therefore, the Cartesian trajectory track-
ing accuracy of the space robot is very important for on-orbit
detection.

Comparedwith a ground fixed-base robot, themovement
of space manipulator would cause reaction and change the
position and attitude of its carrier. Usually, the kinematic
equation of position level cannot be used to plan the space

robot joint motion.Therefore, when the velocity level inverse
kinematics is applied, the GJM [5] will come across singu-
larity issue. If the solution based on Jacobi matrix inverse
is still adopted, it will lead to the infinite or incalculable
joint velocity, which makes the path planning and control
algorithm invalid. Therefore, the singular avoidance and
robustness of Jacobi matrix is necessary.

The problem of kinematic singularity is widely studied
for base-fixed ground robot. Many researches have been pro-
posed to realize singularity-robust algorithm in the proximity
of singularities. The kinematics singularity of robot arm such
as PUMA type robot was analyzed by Angeles, and it can
be classified into three categories: shoulder singularity, elbow
singularity, and wrist singularity [6]. To handle singular-
ity problems, the DLS method is often utilized [7–10]. A
framework for handing robotic singularities was proposed
by Carmichael et al. The damping is applied asymmetrically
depending on whether the robot is heading towards or
away from singular configurations [11]. Cui et al. proposed
a singularity avoidance algorithm, and singularity avoidance
is achieved by replacing the common reciprocal with the
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improved Gaussian distribution damped reciprocal [12]. Xu
et al. proposed a method to isolate the singularity condition
and decompose the workspace of a class of manipulators
without spherical wrists, either redundant or nonredundant
[13]. Lai et al. proposed an algorithm to form a new path for
the pivot that can avoid the discretization near the singularity
points [14].

The singularity analysis and avoidance of free-floating
space robots are much more complicated. The kinematics
and dynamics of a free-floating space robot are coupled, and
the GJM contains not only the kinematic parameters, but
also the dynamic parameters. Papadopoulos and Dubowsky
first proposed the concept of dynamic singularity in the
literature [15], the free spacewas divided into space robot path
independent work space (PIW) and path dependent work
space (PDW), avoiding dynamic singularity by transposed
GJM. They also proposed an avoiding dynamic singularity
by finding a trouble-free space in PIW [16]. Lampariello et
al. proposed a parameterization method in joint space and
planned the point to point Cartesian trajectory only through
forward kinematics, so it is not affected by the dynamic
singularity [17, 18]. The workspace of 3R robot was analyzed
by Xu et al., and some suggestions were put forward for the
design of space robot to reduce the influence of dynamic
singularity [19]. Jin et al. proposed a reactionless control, and
the dynamic singularity avoidance is achieved by singular
value filtering method [20].

In this paper, the kinematic model of a space robot with
coupling dynamic parameters is first established, and the
dynamic singularity characteristics are illustrated based on
SVD. A damping adaptive singular avoidance method with
varying value of singularity is proposed. An optimization
objective function is established with the target of tracking
accuracy of space manipulator end-effector. The selection
of two parameters for adaptive damping factor is achieved
by GA. Singularity-robust path planning of space robot is
realized by using this method, and the difficult of GJM
singular control is overcome. It achieves better tracking
accuracy compared with the DLS method.

2. Cartesian Path Planning

Free-floating space robot is a typical nonholonomic system.
The position and attitude of end-effector is not only related
to the current joint angle, but also related to the previous
motion of the joint. It cannot obtain the joint angle through
the analytical position level inverse kinematics as the ground
fixed-base robot. Therefore, a numerical method in velocity
level inverse kinematics is usually employed. An 𝑛-DOF
free-floating space manipulator vector model is shown in
Figure 1.

Figure 1 is reproduced from Wu et al. [4]. (2016) (under
the Creative Commons Attribution License/public domain).
The velocity of position and attitude of space manipulator
effector can be expressed as

[k𝑒
𝜔𝑒
] = J𝑔�̇�, (1)
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Figure 1:The 𝑛-DOF free-floating space manipulator vector model.
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Figure 2: Calculation flow chart of the Cartesian path planning for
free-floating space robot.

where J𝑔 is the GJM of the space robot, which is related to
the attitude of the space robot carrier, the joint angle, and the
mass and inertia of the whole system.

