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UPSCALING DIFFUSION THROUGH FIRST-ORDER
VOLUMETRIC SINKS: A HOMOGENIZATION OF BACTERIAL

NUTRIENT UPTAKE∗
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Abstract. In mathematical models that include nutrient delivery to bacteria, it is prohibitively
expensive to include a pointwise nutrient uptake within small bacterial regions over bioreactor length-
scales, and so such models often impose an effective uptake instead. In this paper, we systematically
investigate how the effective uptake should scale with bacterial size and other microscale properties
under first-order uptake kinetics. We homogenize the unsteady problem of nutrient diffusing through
a locally periodic array of spherical bacteria, within which it is absorbed. We introduce a general
model that could also be applied to other single-cell microorganisms, such as cyanobacteria, microal-
gae, protozoa, and yeast, and we consider generalizations to arbitrary bacterial shapes, including
some analytic results for ellipsoidal bacteria. We explore in detail the three distinguished limits of
the system on the timescale of diffusion over the macroscale. When the bacterial size is of the same
order as the distance between them, the effective uptake has two limiting behaviors, scaling with the
bacterial volume for weak uptake and with the bacterial surface area for strong uptake. We derive
the function that smoothly transitions between these two behaviors as the system parameters vary.
Additionally, we explore the distinguished limit in which bacteria are much smaller than the dis-
tance between them and have a very strong uptake. In this limit, we find that the effective uptake is
bounded above as the uptake rate grows without bound; we are able to quantify this and characterize
the transition to the other limits we consider.
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1. Introduction. As the technology to manipulate the metabolic pathways of
microorganisms grows more sophisticated, more chemicals become industrially viable
targets for biosynthetic production. For example, microorganisms can be used as “cell
factories” to produce environmentally friendly biofuels, cheaper medicines, and fine
chemicals [20]. In order to control and optimize the industrial production of such
chemicals, it is important to understand how nutrient is transported to and absorbed
by these microorganisms.

A typical experimental set-up for a cell factory involves feeding bacteria with
nutrient within a liquid-filled bioreactor. As bacterial movement is generally forced
by the fluid flow in these bioreactors, there is little relative advection close to each
bacterium. Thus, the nutrient absorbed by the bacteria causes a concentration gra-
dient close to the bacteria that drives further nutrient toward the bacteria. While
the mathematical equations that govern the salient transport processes such as dif-
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A HOMOGENIZATION OF BACTERIAL NUTRIENT UPTAKE 1301

fusion, advection, and chemical reaction are well known [4], there is a considerable
separation between the longer bioreactor (0.1–1 m) and shorter bacterial (0.1–10µm)
lengthscales [21], which we refer to as the macroscale and microscale, respectively.
Hence, it is prohibitively expensive to include bacterial regions in a computational
model of bacterial uptake over the length of a bioreactor.

One method to bypass this expense is to treat the liquid and bacterial regions
as a single-phase domain, and to model the bacterial uptake as an effective nutrient
sink over this domain. While this is a computationally efficient resolution, it is not
immediately clear how to relate properties on the bacterial scale, such as bacterial
size and kinetic uptake parameters, with this effective result. For example, one may
intuitively expect the effective uptake to scale with bacterial volume for weak uptake
and to scale with bacterial surface area for strong uptake. Our goal in this paper is to
quantify when each of these scalings is valid, obtain the correct form of the effective
uptake when neither is appropriate, and characterize the smooth transition between
these canonical forms of the effective uptake as a function of the system parameters.

To investigate these questions, we systematically upscale the microscale problem
of unsteady diffusion through and past a locally periodic array of spherical bacteria
that act as volume sinks of nutrient with first-order kinetics, governed by the reaction–
diffusion equation

∂c

∂t
= ∇ · (D̃∇c)− λ̃c,(1)

with continuous concentration and flux across the bacterial membrane, with set-up
shown in Figure 1. Here, D̃ and λ̃ are piecewise-constant functions which are discon-
tinuous across each bacterial membrane, and where λ̃ vanishes outside each bacteria.
Our main goal is to determine the effective uptake of the upscaled system in the
distinguished limits where the effective uptake balances the macroscale diffusion, in
particular when D̃ and λ̃ depend on the separation distance between bacteria. To
focus on the competing effects of diffusion and uptake, we do not consider advection
in this problem. We show that when the effective uptake balances the macroscale
diffusion over the timescale of the latter, the inclusion of just diffusion and uptake
can lead to three distinguished asymptotic limits, which we comprehensively analyze.
Investigating these three distinguished limits allows us to characterize the upscaled
problem for general single-celled microorganisms, including cyanobacteria, microal-
gae, protozoa, and yeast, for which different parameter regimes may be appropriate.
To upscale this problem, we use mathematical homogenization (as outlined in, for
example, [3, 27, 17]) via the method of multiple scales (also known as periodic ho-
mogenization) rather than, for example, volume averaging methods [32]. We note
that, in practice, both methods result in the same averaged equations [12].

One of the asymptotic limits we consider in this paper is a double-porosity model
[1], where a coefficient (often the porosity or diffusion coefficient) varies greatly be-
tween two regions and is a function of the small parameter of periodicity. A notable
property of double-porosity models is that the upscaled equations often exhibit a
memory effect—that is, in averaging the problem from a time-local microscale prob-
lem up to a macroscale problem, the history of the problem becomes important, and
this can cause a partial differential equation to be upscaled into an integrodifferen-
tial equation [24], as we shall encounter in this paper. This effect is equivalent to
having coupled partial differential equations to solve on the macroscale, as the equa-
tions cannot be solved one after the other but rather must be solved simultaneously
(disregarding iterative methods).
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1302 M. DALWADI, Y. WANG, J. KING, AND N. MINTON

Another asymptotic limit we consider in this paper is that of very small bacteria,
i.e., when the bacterial radius is much smaller than the distance between sphere cen-
ters. In such problems, there may be a critical size of the inner problem for which a
distinguished limit arises. In [8] (see [23] for the original in French), the homogeniza-
tion of Laplace’s equation in an n-dimensional domain periodically perforated with
n-dimensional spheres is considered, and in the three-dimensional case the critical per-
foration size is identified as being proportional to the cube of the small parameter of
periodicity. In this paper, we investigate the distinguished limit in which the bacterial
size has the same critical scaling as these cases, combined with a very large uptake
coefficient. We homogenize this case in a manner similar to that in [6], where the
authors use the method of matched asymptotic expansions within a homogenization
procedure to calculate an effective boundary condition for the shielding of a Faraday
cage. In contrast to the perforated domain cases mentioned above, in this paper we
must also solve a problem within each bacterium.

There has been previous work homogenizing solute transport problems with ad-
sorption or chemical reaction within disconnected periodic subdomains of the full
domain, and we next discuss several notable examples of particular relevance to this
paper. In [18], the authors consider Stokes flow coupled with an advection–diffusion
solute transport problem past a periodic array of permeable obstacles. The solute can
diffuse within the obstacle, and there are general nonlinear reaction terms in both the
fluid and obstacle phases. The solute concentrations in these phases are coupled via
continuity of mass flux and one of six different additional conditions. The diffusion
coefficient within the obstacle phase is much smaller than the diffusion coefficient
within the fluid phase, yielding a double-porosity model that results in a memory
term in the homogenized equation. In [9], the authors consider steady diffusion with
local forcing past a periodic array of obstacles for two cases; the second of these is
relevant for our work and involves diffusion and nonlinear uptake within the obstacles,
coupled via continuity of concentration and concentration flux on the surface of the
obstacles. The diffusion coefficients inside and outside the obstacles are of the same
order. In [28], Navier–Stokes flow in capillaries is coupled to Darcy flow in tissue, and
these both feed into an advection–diffusion equation for drug transport through both
phases, with a linear uptake term within the tissue, all in a periodic domain. The
flow equations are upscaled in the double-porosity limit, and the drug transport equa-
tions are upscaled for several different coupling conditions, with a focus on advective
transport. In [15], the authors consider diffusive transport with nonlinear reaction
terms in a periodic domain containing a multiply connected subdomain with different
diffusion coefficient and reaction terms from the rest of the domain. At the interface
between these regions, the fluxes are general nonlinear functions of the concentrations
on either side of the interface.

In each of the papers discussed in the above paragraph, the structure of the peri-
odic microscale is fairly general, allowing for homogenized equations to be calculated
in terms of general cell problems. While this generality is valuable, it also means that
effective terms are not calculated explicitly. Thus, the generality of these problems is
not conducive to a systematic investigation of how the effective parameters vary as a
function of the system parameters.

We mainly consider spherical bacteria (cocci), whose radius can vary slowly over
the macroscale, but also consider the generalization to arbitrary bacterial shapes in
Appendix A, including some analytic results for ellipsoidal bacteria. Traditional ho-
mogenization techniques require a strictly periodic microscale geometry, but there are
methods to extend these techniques to problems with a microscale that varies over the
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A HOMOGENIZATION OF BACTERIAL NUTRIENT UPTAKE 1303

macroscale [30, 26, 5]. These extensions have formal roots in [2] and [7], and there has
been a significant amount of recent applied work on homogenizing specific problems
involving reaction and diffusion processes, such as [14, 25]. The key idea behind ex-
tending standard homogenization theory from a strictly periodic microstructure to a
locally periodic microstructure is to use a level-set function in both the microscale and
macroscale variables to define the microstructure [31]. Consequently, this extension
is sometimes referred to as the level-set framework. In general, this method requires
a different cell problem to be solved at every point in the macroscale rather than
just once for the entire problem (as is the case for standard homogenization theory),
but this additional computational expense can be bypassed by imposing a specific
one-parameter shape on the microstructure [5, 10]. This is the route we take in the
main text of this paper; restricting our main analysis to spherical bacteria allows us to
maximize our analytic progress and, consequently, to systematically analyze the form
of the effective uptake in the three distinguished limits we consider, yielding greater
physical insight into the system behavior as a function of the system parameters.
Additionally, and to the same end, we neglect any internal structure of the bacteria,
treating the bacterial interior as homogeneous. Finally, we note that, in this paper,
we only use “cell” in the language of mathematical homogenization and never in the
biological sense; that is, we only use “cell” to refer to the periodic unit cell domain in
what is commonly referred to as a “cell problem” in mathematical homogenization.

