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Abstract

The central problem of quantum statistics is to devise measurement schemes for the estimation
of an unknown state, given an ensemble of n independent identically prepared systems. For
locally quadratic loss functions, the risk of standard procedures has the usual scaling of 1/n.
However, it has been noticed that for fidelity based metrics such as the Bures distance, the risk
of conventional (non-adaptive) qubit tomography schemes scales as 1/

√
n for states close to

the boundary of the Bloch sphere. Several proposed estimators appear to improve this scaling,
and our goal is to analyse the problem from the perspective of the maximum risk over all states.

We propose qubit estimation strategies based on separate adaptive measurements, and col-
lective measurements, that achieve 1/n scalings for the maximum Bures risk. The estimator
involving local measurements uses a fixed fraction of the available resource n to estimate the
Bloch vector direction; the length of the Bloch vector is then estimated from the remaining
copies by measuring in the estimator eigenbasis. The estimator based on collective measure-
ments uses local asymptotic normality techniques which allows us to derive upper and lower
bounds to its maximum Bures risk. We also discuss how to construct a minimax optimal es-
timator in this setup. Finally, we consider quantum relative entropy and show that the risk of
the estimator based on collective measurements achieves a rate O(n−1 log n) under this loss
function. Furthermore, we show that no estimator can achieve faster rates, in particular the
‘standard’ rate n−1.

1 Introduction

Quantum state tomography plays in an important role in quantum information processing tasks, as
a method of estimating and validating experimentally prepared quantum states [1]. The aim of state
tomography is the estimation of an unknown density matrix ρ from the outcomes of measurements
performed on n identical copies of the state available as a resource. The quality of the resulting
estimate ρ̂ is quantified in terms of its average error, or risk. Given a measurement design M , and
the corresponding set of outcomes X , the risk of the measurement-estimator pair is

R(ρ, ρ̂) := E [D(ρ̂(X), ρ)] , (1)
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where the expectation is taken with respect to the measurement outcomes X , given the unknown
state ρ. The risk depends on the choice of the error, or loss function D(ρ̂, ρ), which is a measure
of the deviation of the estimated state from the true state ρ. Examples of commonly used loss
functions are squared Frobenius (norm-two) distance, infidelity, the trace-norm distance, and the
Bures distance. The risk is a function of the resource size n, and one is interested in its behaviour in
the limit of large n. Typically, for a ‘good’ estimator and particular choices of loss functions, (e.g.
locally quadratic functions) the optimal risk exhibits a rate of O(1/n) uniformly over all states ρ.
However, for certain loss functions (e.g. squared Bures distance, or infidelity) , the risk is known
to behave differently for states of unknown purity [2,3]. This is readily illustrated in the qubit case,
where the fidelity between the state ρ and its estimate ρ̂ is defined as F (ρ, ρ̂) := [Tr(

√√
ρρ̂
√
ρ)]2

and can be expressed as

F (ρ, ρ̂) :=
1

2
(1 +

√
1− |r|

√
1− |r̂|+ r · r̂), (2)

where r, r̂ ∈ R3 are the Bloch vectors of the two states. For ρ within the Bloch sphere, the fidelity
is locally quadratic in the components δi := ri − r̂i, with i = x, y, z. However, for states close
to the boundary of the Bloch sphere, the fidelity becomes linear in |δi|. Standard tomographic
estimation of the Bloch vector components by measuring the spin operators σx, σy, σz gives an
accuracy of the order of n−1/2 in estimating δi. This implies that for a loss function such as the
infidelity 1 − F (ρ̂, ρ), or the square Bures distance DB(ρ, ρ̂n)2 := 2(1 −

√
F (ρ, ρ̂n)), the risk

scales as O(1/n) for states within the Bloch sphere, but only as O(1/
√
n) for nearly pure states.