As shown in Figure 2, the position and attitude velocity
of the end-effector are determined by desired Cartesian
position trajectory p𝑒(𝑡) and attitude trajectory 𝜑𝑒(𝑡), which
are expressed as

k𝑒 (𝑡) = ṗ𝑒 (𝑡)
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𝜔𝑒 (𝑡) = →r �̇�𝑒 (𝑡) ,
(2)

where →r is the axis unit vector of rotation from the initial
attitude to the target attitude.

The GJM J𝑔 is calculated according to the initial condi-
tions, and the robust inverse J𝑔+ of the GJM is obtained by
using the corresponding singularity-robust algorithm. Based
on the velocity level inverse kinematics, the joint angular
velocity �̇�(𝑡) is planned:

�̇� (𝑡) = J𝑔
+ [k𝑒 (𝑡)
𝜔𝑒 (𝑡)] (3)

To calculate the GJM at next calculation period, the
position and attitude of carrier need to be updated before the
next period started.

3. Adaptive Singularity-Robust Algorithm

3.1. Damped Least Squares (DLS) Method. DLS method was
first introduced to robot kinematics by Wampler in 1986
[8]. The idea of DLS is to make a compromise between the
tracking accuracy and the joint velocity and minimize the
function B which is expressed in

B = J�̇� − ẋ + 𝜆2 �̇� , (4)

where ẋ is the terminal velocity vector [k𝑒(𝑡) 𝜔𝑒(𝑡)]𝑇. 𝜆2 is
the damping factor, which can be explained as the relative
weight factor of ‖J�̇� − ẋ‖ and ‖�̇�‖. By solving the normal
equation,

[ J
𝜆I] �̇� = [

ẋ
0] (5)

Then we can get the unique solution to make (12)
minimized:

�̇� = J𝑇 (JJ𝑇 + 𝜆2I)−1 ẋ (6)

or

�̇� = J+𝑔 ẋ (7)

3.2. GA Based Singularity-Robust Algorithm. The principle
of DLS method is further clarified through the SVD. The
singular value of J𝑔 can be expressed as

J𝑔 = 𝜎1u1k1𝑇 + 𝜎2u2k2𝑇 + ⋅ ⋅ ⋅ + 𝜎𝑟u𝑟k𝑟𝑇, (8)

where 𝜎𝑖 is the singular value of J𝑔, u𝑖 and v𝑖 are the singular
vectors of J𝑔, and

J𝑔
𝑇J𝑔 + 𝜆2I =

𝑟∑
𝑖=1

(𝜎𝑖2 + 𝜆2) u𝑖k𝑖𝑇 (9)

Putting (9) into (6) and (7),

�̇�
(𝜆) = (J𝑔𝑇J𝑔 + 𝜆2I)−1 J𝑔𝑇 [k𝑒 (𝑡)

𝜔𝑒 (𝑡)]

= 𝑟∑
𝑖=1

𝜎𝑖𝜎𝑖2 + 𝜆2 k𝑖u𝑖
𝑇 [k𝑒 (𝑡)
𝜔𝑒 (𝑡)]

(10)

The velocity vector of the manipulator end-effector
[k𝑒(𝑡) 𝜔𝑒(𝑡)]𝑇 can be represented as a the output vector u𝑖
linear combination:

[k𝑒 (𝑡)
𝜔𝑒 (𝑡)] =

𝑟∑
𝑖=1

ẋ𝑖u𝑖 (11)

u𝑖 and u𝑗 are orthogonal to each other, and 𝑖 is not equal
to 𝑗; ẋ𝑖 can be expressed as

ẋ𝑖 = u𝑖
𝑇 [k𝑒 (𝑡)
𝜔𝑒 (𝑡)] (12)

Putting (12) into (10),

�̇�
(𝜆) = 𝑟∑
𝑖=1

𝜎𝑖𝜎𝑖2 + 𝜆2 k𝑖ẋ𝑖 (13)