The structure of this paper is as follows. We present a dimensional description
of the bacterial uptake model in section 2 and form the dimensionless problem. We
then formulate the problem to be upscaled via homogenization theory in section 3
and upscale this problem for three distinguished limits in sections 3.1, 3.2, and 3.3.
We briefly consider the generalization of these results to arbitrary bacterial shapes in
Appendix A, including some analytic results for ellipsoidal bacteria in one sublimit.
Finally, we discuss the physical implications of these results and conclude in section 4.

2. Model description. We consider the diffusion and uptake of nutrient through
a colony of bacteria within a passive medium, which could model fluid within a biore-
actor or the extracellular polymeric substance within a biofilm. We describe the
nutrient distribution in terms of its concentration, which is defined in the medium
and bacterial phases as c̃(x̃, t̃) and C̃(x̃, t̃), respectively. Here, c̃ and C̃ are given in
terms of the molarity of the concentration, x̃ is the spatial vector coordinate, and
t̃ is time. We assume that the nutrient diffuses through the passive medium with
constant diffusion coefficient Dm, and through the bacteria with constant diffusion
coefficient Db. Additionally, we assume that the nutrient uptake occurs only within
the bacteria, and that the uptake is proportional to the nutrient concentration with
rate of proportionality λ.

We model the bacteria as a collection of spheres whose centers are located on a
cubic lattice at a distance εl apart, where ε is a small dimensionless parameter and l
is the typical length of the entire domain. The radii of the bacteria can vary slowly in
space, and a bacterium centered at x̃ has radius R̃(x̃). For simplicity, we retain a fixed
cell size. We only consider nonoverlapping spheres, and thus 2R̃ < εl. The bacterial
and medium phases are denoted as Ωb ⊂ R3 and Ωm ⊂ R3, respectively. We denote
the entire spatial domain as Ω = Ωb ∪ Ωm ⊂ R3 and note that Ωb ∩ Ωm = ∅. Finally,
we also denote the boundary between the two phases as ∂Ωb, which we refer to as the
“bacterial membrane” or just “membrane.” To couple the concentrations across the
bacterial membrane, we assume continuity of concentration and concentration flux.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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1304 M. DALWADI, Y. WANG, J. KING, AND N. MINTON

Mathematically, we have the dimensional problem

∂c̃

∂t̃
= Dm∇2c̃ for x̃ ∈ Ωm,(2a)

∂C̃

∂t̃
= Db∇2C̃ − λC̃ for x̃ ∈ Ωb,(2b)

c̃ = C̃ for x̃ ∈ ∂Ωb,(2c)

n ·Dm∇c̃ = n ·Db∇C̃ for x̃ ∈ ∂Ωb,(2d)

c̃(x̃, 0) = c̃init(x̃) for x̃ ∈ Ωm,(2e)

C̃(x̃, 0) = c̃init(x̃) for x̃ ∈ Ωb,(2f)

where n is the unit normal of the bacterial membrane pointing into the surrounding
medium. The function c̃init(x̃) appearing in the initial conditions (2e) and (2f) is con-
tinuous across the bacterial membrane and allows for a slow variation of the nutrient
concentration in space. To close the system (2), we also require boundary conditions
at the external boundary of Ω. However, to keep the generality of our analysis we
will not impose a specific form in this paper.

In general, the typical diameter of bacterial cocci is around 2R̃ ≈ 1µm, and a fer-
mentation process would start with a cell density of around 108 cells/ml and end with
a cell density of around 1011 cells/ml, corresponding to the approximate cell spacing
εl ≈ 2 − 20µm [21, 22]. Additionally, cell growth occurs on a much slower timescale
than nutrient transport. It is generally possible to obtain the diffusion coefficient of
a given nutrient within water and, for example, the diffusivities of dissolved carbon
dioxide, nitrogen, and oxygen within water at room temperature are each around
2 cm2/s (with a maximum variation away from this value of 6%). However, it is much
trickier to get pointwise diffusion and uptake coefficients within bacteria due to the
difficulties in isolating and imaging a single bacterium. Partly for this reason, and also
for a more general analysis (protozoa, for example, can have diameters > 100µm),
it will be instructive to consider the various distinguished asymptotic limits of this
problem.

2.1. Dimensionless equations. We scale the variables via x̃ = lx, t̃ = (l2/Dm)t,
R̃ = εlR, (c̃, C̃, c̃init) = c∞(c, C, cinit), where c∞ is a characteristic concentration scale,
to yield the dimensionless equations

∂c

∂t
= ∇2c for x ∈ Ωm,(3a)

∂C

∂t
= D

(
∇2C − µC

)
for x ∈ Ωb,(3b)

c = C for x ∈ ∂Ωb,(3c)

n · ∇c = n ·D∇C for x ∈ ∂Ωb,(3d)

c(x, 0) = cinit(x) for x ∈ Ωm,(3e)

C(x, 0) = cinit(x) for x ∈ Ωb,(3f)

where D = Db/Dm is the ratio of diffusion coefficient in the medium to that in the
bacteria, and µ = λl2/Db is the ratio of the timescales of diffusion within the bacteria
to uptake. The inclusion of the dimensionless diffusivity D in the definition of the
dimensionless uptake rate Dµ is for subsequent convenience. We do not specify the
asymptotic orders of these dimensionless parameters yet, but later we consider the
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A HOMOGENIZATION OF BACTERIAL NUTRIENT UPTAKE 1305

x ∈ Ω

O(1)

ǫ

1

y ∈ ω(x)

∂ω

ωm

ωb

∂ωb

R(x)

Fig. 1. A two-dimensional projection of the three-dimensional problem we consider. The full
problem is shown in the left figure, from which the cell problem (with y ∈ [−1/2, 1/2]3) is magnified
and shown in the right figure. The nutrient diffuses with different diffusion coefficients in the blue
passive medium and in the pink bacteria and is absorbed within the bacteria at a rate proportional
to its concentration. We couple the regions via continuity of concentration and concentration flux.
(Color available online.)

three asymptotic limits over the timescale of macroscale diffusion in the medium,
where t = O(1).

In dimensionless units, the bacteria now form a cubic lattice of spheres whose
centers are a distance of ε apart, and a bacterium centered at x has radius εR(x). A
schematic of this set-up is shown in Figure 1.

3. Deriving effective equations. Our goal is to upscale the governing equa-
tions (3) using a homogenization procedure via the method of multiple scales. Essen-
tially, we introduce the additional spatial variable

y =
x− bxc

ε
− b,(4)

where we treat x and y as independent. In (4), we introduce the constant translation
vector b = (1/2, 1/2, 1/2) for notational purposes. Thus, the microscale variable
y ∈ [−1/2, 1/2]3 is defined within a unit cell ω(x), centered around one bacterium,
and our dependent variables are now c(x,y, t) and C(x,y, t). The extra freedom that
arises from introducing y is later removed by imposing that the problem is 1-periodic
in each component of y. Within each cell, we define several regions for convenience.
The bacterium and medium phases are defined as ωb(x) and ωm(x), respectively. The
spherical bacterial membrane between these two phases is defined as ∂ωb(x). Finally,
the cubic outer boundary of the cell is defined as ∂ω. Formally, these sets are defined
as

ωb = {y ∈ [−1/2, 1/2]3 : ‖y‖ < R(x)},(5a)

ωm = {y ∈ [−1/2, 1/2]3 : ‖y‖ > R(x)},(5b)

∂ωb = {y ∈ [−1/2, 1/2]3 : ‖y‖ = R(x)},(5c)

∂ω = {y ∈ [−1/2, 1/2]3 : ‖y‖∞ = 1/2},(5d)

where ‖ · ‖ and ‖ · ‖∞ are the three-dimensional Euclidean and infinity norms, respec-
tively.
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1306 M. DALWADI, Y. WANG, J. KING, AND N. MINTON

We are interested in deriving effective governing equations for two quantities.
First, ĉ(x, t), the intrinsic-averaged concentration within the medium, is defined as

ĉ(x, t) =
1

|ωm(x)|

∫
ωm(x)

c(x,y, t) dy,(6a)

where | · | is the volume. The intrinsic-averaged concentration is important because
it is the experimentally measurable concentration. Second, c̄(x, t), the volumetric-
averaged concentration, is defined as

c̄(x, t) =
1

|ω(x)|

(∫
ωm(x)

c(x,y, t) dy +

∫
ωb(x)

C(x,y, t) dy

)

=

∫
ωm(x)

c(x,y, t) dy +

∫
ωb(x)

C(x,y, t) dy.(6b)

The volumetric-averaged concentration is a fundamental physical quantity of interest,
as it can be used to determine the total number of moles of nutrient in the system.

Treating each dependent variable as a function of both x and y, the spatial
derivatives transform as follows:

∇ 7→ ∇x +
1

ε
∇y,(7)

where ∇x and ∇y refer to the nabla operator in the x- and y-coordinate systems,
respectively. The spatial transformation (7) also causes the unit normal on the bound-
ary to transform (as also occurs in, for example, [30, 5]). This can be seen by defining
the function χ(x,y) = ‖y‖−R(x), noting that the bacterial membrane is defined by
χ = 0 and thus n = ∇χ/‖∇χ‖, and then using (7) to yield

n 7→ ny − ε∇xR
‖ny − ε∇xR‖

,(8)

where ny = y/‖y‖. This transformation of the boundary is sometimes referred to as
the level-set framework, as discussed in section 1.