This poor scaling is a feature of not just the standard tomographic procedure, but any estimation
method involving fixed basis measurements. This fact is significant as the preparation and estima-
tion of pure states is ubiquitous in quantum information processing tasks. Several papers propose
estimation methods that improve this risk and aim to recover the O(1/n) scaling. A key idea is the
performing of adaptive measurements that take into account outcomes from previous measurement
stages to inform subsequent measurements. Estimation strategies involving such adaptive protocols
have been proposed for both global and local measurements.
Two-step adaptive quantum tomography has been considered in [2,6–9], and involves using a frac-
tion n1 of the available resource n to obtain a preliminary estimate of the eigenbasis of ρ, and then
performing measurements along the estimated eigenbasis on the remaining n − n1 copies of the
state. In [8] it is shown that using a vanishing fraction n1 = nα, with 1/2 < α < 1 for the prelim-
inary estimate gives a rate of O(1/n) for the average infidelity with respect to certain distributions
over states. However, it has been pointed out in [2], that for certain states a vanishing fraction is
insufficient, and that for almost pure states the worst case infidelity scales as O(n−5/6). Numerical
results in [2] suggest that using a fixed fraction n0 = βn instead gives the O(1/n) scaling for
nearly pure states. The two step adaptive protocols have been experimentally implemented [2, 9],
showing a quadratic improvement in scaling for nearly pure states. The extension of the two-step
adaptive protocol to a fully adaptive one has been considered in [7,10–12], where the measurement
basis is aligned according to a current estimate after every measurement step. In the Bayesian
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framework, ‘self-learning’ measurement protocols have been considered in [13–16]. A detailed
review of various adaptive protocols and experimental results is found in [17].
Protocols considering collective (or joint rather than separate) measurements have also been con-
sidered [18–21]. It is known that joint measurements perform better than separate measurements
in the case of mixed states [19]. In a Bayesian framework, [18] showed that with certain optimal
joint measurements, the asymptotic infidelity averaged over a prior distribution achieved a value of
3+2〈r〉

4n for mixed qubit states, where 〈r〉 is the mean purity over the prior distribution. Work in [20]
proposes a two-step adaptive estimation strategy that is shown to be locally optimal, achieving an
infidelity risk of 1+4λmax(ρ)

4n for mixed qubit states, where λmax(ρ) is the maximum eigenvalue of ρ.
Although many papers discuss the issues surrounding quantum tomography for Bures (and infi-
delity) risk and study such adaptive estimation protocols, in this work we consider the problem in
the context of minimax estimation (see also [4, 5]), i.e. where the figure of merit is the maximum
risk over all states

Rmax(ρ̂n) := sup
ρ
R(ρ, ρ̂n) = sup

ρ
E
[
DB(ρ, ρ̂n)2

]
. (3)

To the best of our knowledge a scaling of n−1 of this maximum risk has not been demonstrated for
any of the estimation strategies proposed in the literature. Furthermore, existing theoretical results
cannot be directly used to derive the n−1 scaling of the minimax risk. In this paper we propose
two different estimators, one based on adaptive local measurements similar to [2, 8], and a second
based on global collective measurements and Local Asymptotic normality (LAN) as in [20, 21].
We demonstrate that both estimation strategies achieve the n−1 scaling of the maximum risk. We
also investigate the asymptotically minimax optimal estimation strategy for the estimator based on
collective measurements.