Let �̇�𝑖
(𝜆) = (𝜎𝑖/(𝜎𝑖2 + 𝜆2))v𝑖ẋ𝑖, then (13) can be rewritten

as 𝜃(𝜆) = ∑𝑟𝑖=1 𝜃(𝜆)𝑖 , and obviously 𝜃(𝜆)𝑖 are orthogonal to each
other. So

�̇�
(𝜆)
2 = 𝑟∑
𝑖=1

�̇�𝑖
(𝜆)
2 = 𝑟∑
𝑖=1

( 𝜎𝑖𝜎𝑖2 + 𝜆2)
2

ẋ𝑖
2 (14)

Tracking errors can be expressed as

[
k𝑒
𝜔𝑒
] − J𝑔�̇�(𝜆)


2

= 𝑟∑
𝑖=1

ẋ𝑖
2 ( 𝜆2
𝜎𝑖2 + 𝜆2)

2

+ 𝑚∑
𝑖=𝑟+1

ẋ𝑖
2, (15)

where 𝑟 and 𝑚 are the rank of the GJM when the rank is full
and not full, and the error consists of two parts. ∑𝑚𝑖=𝑟+1 ẋ𝑖2 is
caused by the singular value being zero and the output speed
being zero; that is to say, no matter how fast the joint is, there
is no speed at the end-effector, which leads to tracking errors.
This part of the errors exists objectively, which theoretically
cannot be overcome. However, the error ∑𝑟𝑖=1 ẋ𝑖2(𝜆2/(𝜎𝑖2 +𝜆2))2 can be reduced by adjusting the damping 𝜆.

Considering the velocity continuity of end-effector and
minimizing the tracking error, an adaptive damping factor 𝜆
is introduced:

𝜆𝑖 =
{{{{{
𝜆max (1 + cos (𝜋𝜎𝑖/𝜀))2 𝜎𝑖 < 𝜀
0 𝜎𝑖 ≥ 𝜀,

(16)

where 𝜆max is the maximum damping factor; 𝜀 is a parameter
for evaluating the singularity of GJM.Different from theDLS,
it is not to introduce damping for every 𝜎𝑖 but to introduce
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it at a certain degree. The selection principle of 𝜆max and 𝜀
is to make the joint speed smooth and the tracking error as
small as possible. If the value of 𝜆max is too large, although
the singularity avoidance is effective, a large tracking error
is introduced. On the contrary, if the singularity is not
effectively solved, the motion of manipulator is not good. It is
generally necessary to adjust these two parameters to get the
appropriate value. Usually 𝜆max and 𝜀 are on the same order
of magnitude, and the intelligent optimization algorithm can
be used to select these two parameters. In this paper, GA is
adopted, and an objective function 𝐵 is established as shown
in formula (17).

𝐵 = 𝑤1Δ𝑝 + 𝑤2Δ𝑝𝜙 + 𝑃𝑙, (17)

whereΔ𝑝 andΔ𝑝𝜙 are the position errors, respectively, which
can be expressed by (18). In the process ofmodel, the objective
function of the dimensionless unified approach and the target
weight coefficients are explored.Through the introduction of
weight coefficients 𝑤1 and𝑤2, we can transform the problem
of multiobjective optimization to that of single objective
optimization. According to the different attentiveness, we can
appropriately choose 𝑤1 and 𝑤2 and make a compromise
between position and attitude errors.

Δ𝑝 = √Δ𝑝2𝑥 + Δ𝑝2𝑦 + Δ𝑝2𝑧
Δ𝑝𝜙 = √(Δ𝑝𝑥 ⋅ Δ𝜙𝑥)2 + (Δ𝑝𝑦 ⋅ Δ𝜙𝑦)2 + (Δ𝑝𝑧 ⋅ Δ𝜙𝑧)2

(18)

𝑃𝑙 is the limitation factor of joint velocity range, which is
given by the following expression:

𝑃𝑙 =
{{{{{{{{{

+∞ 𝜃𝑖 > 𝜃+𝑖 limit

+∞ 𝜃𝑖 < 𝜃−𝑖 limit

0 𝜃−𝑖 limit ≤ 𝜃𝑖 ≤ 𝜃+𝑖 limit

(19)

In the calculation, if the max joint velocity exceeds the
limit range (𝜃−𝑖 limit, 𝜃+𝑖 limit), 𝑃𝑙 is equal to positive infinity.
Therefore, the smoothness of motion can be guaranteed
automatically by introducing the limitation factor 𝑃𝑙 in
optimization algorithm.