Using the transformations (7) and (8), the dimensionless governing equations (3)
become

ε2
∂c

∂t
= (∇y + ε∇x) · (∇y + ε∇x) c for y ∈ ωm(x),(9a)

ε2
∂C

∂t
= D (∇y + ε∇x) · (∇y + ε∇x)C − ε2DµC for y ∈ ωb(x),(9b)

c = C for y ∈ ∂ωb(x),(9c)

(ny − ε∇xR) · (∇y + ε∇x) c = (ny − ε∇xR) ·D (∇y + ε∇x)C for y ∈ ∂ωb(x),
(9d)

c(x,y, 0) = cinit(x) for y ∈ ωm(x),(9e)

C(x,y, 0) = cinit(x) for y ∈ ωb(x),(9f)

c periodic for y ∈ ∂ω,(9g)

where (9g) is imposed to remove secular terms in the method of multiple scales. Here
and hereafter, any condition similar to (9g) refers only to periodicity in the dependent
variable y.
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A HOMOGENIZATION OF BACTERIAL NUTRIENT UPTAKE 1307

Table 1
A summary of the three distinguished asymptotic limits we consider in this paper. Note that R

has already been scaled by ε so that, when O(1), it is of the same asymptotic order as the periodic-cell
size.

D µ R
Case 1 O(1) O(1) O(1)
Case 2 O(ε2) O(1/ε2) O(1)
Case 3 O(1) O(1/ε6) O(ε2)

We are interested in the physical scenarios in which the effective uptake balances
the macroscale diffusion over the timescale of the latter, which occurs over t = O(1).
There are three distinguished asymptotic limits: (i) standard diffusion, uptake, and
obstacle size; (ii) small diffusion, large uptake, and standard obstacle size; (iii) stan-
dard diffusion, very large uptake, and small obstacle size. We summarize the three
asymptotic limits in Table 1. We note that, in the absence of any source or sink
terms from the external boundary, the removal rate of nutrient in the system can be
deduced from (3) as follows:

∂

∂t

(∫
Ωm

cdx+

∫
Ωb

C dx

)
= −µD

∫
Ωb

C dx.(10)

When uptake within a bacterium occurs over the entire bacterium domain and not
just within a boundary layer near the bacterial membrane, we see from (10) that an
O(1) uptake timescale (corresponding to diffusion over the timescale of macroscale
diffusion) occurs when µDR3 = O(1). This constraint helps to elucidate the relative
scalings within each case in Table 1. We proceed by homogenizing the system in each
of the three cases mentioned above.

3.1. Case 1: Standard diffusion, uptake, and bacterial size: D = O(1),
µ = O(1), R = O(1). The first distinguished limit we consider is D = O(1),
µ = O(1), and R = O(1). While this limit is only a specific example of the general
classical case (section 5.3 in [16]) with a discontinuous diffusion coefficient, it does
provide the distinguished limit for the effective diffusion for the remaining cases, and
so we include it for completeness. To upscale the system, we introduce the asymptotic
expansions

c = c0(x,y, t) + εc1(x,y, t) + ε2c2(x,y, t) + O(ε3),(11a)

C = C0(x,y, t) + εC1(x,y, t) + ε2C2(x,y, t) + O(ε3),(11b)

substitute these into (9), and equate terms of equal magnitude.
The leading-order terms in (9) are

0 = ∇2
yc0 for y ∈ ωm(x),(12a)

0 = D∇2
yC0 for y ∈ ωb(x),(12b)

c0 = C0 for y ∈ ∂ωb(x),(12c)

ny · ∇yc0 = Dny · ∇yC0 for y ∈ ∂ωb(x),(12d)

c0(x,y, 0) = cinit(x) for y ∈ ωm(x),(12e)

C0(x,y, 0) = cinit(x) for y ∈ ωb(x),(12f)

c0 periodic for y ∈ ∂ω.(12g)
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1308 M. DALWADI, Y. WANG, J. KING, AND N. MINTON

The system (12) yields solutions that are independent of y, and thus c0 = c0(x, t) and
C0 = C0(x, t), with c0 = C0 and c0(x, 0) = C0(x, 0) = cinit(x). To close the problem
at leading order, we must derive a solvability condition from higher asymptotic orders.

The relevant O(ε) terms in (9) yield

0 = ∇2
yc1 for y ∈ ωm(x),(13a)

0 = D∇2
yC1 for y ∈ ωb(x),(13b)

c1 = C1 for y ∈ ∂ωb(x),(13c)

ny · (∇yc1 +∇xc0) = Dny · (∇yC1 +∇xC0) for y ∈ ∂ωb(x),(13d)

c1 periodic for y ∈ ∂ω.(13e)

We may express the solutions to (13) in the form

c1(x,y, t) = −ξ(x,y) · ∇xc0(x, t) + c̆1(x, t),(14a)

C1(x,y, t) = −Ξ(x,y) · ∇xC0(x, t) + C̆1(x, t),(14b)

where c̆1 and C̆1 are (thus far) arbitrary functions of x and t only, which we shall not
need to calculate to obtain the leading-order homogenized problem. The components
ξi and Ξi of the zero-mean (over a single cell) functions ξ and Ξ satisfy the cell
problems

0 = ∇2
yξi for y ∈ ωm(x),(15a)

0 = D∇2
yΞi for y ∈ ωb(x),(15b)

ξi = Ξi for y ∈ ∂ωb(x),(15c)

ny · (∇yξi −D∇yΞi) = (1−D)ny · ei for y ∈ ∂ωb(x),(15d)

ξi periodic for y ∈ ∂ω,(15e)

where ei is the unit vector in the yi-direction.
Finally, from the relevant O(ε2) terms in (9), we obtain

∂c0
∂t

= ∇y · (∇yc2 +∇xc1) +∇x · (∇yc1 +∇xc0) for y ∈ ωm(x),(16a)

∂C0

∂t
= D∇y · (∇yC2 +∇xC1) +D∇x · (∇yC1 +∇xC0)−DµC0 for y ∈ ωb(x),

(16b)

c2 = C2 for y ∈ ∂ωb(x),(16c)

ny · (∇yc2 +∇xc1)−∇xR · (∇yc1 +∇xc0)

= D (ny · (∇yC2 +∇xC1)−∇xR · (∇yC1 +∇xC0)) for y ∈ ∂ωb(x),(16d)

c2 periodic for y ∈ ∂ω.(16e)

To derive effective equations for the averaged concentrations defined in (6), we inte-
grate (16a) over the domain ωm(x) and (16b) over the domain ωb(x), sum the results,
and then apply the divergence theorem with the boundary conditions (16d,e) to obtain∫

ωm(x)

∂c0
∂t

dy +

∫
ωb(x)

∂C0

∂t
dy =

∫
ωm(x)

∇x · (∇yc1 +∇xc0) dy

−
∫
∂ωb(x)

∇xR · (∇yc1 +∇xc0) ds+D

∫
ωb(x)

∇x · (∇yC1 +∇xC0) dy
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A HOMOGENIZATION OF BACTERIAL NUTRIENT UPTAKE 1309

−D
∫
∂ωb(x)

∇xR · (∇yC1 +∇xC0) ds−Dµ
∫
ωb(x)

C0 dy,(17)

where ds is the surface element of the bacterial membrane ∂ωb(x). Using the Reynolds
transport theorem to combine the first and second integrals on the right-hand side of
(17) as well as the third and fourth integrals, we obtain

|ωm(x)|∂c0
∂t

+ |ωb(x)|∂C0

∂t
= ∇x ·

∫
ωm(x)

(∇yc1 +∇xc0) dy

+D∇x ·
∫
ωb(x)

(∇yC1 +∇xC0) dy −Dµ|ωb(x)|C0(18)

as the solvability condition required to close the leading-order problem. We note that
|ωm|+ |ωb| = 1, and that |ωb| = 4πR3/3 for the spherical bacteria we consider in this
paper.

We can use (14) to deduce that ∇yc1 = −(JT
ξ )∇xc0 and ∇yC1 = −(JT

Ξ)∇xC0,

where (JT
ξ )ij = ∂ξj/∂yi and (JT

Ξ)ij = ∂Ξj/∂yi are the transposes of the Jacobian
matrices of ξ and Ξ, respectively, these being the vector solutions to the cell problems
defined in (15). Using these results, recalling that c0 = C0 from the leading-order
equations, and noting that the leading-order independence of c0 on y leads to the
asymptotic result ĉ ∼ c0 in (6a), we rewrite (18) as

∂ĉ

∂t
= ∇x ·

(
D̂(x)∇xĉ

)
− 4

3
πDµR3ĉ,(19a)

at leading order, with the initial condition

ĉ(x, 0) = cinit(x),(19b)

obtained by substituting (12e) into (6a). The homogenized diffusion tensor is defined
as

D̂(x)I =

∫
ωm(x)

(
I− JT

ξ

)
dy +D

∫
ωb(x)

(
I− JT

Ξ

)
dy,(19c)

and I is the three-dimensional identity matrix. In the case of spherical bacteria, the
homogenized diffusion tensor is a multiple of the identity matrix due to the symmetry
of the cell problem (15). That is,

∫
ωm(x)

JT
ξ dy =

(∫
ωm(x)

∂ξi/∂yi dy

)
I,

∫
ωb(x)

JT
Ξ dy =

(∫
ωb(x)

∂Ξj/∂yj dy

)
I

(20)

for i, j = 1, 2, 3, with ξi and Ξj determined by (15). We are able to obtain analytic
bounds on the effective diffusion coefficient using the Voigt–Reiss inequality (equation
(1.63) in [19]), yielding

D

|ωb|+D|ωm|
6 D̂ 6 |ωm|+D|ωb|,(21)

where we have used |ω| = 1.
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1310 M. DALWADI, Y. WANG, J. KING, AND N. MINTON

Fig. 2. The effective diffusion coefficient derived in Case 1, which is the distinguished asymp-
totic limit for the diffusion coefficient in the other cases we consider. The effective diffusion coef-
ficient in Case 2 is given by the limit D → 0+, and the effective diffusion coefficient in Case 3 is
given by the limit R → 0+. That is, in Case 3 the effective dimensionless diffusion coefficient is
unity.