In terms of local measurements, we consider a two step adaptive strategy much in line with al-
ready proposed estimators [2, 6–9]. A fixed fraction of the total sample size n is used to obtain
a preliminary estimate r̃ of the Bloch vector r of the state, by performing standard tomographic
measurements of the spin observables. The remaining copies of the state are used to estimate the
eigenvalues of the state by performing measurements along the estimated direction r̃/|̃r|. The final
estimate ρ̂n of the state is then constructed from the estimated eigenvalues in the adaptive step
and the preliminary estimate. For this estimator, we upper-bound the maximum Bures risk and
demonstrate a scaling of n−1.
The estimator based on global collective measurements uses established LAN results for qubit
states [20,21]. The measurement strategy involves two stages. The first stage involves the standard
tomographic measurements of the spin components on a vanishing number of copies of the state
ñ � n. A preliminary estimate ρ̃ is constructed from the outcomes. The second measurement
stage depends on this preliminary estimate, and for technical purposes related to the asymptotic
analysis we consider the following two cases: |r̃| < δ and |r̃| ≥ δ for some small constant δ > 0.
When ρ̃ is close to the fully mixed state, the standard tomographic measurements are performed
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on the remaining copies of the state. When the preliminary estimate ρ̃ is away from the fully
mixed state, a joint measurement is performed on the remaining copies of the state. The joint state
ρθn := ρ⊗nθ has a block-diagonal form following the Weyl decomposition of the underlying space
(C2)⊗n. Information about the eigenvalue parameter λ is encoded in a probability distribution over
the different blocks of the decomposition, while information about the local parameters (u, v) is
encoded in the block states. We consider a parameterisation of states ρθ, with θ = (λ, u, v) ∈ R3,
where λ parametrises the smallest eigenvalue of the states andw = (u, v) are certain local rotation
parameters around a fixed state ρ0. The parameter λ is then estimated from the outcomes of a
“which-block” measurement, while the local parameters u, v are optimally estimated by exploiting
the local asymptotic normality of the block states. The LAN results in [20] establish that in the
limit n → ∞, the block states converge to Gaussian states φw, with displacement proportional
to parameters (u, v) (Theorem 1). The optimal estimator of u, v is then the optimal estimator of
the displacement of a Gaussian state φw, which is known to be the heterodyne measurement (see
Appendix A.3 for a description of the measurement). We derive minimax upper and lower bounds
for the risk (3), and demonstrate that the maximum Bures risk for the estimator ρ̂n scales as C/n,
with C being a constant. We obtain lower bound of 5/4 for this constant, and an upper bound of
3/2.
An important element in the derivation of the upper-bounds for the maximum risk of both estima-
tors is the fact that Bures distance can locally approximated as a sum of contributions from the
eigenvalue parameter and the ‘rotation’ parameters. More explicitly, we have that

DB(ρ, ρ̂n)2 ≈ DH(λ, λ̂)2 +
1

4

(1− 2λ)(1− 2λ̂)√
(1− λ)(1− λ̂) +

√
λλ̂

Φ2, (4)

where DH(λ, λ̂)2 := ‖
√
λ −

√
λ̂‖2 with λ = (λ, 1 − λ) is the classical Hellinger distance, and

Φ is the angle between the Bloch vectors of the two states. The optimal rate of estimation of
the ‘rotation’ parameters is shown to be 1/n for all states. The problem of establishing minimax
results for the Bures distance therefore converts a problem of establishing minimax results for the
Hellinger risk of estimating the eigenvalue parameter. To the best of our knowledge such minimax
results for the Hellinger risk are not known. Instead, we upper-bound this risk by the Kullback-
Leibler risk, and use known results about the minimax estimator in this case. However, in section
5 we propose a minimax optimal estimator of the classical parameter λ under the Hellinger risk
gives a minimax optimal estimator ρ̂n for qubit states.
In section 6, we consider the quantum relative entropy (QRE) S(ρ‖ρ′) = Tr[ρ(log ρ − log ρ′)],
and bound the maximum risk under this loss function. As in the case with the Bures distance, an
important element is a local decomposition of the QRE risk into contributions from the Kullback-
Leibler risk and a term involving the ‘rotation parameters’. Namely, we have that for qubit states