The calculation steps of GA are as follows.

Step 1 (the generation of the initial population). The initial
population of the parameters (𝜆max, 𝜀), which contains 𝑀
individuals, is randomly generated with the search range.
Therefore, according to the parameterized equation,𝑀 sin-
gularity avoidance trajectories are obtained.

Step 2 (evaluation of individual fitness). The opportunity
of each individual is determined by GA according to the
probability that it is proportional to the fitness. To calculate
the probability correctly, the fitness of all individuals must be
nonnegative. So, the fitness function is the objective function𝐵 in this paper.

Step 3 (selection). Selection operations employ the roulette
selectionmethod.The probability for each individual is equal
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Figure 3: Linkage coordinate frames for a 6-DOF manipulator.

to a proportion of its fitness and individual fitness sum in
the whole population. If there are 𝑀𝑐 individuals of the
population and the fitness of individual 𝑖 is 𝑓𝑖, then the
probability of individual 𝑖 can be expressed as

𝑃𝑖 = 𝑆𝑖
∑𝑀𝑐
𝑘=1
𝑆𝑘 (20)

When the selection is given, a random number of 0 to 1
is generated to determine which individuals will cross at next
step.The individual which has large selection probability will
be selected many times, and its genetic gene will be expanded
in the population. On the contrary, it will be eliminated.

Step 4 (cross). Select two individuals randomly after selection
operation, and a crosspoint of two individuals is generated. By
exchanging part of the gene code at the crosspoint, two new
individuals are formed.

Step 5 (mutation). According to the probability of gene
mutation, the small probability change of binary genetic code
of some individuals in the population is realized.

Step 6 (new population). The new population is generated by
inserting new individuals.

4. Simulation

The simulation object is a typical free-floating 6-DOF space
robot, whose reference coordinate system is shown in Fig-
ure 3.The linkage parameters 𝑎𝑖, 𝑏𝑖 and the moment of inertia
are listed in Table 1. The definition of 𝑎𝑖, 𝑏𝑖 can be referred to
in literature [4].

Figure 3 is reproduced from Wu et al. [4] (2016) (under
the Creative Commons Attribution License/public domain).

In the simulation, a point to point linear trajectory is
planned, the initial and expected position and attitude of
the end-effector are 1.37, −0.08, 0.64, −3.14, 0, and −2.97 and
1.50, 0, −0.2, −3.16, −0.26, and −3.14. The initial value of the
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Figure 4: Desired end-effector velocity of space manipulator end-effector.

Table 1: Linkage parameters of the space robot.

Parameters Carrier Linkage 1 Linkage 2 Linkage 3 Linkage 4 Linkage 5 Linkage 6
Mass (kg) 450.0 1.5 9.6 1.5 9.0 1.5 10.5

𝑎𝑖 (mm)
0 0 −492.5 0 292.0 0 −136.0
0 0 54.0 −121.0 −150.0 121.0 0
0 124.0 0 0 0 0 0

𝑏𝑖(mm)
500.0 0 −492.5 124.0 349.0 −124.0 −164.0
0 121.0 −54.0 0 29.0 0 0

751.0 0 0 0 0 0 0
Moment of inertia (kg/m2)
𝐼𝑥𝑥 200.00 3.31 × 10−3 3.10 × 10−2 3.31 × 10−3 0.73 3.31 × 10−3 0.10
𝐼𝑦𝑦 200.00 3.31 × 10−3 1.50 3.31 × 10−3 0.60 3.31 × 10−3 0.10
𝐼𝑧𝑧 200.00 3.31 × 10−3 1.48 3.31 × 10−3 0.63 3.31 × 10−3 0.09
𝐼𝑥𝑦 0 0 0 0 0 0 0
𝐼𝑥𝑧 0 0 0 0 0 0 0
𝐼𝑦𝑧 0 0 0 0 −0.01 0 0
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Figure 9: The joint velocity path planned by singularity-robust algorithm based on SVD.

joint angel is 175∘, −60∘, −60∘, 0∘, 210∘, and 5∘. In accordance
with the practical sampling period, time step length Δ𝑡 is
250ms in the simulation. In order to make the motion more
smooth, the trapezoidal velocity planning is adopted to the
joint motion, as shown in Figure 4.