We note that D̂ is a function of two parameters in this problem: the diffusion
ratio D and the bacterium radius R. We solve the cell problem (15) using the soft-
ware package COMSOL Multiphysics to determine the effective diffusion coefficients,
leading to the results in Figure 2. As physically expected, when diffusion is slower
within the bacteria than in the passive medium, the effective diffusion is slower than
the pointwise diffusion in the passive medium, and vice versa for a quicker diffusion
within the bacteria. Moreover, this effect is greater when the bacterial volume is
larger. We note that when D = 1, the solutions to the cell problem (15) are indepen-

dent of y, resulting in D̂ ≡ 1.
For our main goal of analyzing the effective uptake, we see from (19a) that, in

Case 1, the effective uptake is equal to the product of the pointwise uptake and the
bacterial volume. For our additional aim of obtaining an equation for the averaged
concentration c̄(x, t), we note that the leading-order behavior of (6b) is given by

c̄(x, t) ∼ ĉ(x, t).(22)

Thus, from (19) we deduce that the effective governing equation for c̄ is

∂c̄

∂t
= ∇x ·

(
D̂(x)∇xc̄

)
− 4

3
πDµR3c̄,(23a)

with initial condition

c̄(x, 0) = cinit(x),(23b)

obtained by substituting (12e) and (12f) into (6b). The generalization of this result
to arbitrary bacterial shapes is briefly discussed in Appendix A.
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A HOMOGENIZATION OF BACTERIAL NUTRIENT UPTAKE 1311

The effective governing equation (19) holds for O(1) values of µ and D. However,
when µ is large and D is small, with µD = O(1), the effective equation (19) is not
correct over an O(1) timescale. We may anticipate the significant change in behavior
in this limit from the terms in (9) switching asymptotic orders, and we explore this
limit in the next section.

3.2. Case 2: Small diffusion within the bacteria: D = O(ε2), µ =
O(1/ε2), R = O(1). The second distinguished limit we consider is D = O(ε2),
µ = O(1/ε2), and R = O(1). We consider this limit by setting D = ε2D̂ and
µ = µ̂/ε2, where D̂ and µ̂ are both of O(1). As there is a large difference between the
diffusion coefficients in the medium and bacterium, this is a double-porosity model.
As discussed in section 1, such models tend to induce a memory effect in the upscaled
effective equations, whereby the history of the system is required to determine the
current state of the system. We will find a similar effect in this case—the partial
differential equations being upscaled into integrodifferential equations.

We introduce the asymptotic expansions

c = c0(x,y, t) + εc1(x,y, t) + ε2c2(x,y, t) + O(ε3), C = C0(x,y, t) + O(ε)(24)

to the governing equations (9), noting that we will only require the leading-order term
in C for the following analysis. The leading-order terms in (9) are

0 = ∇2
yc0 for y ∈ ωm(x),(25a)

∂C0

∂t
= D̂

(
∇2
yC0 − µ̂C0

)
for y ∈ ωb(x),(25b)

c0 = C0 for y ∈ ∂ωb(x),(25c)

ny · ∇yc0 = 0 for y ∈ ∂ωb(x),(25d)

c0(x,y, 0) = cinit(x) for y ∈ ωm(x),(25e)

C0(x,y, 0) = cinit(x) for y ∈ ωb(x),(25f)

c0 periodic for y ∈ ∂ω.(25g)

The system for c0 is defined by (25a,d,e,g) and decouples from C0. We see that c0
is independent of y, and thus c0 = c0(x, t) with c0(x, 0) = cinit(x). We solve for C0

later in this section.
The important O(ε) problem is for c1, for which we obtain the following system:

0 = ∇2
yc1 for y ∈ ωm(x),(26a)

ny · ∇yc1 = −ny · ∇xc0 for y ∈ ∂ωb(x),(26b)

c1 periodic for y ∈ ∂ω.(26c)

The system (26) is equivalent to taking the limit of D → 0 in (13). Moreover, it is
the same first-correction problem that arises in [5, 11]. In a similar manner to the
analysis in section 3.1, we may solve (26) by setting

c1(x,y, t) = −γ(x,y) · ∇xc0(x, t) + c̆(x, t),(27)

where c̆ is an arbitrary function of x and t only, and the components γi of the zero-
mean (over a single cell) function γ satisfy the cell problem

0 = ∇2
yγi for y ∈ ωm(x),(28a)
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1312 M. DALWADI, Y. WANG, J. KING, AND N. MINTON

ny · ∇yγi = ny · ei for y ∈ ∂ωb(x),(28b)

γi periodic for y ∈ ∂ω,(28c)

where ei is the unit vector in the yi-direction. The cell problem (28) for γi is equivalent
to the system (15) for ξi in the limit of D → 0.

The relevant O(ε2) problem is

∂c0
∂t

= ∇y · (∇yc2 +∇xc1) +∇x · (∇yc1 +∇xc0) for y ∈ ωm(x),(29a)

ny · (∇yc2 +∇xc1)−∇xR · (∇yc1 +∇xc0) = ny · D̂∇yC0 for y ∈ ∂ωb(x),(29b)

c2 periodic for y ∈ ∂ω.(29c)

To derive effective equations for the averaged concentrations defined in (6), we proceed
in a similar manner to section 3.1. We integrate (29a) over the domain ωm(x), apply
the divergence theorem, and use the boundary conditions (29b,c) to obtain∫

ωm(x)

∂c0
∂t

dy =

∫
ωm(x)

∇x · (∇yc1 +∇xc0) dy −
∫
∂ωb(x)

∇xR · (∇yc1 +∇xc0) ds

−
∫
∂ωb(x)

ny · D̂∇yC0 ds.(30)

Using the Reynolds transport theorem to combine the first two integrals on the right-
hand side of (30), we obtain

|ωm(x)|∂c0
∂t

= ∇x ·
∫
ωm(x)

(∇yc1 +∇xc0) dy − D̂|∂ωb(x)| ∂C0

∂r

∣∣∣∣
r=R

.(31)

We use (27) to determine that ∇yc1 = −(JT
γ )∇xc0, where (JT

γ )ij = ∂γj/∂yi is the
transpose of the Jacobian matrix of γ, the vector solution to the cell problems defined
in (28). In the same manner as the previous case, we note that

∫
ωm(x)

JT
γ dy =

(
∫
ωm(x)

∂γi/∂yi dy)I for i = 1, 2, 3 with γi determined in (28), allowing us to write

(31) as

|ωm(x)|∂c0
∂t

= ∇x ·
(
|ωm|D(x)∇xc0

)
− D̂|∂ωb(x)| ∂C0

∂r

∣∣∣∣
r=R

,(32)

where the classical homogenized diffusion tensor is defined as

D(x)I =

(
I− 1

|ωm|

∫
ωm(x)

JT
γ dy

)
.(33)

The effective diffusion coefficient D we obtain here is identical to the effective diffusion
coefficients derived in [5] and [11] for diffusion past impermeable spheres in a cubic
array with no adsorption and surface adsorption, respectively (advection is also con-
sidered in [11]). This is because we have considered the small diffusivity limit within
the bacteria, making the obstacles appear impermeable at leading order. We show
this effective diffusion coefficient in Figure 2, as D is equivalent to D̂ when D = 0
in the latter. Thus, the effective diffusion coefficient in Case 2 is a sublimit of the
effective diffusion coefficient in Case 1.
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A HOMOGENIZATION OF BACTERIAL NUTRIENT UPTAKE 1313

To obtain a governing equation for ĉ from (32), we first note that ĉ ∼ c0 in (6a).
This arises from the leading-order independence of c0 on y. Using (25b) and (25f),
we can write (32) as

∂

∂t

(
|ωm(x)|ĉ+

∫
ωb(x)

C0(x,y, t) dy

)
= ∇x ·

(
|ωm|D(x)∇xĉ

)
− µ̂D̂

∫
ωb(x)

C0(x,y, t) dy,

(34)

where C0 depends on ĉ through the leading-order problem

∂C0

∂t
= D̂

(
∇2
yC0 − µ̂C0

)
for y ∈ ωb(x),(35a)

C0 = ĉ(x, t) for y ∈ ∂ωb(x),(35b)

C0(x,y, 0) = cinit(x) for y ∈ ωb(x).(35c)

We seek a radially symmetric solution for C0 (in terms of r = ‖y‖), imposing
∂C0/∂r = 0 at r = 0 to ensure boundedness at the origin, and find a representa-
tion of the solution in the form

C0(x, r, t) = ĉ(x, t) +
1

r

∞∑
n=1

Un(x, t) sin anr,(36a)

Un(x, t) = e−D̂(µ̂+a2n)t 2(−1)n

an

∫ t

0

(
∂ĉ

∂τ
+ µ̂D̂ĉ(x, τ)

)
eD̂(µ̂+a2n)τ dτ,(36b)

an(x) =
nπ

R(x)
,(36c)

where an represents the eigenvalues of the time-dependent problem. Integrating by
parts the first term in the integrand of (36b) and rewriting the first term in (36a)
in terms of a Fourier series in sin anr (essentially encoding −ĉ multiplied by a sign
function translated to have origin at r = R), we can also write

C0(x, r, t) = −2

r

∞∑
n=1

(−1)ne−D̂(µ̂+a2n)t
(
cinit(x)

an
+ D̂an

∫ t

0

ĉ(x, τ)eD̂(µ̂+a2n)τ dτ

)
sin anr,

(37)

where the boundary condition (35b) is now satisfied as r → R−.
Noting that |ωm| = 1 − 4πR3/3 for spherical bacteria, we use (36) to write (34)

as the homogenized equation

∂ĉ

∂t
= ∇x ·

((
1− 4

3
πR3

)
D(x)∇xĉ

)
− f [ĉ],(38a)

with the initial condition

ĉ(x, 0) = cinit(x),(38b)

obtained by substituting (25e) into (6a), and where f [·] denotes that the effective
uptake is a (nonlocal) functional, defined as

f [ĉ] = 8πRD̂

∞∑
n=1

{
e−D̂(µ̂+a2n)t

∫ t

0

(
∂ĉ

∂τ
+ µ̂D̂ĉ(x, τ)

)
eD̂(µ̂+a2n)τ dτ

}
− 4

3
πR3 ∂ĉ

∂t
.