S(ρ‖ρ̂) = DKL(λ, λ̂) +
1− 2λ

4
(Φ2 +O(Φ4)) log

(
1− λ̂
λ̂

)
,
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where DKL(λ, λ̂) is the Kullback-Leibler distance between the two distributions λ = (λ, 1 − λ)
and λ̂ = (λ̂, 1− λ̂). Using this local decomposition we show that the global estimator we propose
achieves a rate ofO(n−1 log n). Furthermore we make the case that no estimator can achieve faster
rates, and show that the minimax QRE risk scales as O(n−1 log n).
The paper is organised as follows. In section 2 we consider an estimator based on local measure-
ments and detail a two step adaptive measurement strategy. We demonstrate that the proposed
estimator achieves a minimax rate of 1/n. In section 3 we propose a second estimator based on
global collective measurements. We begin in section 3.1 by describing the preliminary measure-
ment stage and introduce our parametrisation of states. In section 3.2, we describe the second
measurement stage, and overview the block decomposition of the joint state and results of LAN.
The minimax bounds for this estimator are derived in section 4, and in section 5 we discuss and
state the proposition that a minimax estimator for the Hellinger loss function implies a minimax
optimal estimator for qubit states. Finally in section 6 we consider the quantum relative entropy
and establish that the minimax rate under this loss function scales as O(n−1 log n).

2 Estimator based on local adaptive measurements

We let ρ be an arbitrary density matrix associated with a single qubit state. Given n identical copies
of the state as a resource, we wish to construct an estimator of the state. As briefly discussed in
the introduction, in this section we propose a two-step adaptive measurement strategy based on
local measurements. While the idea of an adaptive local measurement strategy is not new and
has been treated in various instances in the literature [2, 6–9], we are interested in analysing the
performance of the proposed estimator ρ̂n in terms of the maximum risk with respect to the Bures
distance defined in equation (3) and its asymptotic rescaled version

rmax(ρ̂) = lim sup
n→∞

sup
ρ
nE
[
DB(ρ, ρ̂n)2

]
= lim sup

n→∞
nRmax(ρ̂n). (5)

We will derive an upper bound for the latter risk, thereby demonstrating a n−1 scaling for maximum
risk over all states ρ. Since the maximum risk of any estimation procedure cannot scale faster than
n−1, this implies that the existence of a non-trivial scaling constant for the minimax risk given by

rminmax := lim sup
n→∞

inf
ρ̂n
nRmax(ρ̂n). (6)

Finding the value of the minimax constant remains an open problem. We will come back to this
problem in section 5 where it is shown that the minimax qubit estimation problem reduces to that
of minimax estimation of a coin probability with respect to the square Hellinger distance risk.
The estimator we propose is constructed as follows. The first stage is a preliminary localisation step
involving standard projective measurements of Pauli observables σx, σy, σz on a fixed fraction n1
of the total number of qubits n. An estimate r̃ of the state’s Bloch vector r is constructed from the
outcomes of these measurements. In the second (adaptive) stage, the spin component Ξ := ~σ · r̃/|̃r|
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is measured on the remaining n2 := n− n1 copies of the state. This provides an estimate λ̂ of the
eigenvalue of the state, which together with the direction vector determine the final state estimator
in equation (9) below.
With respect to the first stage, the following lemma shows that with high probability the estimated
directional vector is within an angle of O(n

−1/2+ε1
1 ) of the true vector, where ε1 is a fixed (small)

positive constant.

Lemma 1. LetXi, Yi, Zi be the outcomes of measurements of σx, σy, σz performed on independent
qubits in state ρ with Bloch vector r, where i = 1, . . . , n1/3. Let r̃ be the estimate of the Bloch
vector, where each Bloch vector component is obtained by averaging the outcome results, e.g r̃x :=
3
n1

∑
iXi. Then we have that for ε1 > 0,

P
(
‖r− r̃‖2 > 6n−1+2ε1

1

)
≤ 6 exp

(
−2n2ε11

3

)
. (7)

The proof of this lemma follows directly from the Hoeffding’s inequality applied to the binomial
distribution corresponding to each of the Bloch vector components. The concentration inequal-
ity implies that when |r| is bounded away from zero, the magnitude of the angle Φ between the
directional vectors r/|r| and r̃/|̃r| is of the order O(n

−1/2+ε1
1 ) with high probability.