In the calculation of the path planning, the GJM will
come across singularity issue. The determinant value of the
GJM is close to zero in 7.5 seconds, as shown in Figure 5. If
the calculation through the inverse of GJM is still adopted,
the joint velocity will become very large (Figure 6), which
is unacceptable in practical application, so it is necessary to
employ the singular avoidance method.

In the algorithmmentioned in Section 3.2, the parameters
of the objective function need to be determined. In (17) and
(19), we determine that 𝑤1 = 0.5, 𝑤2 = 0.5, 𝜃+𝑖 limit = 6∘/s,
and 𝜃−𝑖 limit = −6∘/s. Through the GA optimization, the value
of objective function is improved in each generation, which
is shown as in Figure 7. The optimization results are 𝜆max =
0.0571 𝜀 = 0.0677.

The angle and angular velocity of each joint planned
by the adaptive singularity-robust algorithm are shown in
Figures 8 and 9, respectively. It can be seen that the joints’

velocity is obviously restricted in the singularity region of
GJM when the adaptive and optimized damping is intro-
duced in the calculation. The angular velocity of each joint
is smooth and the range of each joint velocity is within
6∘/s.

In order to verify the operability of the calculation
results, the planned motion of the free-floating space robot
is simulated by software ADAMS (Figure 10). The simulation
shows that the position and attitude of the floating carrier are
changed with the motion of manipulator, and the Cartesian
trajectory tracked by the end-effector is a straight line, which
is consistent with the desired trajectory. The tracking errors
of position and attitude in three directions are shown in
Figure 11. The tracking errors change with the singularity
value, and the maximum tracking error is introduced when
the singularity value isminimal.Theobjective function values
of DLS method and our method are 0.0030 and 0.0022,
respectively. Compared with the DLS method, the error is
decreased about 26.7%. The position errors of 𝑥 and 𝑧 direc-
tion are obviously reduced, and the errors of other directions
are basically the same. This shows that in the simulation task
presented in this paper the tracking errors of𝑥 and 𝑧direction
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Figure 10: 3D dynamic simulation to the Cartesian path planning for space robot.

have a great influence on the value of optimization objective
function, which have a good potential to be optimized. In
other directions, the proportion of the errors in the objective
function is small, so the effect of optimization is not obvious.
If it requires a very strict accuracy in a certain direction,
we can achieve the requirements by changing the weight
coefficient in the objection function.

5. Conclusions

A space robot can be employed to detect the spacecraft
surface through accurate tracking the Cartesian trajectory. It
is a typical nonholonomic system, whose Cartesian trajectory
planning can only be obtained through the velocity level kine-
matics. Therefore, in the path planning based on the inverse
GJM, the singularity issue will possibly be encountered. To
solve this issue and improve the Cartesian tracking accuracy,
the following work is conducted:(1) The path planning method of Cartesian trajectory
planning is given based on the velocity level inverse kinemat-
ics model.(2) Based on the SVD method, the singular avoidance
characteristics of GJM are illustrated. The DLS method is
improved by introducing an adaptive damping factor which
changed with the singularity. For the method introducing a
damping, which is adaptively adjusted by 𝜆max and 𝜀, in the

singular region, the tracking accuracy is not influenced by the
singularity-robust algorithm.
(3) In order to improve the tracking accuracy of the

singularity-robust algorithm, the objective function includ-
ing 𝜆max and 𝜀 is established, which is optimized by GA.
(4)Through the simulation of a 6-DOF free-floating space

robot, the optimized parameters are obtained. Compared
with the DLS method, the tracking accuracy of the end-
effector is increased by 26.7%.
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