(38c)
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1314 M. DALWADI, Y. WANG, J. KING, AND N. MINTON

Thus, we have an effective integrodifferential equation for the leading-order intrinsic-
averaged concentration. We note that the effective uptake is now significantly more
complicated than for Case 1, and will depend on the initial conditions of the problem,
but is still of O(1).

We can also determine an equation for the volumetric-averaged concentration,
defined in (6b), in terms of the intrinsic-averaged concentration. Substituting the
asymptotic expansions (24) and leading-order solution (37) into the definition of the
effective concentration (6b), we deduce that c̄ can be calculated from ĉ using the
relationship

c̄ ∼
(

1− 4

3
πR3

)
ĉ+ 8πR

∞∑
n=1

e−D̂(µ̂+a2n)t
(
cinit(x)

a2
n

+ D̂

∫ t

0

ĉ(x, s)eD̂(µ̂+a2n)τ dτ

)
.

(39)

For certain types of boundary conditions (e.g., Dirichlet, Robin, and mixed) on
the boundary of Ω, it is possible to obtain a nontrivial steady solution to (38) and
(39). It is simpler to analyze the effective uptake for Case 2 in the steady state
than in the unsteady state, as the effective governing equation is reduced from an
integrodifferential equation to the elliptic partial differential equation

0 = ∇x ·
((

1− 4

3
πR3

)
D(x)∇xĉ

)
− σĉ,(40a)

where

σ = 4πRD̂
(√

µ̂R coth
√
µ̂R− 1

)
,(40b)

using the identity

∞∑
n=1

1

α+ n2π2
=

√
α coth

√
α− 1

2α
,(41)

to reduce f [ĉ] to a linear function of ĉ, in the steady state. We could also obtain (40a)
by direct consideration of the steady version of (25). Additionally, we find that if ĉ
tends to a constant as t→∞, (39) reduces to

c̄ ∼
(

1− 4

3
πR3

)
ĉ+

σ

µ̂D̂
ĉ,(42)

again using (41).
The steady state effective uptake coefficient in Case 2 is given by (40b). It is

helpful to understand the sublimits of this coefficient in the steady regime before
discussing the unsteady regime. For small

√
µ̂R, we see that

σ ∼ 4

3
πµ̂D̂R3,(43a)

the bacterium volume multiplied by the pointwise uptake rate within a bacterium.
This volume scaling is the same effective uptake we derived in Case 1. For large

√
µ̂R,

we deduce that

σ ∼ 4πRD̂(
√
µ̂R− 1) ∼ 4π

√
µ̂D̂R2,(43b)
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A HOMOGENIZATION OF BACTERIAL NUTRIENT UPTAKE 1315

(a) (b)

Fig. 3. The steady state effective uptake coefficient σ in Case 2, given by (40b) as a function

of (a) µ̂ (with D̂ = 1 and R = 0.3) and (b) R (with D̂ = 1). In (a), we show that σ ∼ 4πR3D̂µ̂/3

for small µ̂ and σ ∼ 4πRD̂(
√
µ̂R − 1) for large µ̂, as shown in (43). In (b), we show that σ scales

with R3 for small
√
µ̂R and with R2 for large

√
µ̂R.

which is the product of the bacterium surface area, the pointwise uptake rate, and
1/
√
µ̂, the width of an uptake boundary layer for large µ̂ near the bacterial membrane.

Thus, the effective uptake function we have derived in (38c) provides the function that
smoothly transitions between volume-scaled and surface-area-scaled effective bacterial
uptake. We illustrate these results in Figure 3. We consider the generalization of these
results to arbitrary bacterial shapes in Appendix A. In particular, we note that the
physical intuition and subsequent scalings for the large pointwise uptake result given
in (43b) generalizes for an arbitrary shape.

Although our main goal in this paper is to derive the effective uptake within a
colony of bacteria, it is interesting to briefly consider µ̂ < 0, corresponding to auto-
catalytic production of some chemical within the bacteria or positive autoregulation
of gene expression. As µ̂ decreases, the steady state equation (40) yields a blow-up in
the effective production rate when

µ̂ = −π2/R2.(44)

Thus, we may conclude that our steady state results are invalid for negative µ̂ when
µ̂ ≤ −π2/R2. Additionally, although the chemical production is self-promoting in
this scenario, a steady state is still possible when the above inequality is not satisfied.

In the unsteady regime, governed by the full homogenized system (38), we see that
the effective uptake has a natural timescale of O(1/D̂) for extreme values of D̂. Thus,
small and large D̂ in (38) correspond to slow and fast uptake, respectively. In the
limit of small D̂, the leading-order intrinsic-averaged concentration becomes spatially
independent over a timescale of O(1/D̂), where the slow uptake is a function of time
forced by (38c). The volumetric-averaged concentration is still given by the full form
of (39). In the limit of large D̂, the initial conditions quickly become unimportant and
the effective uptake f [ĉ] reduces from a functional in ĉ to the linear function νĉ, defined
in (40). This occurs because the fast diffusion removes the memory property from
the upscaled problem. In the same manner, the volumetric-averaged concentration
(39) tends to its steady state value (42) over a timescale of O(1/D̂) in this limit. A
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1316 M. DALWADI, Y. WANG, J. KING, AND N. MINTON

small µ̂ corresponds to slow uptake within the bacteria. In this limit, the unsteady
concentration transport is governed by diffusion at leading order, before eventually
tending to the small effective uptake given in (43a). A large µ̂ corresponds to quick
uptake, and in this case the effective uptake f [ĉ] reduces from a functional in ĉ to the
linear function νĉ, in the same manner as for large D̂.

We note that taking the double limits of large D̂ and small µ̂ commute, yielding an
effective uptake of 4πR3D̂µ̂ĉ/3, which coincides with the effective uptake we derived
in Case 1. Moreover, in the same limit, the upscaled governing equation (38) for Case
2 coincides with the upscaled governing equation (19) for Case 1, in the limit of D
being small. Thus, we are able to smoothly pass between Cases 1 and 2, and, in fact,
the effective uptake in Case 1 is a sublimit of the effective uptake in Case 2, and the
effective diffusion in Case 2 is a sublimit of the effective diffusion in Case 1.

Each of the limiting results we discuss above could have been directly calculated
by taking their respective limits before the homogenization procedure, but our method
produces a distinguished limit from which the relevant sublimits can be distilled, as
long as R = O(1). In the next section, we consider the final distinguished limit, which
occurs when R is small and µ is very large.

3.3. Case 3: Standard diffusion, very large uptake, and small bacterial
size: D = O(1), µ = O(1/ε6), R = O(ε2).

3.3.1. Asymptotic structure. We now consider the problem where R � 1
by investigating the distinguished limit R = O(ε2), µ = O(1/ε6), and D = O(1).
Note that we have previously scaled R with the microscale variable, so in terms
of dimensionless macroscale variables we are considering the case where the radius
scales with the cube of the small parameter of periodicity, the critical case in [8]. We
introduce R = ε2R̄ and µ = µ̄/ε6, where R̄ and µ̄ are both of O(1).

In this section, our analysis involves upscaling the governing equations (3) using
a combination of boundary layer analysis and homogenization via the method of mul-
tiple scales. There are three important asymptotic regions in this problem. The first
is the outer region, over which x = O(1). In the same manner as the previous two
cases, we wish to determine an upscaled effective equation over this region that sys-
tematically accounts for the bacterial uptake. Thus, in the outer region, the bacterial
uptake is a bulk effect. The second region is the cell region, over which x = O(ε).
This region will yield the cell problem, and, in this region, the bacterial uptake is
a point sink. The third and final region is the inner region, over which x = O(ε3).
In this region, we see the bacteria as an O(1) region, within which we must solve a
concentration problem coupled to the passive medium. The solution from the inner
region determines the strength of the point sink in the cell region. Thus, this limit
introduces an additional term to the previous equations (9) with which we worked.
A schematic of these three regions is given in Figure 4.

3.3.2. Homogenization. Rewriting the equations (9) in terms of the scaled
dimensionless parameters, we obtain

ε2
∂c

∂t
= (∇y + ε∇x) · (∇y + ε∇x) c for ‖y‖ > ε2R̄ and ‖y‖∞ < 1/2,(45a)

ε6
∂C

∂t
= ε4D (∇y + ε∇x) · (∇y + ε∇x)C −Dµ̄C for ‖y‖ < ε2R̄,(45b)

c = C for ‖y‖ = ε2R̄,(45c)
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A HOMOGENIZATION OF BACTERIAL NUTRIENT UPTAKE 1317

x ∈ Ω

O(1)

ǫ

1

y ∈ ω(x)

∂ω O(ǫ2)
R̄(x)

ρ

Y ∈ ωin(x)

O(1)

Fig. 4. A two-dimensional projection of the asymptotic structure of the three-dimensional
problem with small obstacles. The full problem is shown in the left figure, the center figure denotes
the cell problem (with y ∈ [−1/2, 1/2]3), and the rightmost figure denotes the inner problem within
the cell problem (with Y ∈ R3 and ρ = ‖Y ‖). In the cell problem, the effect of the bacterial sink
occurs through a delta function, and not through its geometry. The strength of this sink is determined
by solving the inner problem.