The second adaptive stage involves preforming measurements along this estimated direction. That
is, projective measurements of the observable Ξ := ~σ · r̃/|̃r| are performed on the remaining n2 :=
n − n1 copies of the state. Let k be the total number of −1 outcomes from these measurements.
It is easy to see that k is distributed binomially Bn2,p̃(k) with (random) binomial parameter p̃ :=
(1 − |r| cos Φ)/2. We estimate this parameter as p̂ from the measurement outcomes using the
‘add-beta’ estimator [22, 23] defined as follows,

p̂n2 =



1/2
n2+5/4 , k = 0,

2
n2+7/4 , k = 1,
k+3/4
n2+3/2 , k = 2, . . . , n2 − 2,
n2−1/4
n2+7/4 , k = n2 − 1,
n2+3/4
n2+5/4 , k = n2.

(8)

While this estimator is not in any sense optimal, it is known to be the minimax estimator for
the Kulback-Leibler risk achieving a rate of 1

2n2
+ O(n−22 ). We shall shortly use this fact below

in deriving the upper bound for qubit tomography. It is worth noting that unlike the maximum
likelihood estimator which would assign p̂n2 = 0 for k = 0, the ‘add-beta’ estimator ‘hedges’
against unobserved events [4].
The final estimate of the state puts together the estimate p̂n2 and the estimated Bloch vector r̃ as
follows

ρ̂n =
1

2

(
I +

1− 2p̂n2

|̃r|
r̃ · ~σ

)
. (9)
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It is easy to see that p̂n2 = λ̂n by construction, where λ̂n is the smallest eigenvalue of ρ̂n.

2.1 An upper bound scaling as n−1

We now look at deriving an upper bound for the Bures risk of this estimator, and demonstrate that
the maximum over all states scales as n−1. Recall that the Bures distance between the final estimate
ρ̂n and the true state ρ is defined as DB(ρ, ρ̂n)2 := 2

[
1−

√
F (ρ, ρ̂n)

]
, where the fidelity can be

expressed in terms of the Bloch vectors r̂ and r as

F (ρ, ρ̂) =
1

2

(
1 +

√
1− |r|2

√
1− |r̂|2 + r · r̂

)
=

1

2

(
1 +

√
1− |r|2

√
1− |r̂|2 + |r||r̂| cos Φ

)
, (10)

where Φ is the angle between the Bloch vectors.
In the following arguments we will assume that ρ ∈ Bc

δ whereBδ = {ρ : |r| < δ} is a small ball or
fixed radius δ > 0 around the completely depolarised state. From Lemma 1, the angle Φ is known
to be of the order O(n−1/2+ε1) with high probability, uniformly over states ρ ∈ Bc

δ . This implies
that the cosine term in (10) can be expanded to leading order in Φ. In this case, the Bures distance
is expressed as

DB(ρ, ρ̂n)2 = DH(λ, λ̂n)2 +
1

4

(1− 2λ)(1− 2λ̂n)√
(1− λ)(1− λ̂n) +

√
λλ̂n

Φ2 +O(Φ4) (11)

where λ = (1 − |r|)/2, λ̂n = (1 − |r̂n|)/2 are the smallest eigenvalues of ρ and respectively ρ̂n,
and

DH(λ, λ̂)2 :=
(√

λ−
√
λ̂
)2

+

(√
1− λ−

√
1− λ̂

)2

(12)

is the square Hellinger distance between the probability distributions λ = (λ, 1 − λ) and λ̂ =
(λ̂, 1− λ̂). The proof of this approximation can be found in Appendix A.2.
Identifying λ̂ = (p̂n2 , 1− p̂n2), we upper bound the Bures distance as

DB(ρ, ρ̂n)2 ≤ DH(λ, p̂n2)2 +
1

4
Φ2 +O(Φ4)

≤ 2DH(λ, p̃)2 + 2DH(p̃, p̂n2)2 +
1

4
Φ2 +O(Φ4) (13)

where the second inequality is established using the fact that the Hellinger distance satisfies the
triangle inequality. Using the inequality D2

H(λ, p̃) ≤ 2|λ − p| and p = (1 − |r| cos Φ)/2 we
further upper bound the risk as

DB(ρ, ρ̂n)2 ≤ DH(p̃, p̂n2)2 +

(
1

4
+ |r|

)
Φ2 +O(Φ4). (14)
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Taking expectation with respect to the measurement outcomes given the true state ρ, we have