(ny − ε∇xR) · (∇y + ε∇x) c = (ny − ε∇xR) ·D (∇y + ε∇x)C for ‖y‖ = ε2R̄,

(45d)

c(x,y, 0) = cinit(x) for ‖y‖ > ε2R̄ and ‖y‖∞ < 1/2,(45e)

C(x,y, 0) = cinit(x) for ‖y‖ < ε2R̄,(45f)

c periodic for ‖y‖∞ = 1/2.(45g)

We cannot obtain a solution for C by simply expanding in powers of ε, as we did for the
previous two cases, since the bacterial domain in (45) depends on the small parameter
ε. Instead, we seek an inner solution to the system near the small bacterium at the
origin where ‖y‖ = O(ε2). In the next section, we show that the inner solution only
affects the governing equation for c in the cell region at O(ε2). Thus, substituting
the asymptotic expansion c(x,y, t) ∼ c0(x,y, t) + εc1(x,y, t) + ε2c2(x,y, t) into (45a)
implies that c0 = c0(x, t) and c1 = c1(x, t). We now investigate the inner region.

3.3.3. Inner region. We scale y = ε2Y , where Y ∈ R3. We define this inner
region as ωin(x), where the dependence on x arises from the radius of the bacterium
in this domain. From (45), the relevant leading-order system is

∇2
Y c = O(ε6) for ρ > R̄(x),(46a)

∇2
Y C − µ̄C = O(ε6) for ρ < R̄(x),(46b)

c = C for ρ = R̄(x),(46c)

∂c

∂ρ
= D

∂C

∂ρ
+ O(ε3) for ρ = R̄(x),(46d)

c→ c0(x, t) as ρ→∞,(46e)

where ρ = ‖Y ‖. The error estimate for (46d) arises from the slow variation in
bacterium radius between neighboring cells, which will play no significant role in this
analysis. The far-field condition (46e) arises from matching with the cell region using
van Dyke’s matching principle [29]. We do not require the initial conditions for this
case as we are only concerned with the problem when t = O(1).
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1318 M. DALWADI, Y. WANG, J. KING, AND N. MINTON

Imposing a vanishing concentration flux at the origin to ensure boundedness, the
general radially symmetric solution to (46) is

c = c0(x, t)

(
1− R̄D

ρ

√
µ̄R̄ coth

√
µ̄R̄− 1

1 +D
(√
µ̄R̄ coth

√
µ̄R̄− 1

)) ,(47a)

C =
c0(x, t)R̄ sinh

√
µ̄ρ

ρ
(
D
√
µ̄R̄ cosh

√
µ̄R̄+ (1−D) sinh

√
µ̄R̄
) .(47b)

To correctly match into the cell region, we write the O(1) solution in the inner region
(47) in terms of the cell region variables and expand to O(ε2), yielding

c ∼ c0(x, t)− ε2 ν

4π‖y‖c0(x, t),(48)

where

ν =
4πR̄D

(√
µ̄R̄ coth

√
µ̄R̄− 1

)
1 +D

(√
µ̄R̄ coth

√
µ̄R̄− 1

) .(49)

The form of the matching condition (48) at O(ε2) implies that the outer problem (45a)
in the cell region with a boundary at ‖y‖ = ε2R̄ can be replaced by an effective outer
problem in the cell region, replacing the small bacterial boundary with a Dirac delta
function at the origin of strength −ε2νc0. We now investigate this outer problem.

3.3.4. Higher-order cell region problem. Introducing the Dirac delta func-
tion formulation of the cell region problem (45), the O(ε2) terms are

∂c0
∂t

= ∇2
yc2 +∇2

xc0 − νδ̂(y)c0 for y ∈ ω,(50a)

c0 periodic for y ∈ ∂ω,(50b)

where the introduction of a delta function is justified in the previous section.
Integrating (50a) over the cell, applying the periodic boundary conditions (50b),

and noting that (6) yields ĉ ∼ c0 at leading order, we obtain the effective equation
for the intrinsic-averaged concentration

∂ĉ

∂t
= ∇2

xĉ− νĉ,(51a)

where ν is defined in (49), together with the initial condition

ĉ(x, 0) = cinit(x),(51b)

which arises by substituting (45e) into (6a). Moreover, as the bacteria are very small,
with |ωb| = O(ε2), the volumetric-averaged concentration c̄ ∼ ĉ, and thus (51) also
provides the homogenized system for c̄. As with the previous cases, the effective
uptake is of O(1), and for certain types of boundary conditions (e.g., Dirichlet, Robin,
and mixed) on the boundary of Ω, it is possible to obtain a nontrivial steady solution to
(51). The effective diffusion coefficient here is unity, and thus the effective diffusion in
Case 3 is a sublimit of the effective diffusion in Case 1 as the bacterial radius becomes
small.
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A HOMOGENIZATION OF BACTERIAL NUTRIENT UPTAKE 1319

The effective uptake in Case 3 is given by νĉ, defined in (49), and we now discuss
how this scales with the bacterial properties. In a similar manner to Case 2, the
parameter grouping

√
µ̄R̄ is important. From (49), we see that a small

√
µ̄R̄ yields

ν ∼ 4

3
πDµ̄R̄3,(52)

which is the bacterium volume multiplied by the pointwise uptake rate within a bac-
terium. This is equivalent to (43a), the small uptake sublimit in Case 2, and thus is
the same effective uptake we derived in Case 1. For a small D, we see from (49) that

ν ∼ 4πR̄D
(√
µ̄R̄ coth

√
µ̄R̄− 1

)
,(53)

which is equivalent to the steady state effective uptake coefficient σ from Case 2.
This is because small D corresponds to bacteria that are much less permeable to
the nutrient, the scenario considered in Case 2, and we have preserved the scaling
ε2µR2 = O(1) in both Cases 2 and 3. For large

√
µ̄R̄ or large D, we deduce that

ν ∼ 4πR̄,(54)

which, notably, is bounded above as µ̄ → ∞. This is because the nutrient con-
centration within each bacterium is much smaller in Case 3 than in Cases 1 and 2.
Mathematically, for a large µ̄ in Case 3, the concentration within a bacterium is ap-
proximately ĉ/(D

√
µ̄R̄) near the bacterial membrane over a region depth of O(1/

√
µ̄)

(see (47)), whereas for large µ̂ in nonsparse bacteria, as considered in section 3.2, the
concentration within the bacterium scales with ĉ near the boundary over a region
depth of O(1/

√
µ̂). Thus, the concentration within each bacterium is reduced as µ̄

gets larger, in a manner that bounds above the effective uptake. We show these scal-
ings in Figure 5. We consider the generalization of these results to arbitrary bacterial
shapes in Appendix A. We show that the effective uptake becomes independent of µ̄
as µ̄ → ∞, and we are also able to obtain analytic results for ellipsoidal bacteria in
the same limit.

As with Case 2, it is interesting to briefly consider µ̄ < 0 in Case 3, corresponding
to autocatalytic production of some chemical or positive autoregulation of gene ex-
pression within the bacteria. As µ̄ decreases in this scenario, the effective production
rate blows up in the homogenized equation (51) when

√−µ̄R̄ cot
√−µ̄R̄ =

D − 1

D
for µ̄ ∈

(
−π2/R̄2, 0

)
.(55)

Thus, we may conclude that our homogenization results are invalid for negative µ̄
when µ̄ is less than the lower bound given by (55). We illustrate this lower bound in
Figure 6. Moreover, as with Case 2, we note that although the chemical production
is self-promoting in this scenario, a steady state is still possible provided that −µ̄ is
not too large. This critical value depends on D, and we find that, as D increases, −µ̄
is restricted to smaller maximum values for our homogenization results to hold. We
additionally note that (44), the blow-up in Case 2, is a sublimit of (55) for small D,
with appropriate scalings of µ̄ and R̄.

Finally, we note that we can formally pass between Cases 1, 2, and 3. We can
smoothly pass between Cases 1 and 3 by considering the limits where R → 0 and
µ → ∞ with µR3 = O(1) in Case 1, and the limit where R̄ → ∞ and µ̄ → 0 with
µ̄R̄3 = O(1) in Case 3. Additionally, we can smoothly pass between Cases 2 and 3 by
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1320 M. DALWADI, Y. WANG, J. KING, AND N. MINTON

(a)
(b)

Fig. 5. The effective uptake coefficient ν in Case 3, given by (49), as a function of (a) µ̄ (with
D = 1 and R̄ = 1) and (b) R̄ (with D = 1). In (a), we show that ν ∼ 4πR̄3Dµ̄/3 for small µ̄ and
ν ∼ 4πR̄(1 − 1/(

√
µ̄DR̄)) for large µ̄. In (b), we show that ν scales with with R̄3 for small

√
µ̄R̄

and with R̄ for large
√
µ̄R̄.

Fig. 6. The gray region denotes the lower bound of the domain of validity for negative µ̄,
which corresponds to autocatalytic production or positive autoregulation of gene expression within
the bacteria. The boundary between domains is defined by (55).

considering the limits where R→ 0 and µ̂→∞ with µ̂R2 = O(1) in Case 2, and the
limit where R̄ → ∞ and D → 0 with µ̄R̄2 = O(1) in Case 3. Thus, by considering
the distinguished asymptotic limits, we have determined the different forms an O(1)
effective uptake can take over a timescale of O(1), corresponding to the timescale of
diffusion over the macroscale.

4. Discussion. We have systematically derived effective reaction–diffusion equa-
tions from the microscale problem of unsteady diffusion of nutrient through a passive
medium containing a locally periodic array of spherical bacteria. The nutrient can
diffuse within these bacteria, which also act as volume sinks of the nutrient with first-
order kinetics. We have shown that with only two mechanisms, diffusion and uptake,
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A HOMOGENIZATION OF BACTERIAL NUTRIENT UPTAKE 1321

there are three distinguished limits where the effective uptake balances the macroscale
diffusion over the timescale of the latter, and we have comprehensively investigated
each limit. As we have investigated spherical bacteria, we have been able to maximize
our analytic progress, and we have a closed-form expression for the effective uptake in
each distinguished limit. We have been able to pass smoothly between each case as the
system parameters vary, allowing us to determine how the effective uptake switches
between scaling with the volume and surface area of the bacteria. Moreover, we have
calculated the correct form of the effective uptake when neither of these scalings is
correct.

While the effective uptake coefficients are our main focus in this paper, we have
also determined effective diffusion coefficients for the upscaled problem. We briefly
note that the important distinguished limit for the effective diffusion is given in Case
1; the effective diffusion coefficient in Case 2 is a sublimit of Case 1 as the pointwise
diffusion coefficient within the bacteria vanishes, and the effective diffusion coefficient
in Case 3 is a sublimit of Case 1 as the bacterial radius vanishes.

With regards to the effective uptake, the general behavior can be classified into
two cases, depending on whether the typical bacterial radius is around the same
size or much smaller than the distance between bacterial centers. When they are
of the same order, the important distinguished limit occurs when the diffusion in
the bacteria is small, in the double-porosity limit. This is Case 2, where there is a
memory effect in the effective uptake, which is given as an explicit convolution of
the nutrient concentration in terms of the system parameters in (38). Hence, the
upscaling procedure converts a partial differential equation into an integrodifferential
equation. This memory effect can fade over time to produce a valid steady equation,
providing the external boundary conditions allow for this. In the steady case, the
effective uptake becomes an explicit linear function of the instantaneous nutrient
concentration, and we give an explicit result for the effective uptake coefficient σ in
(40b). This explicit result shows how the effective uptake smoothly varies between
scaling with bacterial volume and bacterial surface area, for a small and large reaction
rate, respectively. In this manner, the effective uptake in Case 1 can be derived as a
sublimit of σ as the pointwise diffusion coefficient within the bacteria becomes of the
same order as the diffusion coefficient within the passive medium.

When the typical bacterial radius is much smaller than the distance between
bacterial centers, the important distinguished limit occurs when the pointwise rate of
nutrient uptake is large. This is Case 3, where we derive an explicit analytic expression
for the effective uptake coefficient ν in (49). Notably, we find that ν is bounded above
as the pointwise rate of nutrient uptake increases, and the supremum of this scales
with the radii of the bacteria, as per the classic Smoluchowski result for uptake on
the surface of a single sphere. Since ν also scales with the volume of the bacteria for
a small pointwise uptake in this distinguished limit, we find that ν can scale from
anywhere between the radius to the volume of the bacteria. In this manner, the
effective uptake in Case 1 can be derived as a sublimit of ν as the pointwise uptake
within the bacteria grows very large and the bacterial radius becomes of the same
order as the distance between bacterial centers.

When mathematically modeling the nutrient uptake within a colony of growing
bacteria, one may derive and investigate a governing equation in terms of the bacterial
volume. In this paper, we have provided the correct uptake terms for such an equation
in terms of the bacterial properties. Even though we start from a linear pointwise
uptake, our work shows that the effective uptake should only scale linearly with the
bacterial volume under certain circumstances, notably when the pointwise uptake is
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1322 M. DALWADI, Y. WANG, J. KING, AND N. MINTON

very weak. Otherwise, the effective uptake can scale with, for example, the bacterial
surface area or radius, and the uptake should thus be a nonlinear function of the
bacterial volume.

Although the main goal of this paper is to determine the effective uptake within
a colony of bacteria, by considering a negative uptake coefficient (corresponding to a
positive production coefficient) our results can be modified to investigate autocatalytic
production of some chemical or positive autoregulation of gene expression within
the bacteria. Our homogenized equations are still valid as the uptake coefficient
decreases through zero, but we show that the effective production rate will blow
up when the production coefficient reaches a critical value defined by (55) in Case
3. The corresponding result for Case 2 is a sublimit of the Case 3 result, when the
diffusion coefficient within the bacteria becomes much smaller than within the passive
medium. Since the dominant balance in the asymptotic scalings will change close to
this apparent blow-up, it would be interesting to investigate the blow-up problem of
autocatalytic production in more detail.

As the leading-order concentration within the passive medium does not depend
on the microscale variable in all the cases we consider, we expect our effective uptake
results to hold for any Bravais lattice of spheres, with an appropriate scaling to account
for the relative volumes of the bacterial phase and the (locally) periodic cell. However,
the effective diffusion coefficients will not translate directly, as the geometry of the
cell problem will change. Our work in Case 1 can be applied directly to more general
arrays of spheres, and the relevant effective diffusion coefficients can be obtained from
(19c) by solving the cell problem (15) for different arrays. Additionally, in this paper
we have modeled the spatial variation in bacterial density by allowing the bacterial
radius to vary slowly in space. Another way to model this change in bacterial density
is to consider a slow variation in the lattice on which the bacterial centers lie—that is,
to consider a locally periodic lattice that varies slowly in space and use the methods
of [26] to transform this near-periodic microscale to a strictly periodic microscale. As
shown in [5], if we use a conformal transformation to preserve the spherical shape of
the bacteria, the nature of the Jacobian matrix of the transformation would result
in a greatly simplified cell problem for the diffusion coefficient. Moreover, as the
transformation only affects spatial derivatives, we would still expect our results for
the effective uptake to apply after the transformation. In this paper we have not
considered the problem of large pointwise uptake when the typical bacterial radius
is around the same size as the distance between bacterial centers. In such a case,
the uptake timescale would be much quicker than the timescale of diffusion over the
bioreactor lengthscale, yielding large depleted regions within the passive medium,
and the nutrient uptake would be localized to boundary layers near the bacterial
membrane.

We have used initial conditions that are continuous across the bacterial membrane
and allow for a slow variation in the concentration over the bioreactor lengthscale.
Although these initial conditions are idealized, the initial conditions of the system
are only significant in Case 2. Moreover, in Case 2 the effect of the initial conditions
decays over time. For more general initial conditions, we will have early-time boundary
layers where the initial conditions settle down. In Case 1, general initial conditions
will settle over a timescale of t = O(ε2) to the conditions we use in this paper. In
Case 2, general initial conditions within the passive medium will become independent
of the short bacterial lengthscale over the same timescale, but the initial conditions
within the bacteria will only decay over a timescale of t = O(1). In Case 3, general
initial conditions within the bacteria will settle to the steady state solution over a
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A HOMOGENIZATION OF BACTERIAL NUTRIENT UPTAKE 1323

timescale of t = O(ε6), whereas general initial conditions within the passive medium
will settle over a timescale of t = O(ε2).

In this paper we mainly consider bacteria with a spherical morphology, known
as cocci. Although this is a common morphology, there are other possible bacterial
shapes, ranging from the more prevalent rod-shaped (bacilli) to the more unusual star-
shaped (stella). In Appendix A we discuss the generalization of our results to arbitrary
bacterial shapes, and we provide the systems that would have to be solved to obtain
the upscaled results for a given bacterial shape. Although explicit analytic results
are only possible in certain circumstances, the distinguished limits we discuss in this
paper provide the important scalings for arbitrary bacterial shapes under the uptake
form and coupling conditions we consider. Notably, in the limit of large pointwise
uptake in Case 3, we are able to obtain closed-form solutions for the effective uptake
by ellipsoidal bacteria in terms of the incomplete elliptic integral of the first kind.

There are several further natural extensions to the work in this paper. For ex-
ample, we have neglected the role of advective transport in this model, allowing us
to focus on the three distinguished limits that arise with just diffusion and uptake as
the transport processes. The inclusion of advection would present more distinguished
limits in the system, and these could be explored by using the results in this paper as
a basis from which to extend. Another simplifying assumption we make is that the
uptake reaction has first-order kinetics. This results in a linear uptake term in the cell
problem, facilitating our analytic solutions to the cell problems and yielding explicit
terms for the effective uptake. This uptake term could be generalized to different
nonlinear reaction terms, such as Michaelis–Menten or Freundlich-type uptake terms,
and it may not be possible to obtain explicit analytic results for these cases.

We have neglected any internal structure of the bacteria, as we have assumed that
the bacterial phases are homogeneous. Moreover, we have assumed a unit partition
coefficient between the bacteria and the passive medium, as we took continuity of
concentration through the bacterial membrane. It would be simple to modify the
analytic results in this paper to account for a nonunit partition coefficient between
the interior and exterior of the bacteria. If there were specific problems that required
nonlinear coupling conditions or an inhomogeneous internal structure to be included,
the framework we have developed in this paper could be extended to include such
properties, but analytic results are unlikely. With recent advances in high-resolution
imaging techniques for bacteria, such as those used in [13], one could develop a more
accurate model of the bacterial interior and use experimentally relevant bacterial
shapes and distributions of bacteria, allowing the upscaling procedure to be performed
on a more accurate description of the microstructure.

In this paper, we have investigated and quantified how the effective uptake scales
with bacterial properties such as size, diffusivity, and pointwise uptake. We have
shown when it is valid to scale the effective uptake with the bacterial volume, when
scaling with the surface area is more appropriate, how to transition between these two
scalings, and how to identify and deal with the case when neither scaling is correct.
Moreover, the diffusion–reaction system we consider is not just limited to bacteria;
it can also be applied to other single-celled microorganisms, such as cyanobacteria,
microalgae, protozoa, and yeast. More generally, solute transport problems are nearly
ubiquitous in applied mathematics, and the framework of this paper can be extended
to consider other particular problems. We hope that our systematic upscaling results
will be used to impose accurate effective uptake rates for general models of solute
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1324 M. DALWADI, Y. WANG, J. KING, AND N. MINTON

uptake in as wide a range of physical areas as possible.