E
[
DB(ρ, ρ̂n)2

]
≤ 2E

[
2DH(p̃, p̂n2)2

]
+

5

4
E
[
Φ2
]

+O(n−2+4ε1
1 ) (15)

The maximum risk over Bc
δ is therefore bounded from above as

sup
ρ∈Bcδ

E
[
DB(ρ, ρ̂n)2

]
≤ sup

p̃
2E
[
DH(p̃, p̂n2)2

]
+O(n−11 ) +O(n−2+4ε1

1 )

≤ sup
p̃

2E [DKL(p̃, p̂n2)] +O(n−11 ) +O(n−2+4ε1
1 ) (16)

In the first inequality we upped bounded E[Φ2] as O(n−11 ); this follows from the concentration
inequality of Lemma 1. The second step employs the inequality between the squared Hellinger
distance and the Kullback-Leibler (KL) distance

DH(p̂, p̃) ≤ DKL(p̂, p̃) := p̂ log
p̂

p̃
+ (1− p̂) log

1− p̂
1− p̃

. (17)

The reason for employing this inequality is that to the best of the authors’ knowledge the asymp-
totic minimax optimal Hellinger risk of estimating the binomial parameter p̃ is not known in the
literature. A discussion related to the difficulty in obtaining the asymptotic minimax Hellinger risk
is left to section 5. However, the minimax optimal rate for the KL loss function under the binomial
distribution is known. The minimax optimal estimator is precisely the ‘add beta’ estimator defined
in (8) , and is known to achieve the asymptotic rate 1

2n2
(1 + o(1)) [22,23]. Therefore, by choosing

n1 to be constant fraction of the total number of samples n (e.g. n1 = n2 = n/2) we find that the
right side in (16) has an overall rate of O(1/n).
It remains to consider the case ρ ∈ Bδ. Using concentration arguments similar to Lemma 1 we
find that for large n the estimator ρ̂n belongs to a ball B2δ, with high probability. In this region the
Bures distance upper bounded by the Euclidian distance

dB(ρ, ρ̂) < Cδ‖r− r̂‖2 (18)

so that the maximum risk in Bδ scales as

sup
ρ∈Bδ

E
[
DB(ρ, ρ̂n)2

]
= O(n−1). (19)

Putting together the two upper bounds we conclude that Rmax(ρ̂n) = O(n−1). and therefore

rmax(ρ̂) = lim sup
n→∞

nRmax(ρ̂n) <∞. (20)

A numerical estimate of the constant rmax(ρ̂) could in principle be obtained by a detailed analysis
of the above inequalities; however, we will not pursue this issue here, and instead do that for the
collective measurement estimator discussed in section 4.
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3 Irreducible representations, collective measurements and local asymp-
totic normality

In this section we describe the key ingredients of a two stage estimator of the qubit state, which
uses collective rather than separate measurements. In section 4 we will come back to the details of
the estimation procedure and establish upper and lower bounds for the asymptotic maximum risk.
The first stage is a localisation one which uses a vanishing fraction ñ of the overall ensemble of
n qubits, to produce a preliminary estimator ρ̃, by performing separate Pauli measurements. The
second stage of the protocol involves collective measurements on the remaining n − ñ copies of
the state. Since this will not affect the asymptotic rates, we will continue to denote the number of
copies in the second stage by n. Since ρ belongs to a shrinking neighbourhood of ρ̃, we can work
in the eigenbasis of the latter and parametrise ρ as follows

ρθ := U

(
w√
n

)(
1− λ 0

0 λ

)
U

(
w√
n

)∗
(21)

where θ = (λ,w) = (λ, u, v) is an unknown parameter, with λ being the eigenvalue and w are
‘local’ rotation parameters, i.e. U(w) := exp (i(uσx + vσy)). We now provide a brief overview of
the joint measurements stage based on the techniques of local asymptotic normality (LAN) [20,21],
cf. section 3.3.
A key ingredient in the description of the LAN based protocol is the fact that the joint state of
the ensemble admits a block-diagonal decomposition along the irreducible representations of two
symmetry groups SU(2) and S(n)