Appendix A. General-shaped bacteria. In this appendix, we consider some
generalizations of our results to nonspherical bacteria, in part to emphasize the
broader applicability of the above methodologies. For notational brevity, we still
refer to the bacterial and medium domains as ωb(x) and ωm(x), respectively. For
Case 1, it is simple to deduce that (19a), the effective governing equation, becomes

∂ĉ

∂t
= ∇x · (D(x)∇xĉ)− µ|ωb(x)|ĉ,(A1)

where D is a tensor equal to the right-hand side of (19c), requiring solutions to the
cell problem (15) with arbitrary bacterial and medium domains.

For Case 2, the effective governing equations are still given by (34)–(35), but we
note that it is difficult to give an analytic solution to (35) for a general-shaped bacterial
domain. However, for a large pointwise uptake coefficient, µ̂� 1, the majority of the
uptake is located in a boundary layer close to the bacterial membrane. To determine
the concentration within this boundary layer, it is convenient to work in a general
curvilinear coordinate system with n denoting the direction normal to the membrane
such that n = 0 on the bacterial membrane, with n > 0 corresponding to the passive
medium and n < 0 corresponding to the bacterial domain. Then, in the limit µ̂� 1,
the asymptotic solution to (35) is

C0 ∼ ĉ(x, t)eµ̂
1/2n.(A2)

Using this result in (34), the effective governing equation for the intrinsic-averaged
concentration for general-shaped bacteria is

|ωm(x)|∂ĉ
∂t

= ∇x ·
(
|ωm(x)|D(x)∇xĉ

)
− µ̂1/2D̂|∂ωb(x)|ĉ.(A3)

This result generalizes the large µ̂ result for cocci that we derived in (43b) for the
steady state, showing that the effective uptake coefficient is the product of the point-
wise uptake µ̂D̂, the width of the boundary layer within a bacterium µ̂−1/2, and the
surface area of the bacteria |∂ωb(x)|. Noting that the volumetric-averaged concen-
tration c̄ = |ωm(x)|ĉ+ O(µ̂−1/2) for large µ̂, we can also write the following effective
governing equation for the volumetric-averaged concentration with general-shaped
bacteria:

∂c̄

∂t
= ∇x ·

(
D(x)∇xc̄−

∇x|ωm(x)|
|ωm(x)| c̄

)
− µ̂1/2D̂

|∂ωb(x)|
|ωm(x)| c̄.(A4)

Here, we note the appearance of an effective advection term which arises due to spatial
variation in bacterial volume, as expected for diffusion past impermeable obstacles [5].
Additionally, we note that the effective uptake in (A4) has an equivalent geometrical
dependence to the effective uptake in the simpler (single-phase) problem with partial
adsorption on the surface of obstacles arranged in a periodic array. This single-phase
case is considered in [10, 11] and is a similar but reduced version of the problem
considered in this paper, as the concentration evolution within the bacterial/obstacle
phase is not considered. To obtain the model in [10, 11], the dimensional governing
equation (2b) and interfacial conditions (2c,d) should be replaced with the dimensional
boundary condition

n ·Dm∇c̃ = −γc̃ for x̃ ∈ ∂Ωb.(A5)
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Comparing the effective uptake results for surface adsorption in [10, 11] with the
effective uptake for volume sinks with large pointwise coefficient in (A4), we deduce
that an equivalent effective uptake is obtained when γ = (λDb)

1/2, recalling that λ is
the dimensional volume uptake coefficient in this paper.

To generalize Case 3, we redefine the bacterial domain in the inner domain using
ωb(x) instead of ωb(x), where |ωb| = ε6|ωb| and |ωb| = O(1). For the spherical case
in section 3.3, this volume scaling is implied by the radial scaling R = ε2R̄.

Then, using the scaling y = ε2Y , the leading-order system (46) becomes

∇2
Y c = 0 for Y ∈ R3 \ ωb(x),(A6a)

∇2
Y C − µ̄C = 0 for Y ∈ ωb(x),(A6b)

c = C for Y ∈ ∂ωb(x),(A6c)

∂c

∂n
= D

∂C

∂n
for Y ∈ ∂ωb(x),(A6d)

c→ c0(x, t) as |Y | → ∞.(A6e)

The effective governing equation is then given by (51), using

ν =
1

c0(x, t)

∫
∂ωb(x)

∂c

∂n
ds,(A7)

where ds denotes a surface element of the bacterial membrane and c is a solution to
the coupled system (A6). As with the generalized Case 2, we are unable to solve (A6)
analytically for a general-shaped bacterial domain. We are able to make further ana-
lytic progress in the limit of large µ̄, when the problems in each phase decouple from
one another. In this case, there is a boundary layer within each bacterium near the
bacterial membrane, where the concentration decreases exponentially with argument√
µ̄n, in a similar manner to (A2). However, the prefactor of this exponential is not

known a priori and must be determined by solving the decoupled system for c, given
by

∇2
Y c = 0 for Y ∈ R3 \ ωb(x),(A8a)

c = 0 for Y ∈ ∂ωb(x),(A8b)

c→ c0(x, t) as |Y | → ∞.(A8c)

Thus, from (A7) we see that the effective uptake coefficient can be determined by
solving (A8) and, notably, we see that the effective uptake coefficient is independent
of µ̄ and D in the large µ̄ limit.

We may obtain an analytic expression for the solution to (A8), and hence the
effective uptake coefficient, for ellipsoidal bacteria, exploiting the separability of the
Laplace operator in ellipsoidal coordinates.1 For brevity, we consider a strictly pe-
riodic array of bacteria, define the longest semi-axis to have length R̄, and scale
Y = R̄Ȳ , such that the bacterial region in one periodic cell is defined as

ωb :=

{
Ȳ ∈ R3 : Ȳ 2

1 +
Ȳ 2

2

α2
+
Ȳ 2

3

β2
< 1

}
.(A9)

1We note that a similar geometry in (A6) would also be analytically tractable, as the Helmholtz
operator is also separable in ellipsoidal coordinates, but this is beyond the scope of this paper.
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1326 M. DALWADI, Y. WANG, J. KING, AND N. MINTON

Here, Ȳi for i = 1, 2, 3 are three Cartesian components of Ȳ . Without loss of gener-
ality, we are able to orient these axes to coincide with the semi-axes of the ellipsoidal
bacteria; on the lengthscale of the homogenization cell, the apparent point sink from
bacterial uptake has no preferred angle. Additionally, the two constants α and β sat-
isfy 0 < β 6 α 6 1, again without loss of generality. Spherical bacteria are obtained
when α = β = 1. By transforming to ellipsoidal coordinates, the solution to (A8) can
be written as

c = c0(x, t)

1−
F

(√
1− β2

ζ(Ȳ )
;

√
1− α2

1− β2

)

F

(√
1− β2;

√
1− α2

1− β2

)
 ,(A10)

where

F (x; k) =

∫ x

0

ds√
(1− s2) (1− k2s2)

(A11)

is the incomplete elliptic integral of the first kind.2 Here, ζ2(Ȳ ) is defined as the
solution to the following cubic in ζ2:

Ȳ 2
1

ζ2
+

Ȳ 2
2

ζ2 + α2 − 1
+

Ȳ 2
3

ζ2 + β2 − 1
= 1,(A12)

where ζ(Ȳ ) > 1, with equality defining the ellipsoidal surface. Rather than directly
evaluating (A7) to determine the effective uptake, it is simpler to expand (A10) in
the large ζ limit, accounting for the scaling Y = R̄Ȳ , and then use the divergence
theorem to deduce that

ν =
4πR̄

√
1− β2

F

(√
1− β2;

√
1− α2

1− β2

) .(A13)

We show how ν varies with α and β in Figure 7. Of particular interest are the sub-
cases of oblate and prolate spheroids, being plausible geometries for some bacteria.
An oblate spheroid corresponds to α = 1 with β < 1, resulting in an effective uptake

ν =
4πR̄

√
1− β2

sin−1
√

1− β2
.(A14)

A prolate spheroid corresponds to α = β < 1, resulting in an effective uptake

ν =
4πR̄

√
1− β2

tanh−1
√

1− β2
.(A15)

As bacilli or coccobacilli can be modeled as prolate spheroids, (A15) gives the effective
uptake through either such colony in the limits of large pointwise uptake and large

2We give (A11) in Jacobi’s form here for notational purposes, though we note that the trigono-
metric form is more amenable to numerical calculation when β → 0 and thus when x→ 1 in (A11).
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A HOMOGENIZATION OF BACTERIAL NUTRIENT UPTAKE 1327

Fig. 7. The normalized effective uptake, ν/(4πR̄), for small ellipsoidal bacteria in the limit
of large uptake, as given in (A13). The principal semi-axes have lengths R̄, αR̄, and βR̄, where
0 < β 6 α 6 1. The case where α = 1 corresponds to an oblate spheroid, and the case where α = β
corresponds to a prolate spheroid.

separation between bacteria. Additionally, in the limit of β → 0, we note that the
effective uptake is finite for α > 0 (where the bacteria is a two-dimensional disk)
but vanishes with a logarithmic dependence when we also consider α→ 0 (where the
bacteria is a one-dimensional rod). Thus, long thin bacteria with a large separation
distance will have a negligible effect on removing nutrient from the system, even when
their pointwise uptake is very large. We also note that in the special case of spherical
bacteria, attained in the limits α→ 1 and β → 1, the effective uptake reduces to that
of (54), as expected.
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