ρ⊗nθ =

n/2⊕
j=0,1/2

pn,λ(j)ρwj,n ⊗
1

nj
. (22)

The various blocks of the decomposition carry probability weights pn,λ(j) which concentrates
around the representation with total spin jn := n(1/2 − λ). The distribution carries information
about the eigenvalue parameter λ and can be sampled by performing a ‘which block’ projective
measurement producing an outcome j with probability pn,λ(j), cf. section 3.2. This outcome will
be used to construct the estimator λ̂n as discussed in detail in section 4.
Information about the ‘rotation’ parameters w is encoded in the conditional quantum state ρwj,n of
block selected by the ‘which block’ measurement. LAN theory shows that in the limit of large n,
each block ρwj,n can be mapped isometrically onto an approximate Gaussian state φw of a quantum
harmonic oscillator with displacement proportional to w = (u, v). The optimal measurement for
estimating the displacement parameters (and therefore w) is the heterodyne measurement of the
continuous variables system [20,21] (see Appendix A.3 for a description of the measurement) . By
putting together the eigenvalue and rotation parameters estimators λ̂n, ŵn we obtain the (final and
more refined) second stage estimator expressed in the eigenbasis of the preliminary estimator ρ̃ .
The performance of this estimator will be analysed in section 4.
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3.1 Preliminary localisation and parametrisation

The first stage is a preliminary localisation step that involves performing standard projective mea-
surements of the Pauli observables σx, σy, σz on a vanishing fraction ñ of the overall ensemble of
n identically prepared qubits. An estimate ρ̃ of the state is constructed from the outcomes of these
measurements. The following lemma shows that with high probability the true state ρ lies within
a ball of radius O(n−1/2+ε2) of this estimate ρ̃. This allows us to restrict our attention to a local
neighbourhood of the preliminary estimator in the second stage of the estimation.

Lemma 2. Let Xi, Yi, Zi be independent outcomes of measurements of σx, σy, σz performed on
independent qubits in state ρ with Bloch vector r, where i = 1, . . . , ñ/3. Let ρ̃ be the estimator
with Bloch vector r̃ obtained by averaging the outcome results, e.g. r̃x := 3

ñ

∑
iXi.

In order to obtain a physical state, the final estimate of the state is constructed as

ρ̃ := arg min
τ∈S2

‖τ − (1 + r̃ · σ) /2‖21 (23)

where the minimisation is over all the space of all 2× 2 density matrices S2. For this estimator ρ̃,
we have that for all ε2 > 0,

P
(
‖ρ̃− ρ‖21 > 3n2ε2−1

)
≤ 6 exp

(
−2ñn2ε2−1

3

)
, for all ρ ∈ S2. (24)

The proof of this lemma follows from an application of Hoeffding’s inequality, and can be found
in Appendix A.1. Setting ñ = n1−κ, with 0 < κ < 2ε2, the probability of failure is exponentially
small. The preliminary measurement stage therefore places the estimate ρ̃ in a local neighbourhood
around the true state. Since ‖ρ̃ − ρ‖21 = ‖r̃ − r‖2, the angle between the two normalised Bloch
vectors r/|r| and r̃/|r̃| is of the order O(n−1/2+ε2) with high probability.
For technical reasons related to local asymptotic normality theory and the derivation of certain error
bounds, the subsequent measurement depends on ρ̃, and we distinguish the following two cases.
i) If ρ̃ is within a fixed but small ball Bδ of radius δ > 0 around the fully mixed state (i.e, |r̃| ≤ δ),
the secondary measurement stage consists of the standard tomographic measurements in the σi,
i = x, y, z bases. For each i, measurements of σi are performed on (n − ñ)/3 identical copies of
the state. The final estimate of the state ρ̂n is constructed from the outcomes of these measurements,
and is detailed in section 4.
ii) If ρ̃ is outside Bδ, we can apply the tools of LAN. The remaining n− ñ copies of the state avail-
able for the second stage are rotated such that the estimated Bloch vector r̃ is pointing along the
z-axis. From Lemma 2, the angle between the directional vectors r/|r| and r̃/|r̃| is known to be of
the order O(n−1/2+ε2) with high probability. This allows us to consider a restricted parametrisa-
tion of states which we describe now for an arbitrary but fixed state ρ0 with its Bloch vector along
the z-axis (which is ρ̃ written in its own eigenbasis)

ρ0 =

(
1− λ0 0

0 λ0

)
(25)
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with 0 < λ0 < 1/2. We consider a parametrisation θ → ρθ of states obtained by small unitary
rotations of ρ0, and different choices of the eigenvalue. We choose the parameter vector θ :=
(λ,w), where w = (u, v) ∈ R2 corresponds to the small unitary rotations of the eigenvectors, and
λ is the smallest eigenvalue. That is, any state ρ described by θ = (λ, u, v) is of the form

ρθ := U

(
w√
n

)(
1− λ 0

0 λ

)
U

(
w√
n

)∗
(26)

where the unitary U
(
w√
n

)
is given by

U

(
w√
n

)
:= exp

(
i√
n

(uσx + vσy)

)
=

(
cos |w|/

√
n − exp(−iϕ) sin |w|/

√
n

exp(iϕ) sin |w|/
√
n cos |w|/

√
n

)
with ϕ = Arg(−v + iu). Note that in this parametrisation we have ρ0 = ρθ0 with θ0 = (λ0, 0, 0).
The aim of the second measurement stage is then to estimate the unknown parameter vector θ =
(λ, u, v) = (λ,w) corresponding to the true state ρ.

3.2 The ‘which block’ measurement stage

The second measurement stage involves a joint measurement on the n− ñ remaining copies of the
state. We therefore consider the joint states ρθn := ρ⊗nθ on n identical qubits, with the parametri-
sation around the preliminary estimator ρ0 = ρ̃ described above. It is known that the states ρθn
have a block-diagonal form with respect to the decomposition of the underlying space (C2)⊗n in
irreducible representations of the groups SU(2) and S(n) [18, 20, 24]. The representation πn of
SU(2) is given by π(n)(u) = u⊗n for any u ∈ SU(2), and the representation π̃n of the symmetric
group S(n) is given by the permutation of factors

π̃(n)(τ) : v1 ⊗ . . .⊗ vn → vτ−1(1) ⊗ . . .⊗ vτ−1(n), τ ∈ S(n) (27)

According to Weyl’s Theorem, the following decomposition holds

(C2)⊗n =

n/2⊕
j=0,1/2

Hj ⊗Hjn (28)

where the lower limit in the direct sum is 0 for even n and 1/2 for odd n. The two group repre-
sentations decompose into direct sums of irreducible representations as π(n)(u) = ⊕jπj(u) ⊗ 1
and π̃(n)(τ) = ⊕j1⊗ π̃j(τ) where πj is the irreducible representation of SU(2) with total angular
momentum J2 = j(j + 1) which acts on Hj ∼= C2j+1, and π̃j is the irreducible representation of
the symmetric group S(n) acting onHj ∼= Cnj with

nj =

(
n

n/2− j

)
−
(

n

n/2− j − 1

)
, j 6= n/2 (29)
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and nj=n/2 = 1. The density matrix ρθn is invariant under permutations and can be decomposed as

ρθn =

n/2⊕
j=0,1/2

pn,λ(j)ρwj,n ⊗
1

nj
(30)

where the probability distribution pn,λ(j) is given by [18, 20, 21]

pn,λ(j) :=
nj

1− 2λ
λn/2−j(1− λ)n/2+j+1(1− p2j+1) (31)

with p = λ
1−λ . The above distribution can be written in the form

pn,λ(j) := Bn,λ(n/2− j)×K(j, n, λ), (32)

where Bn,λ(k) =
(
n
k

)
λk(1−λ)n−k is the binomial distribution and the term K(j, n, λ) is given by

K(j, n, λ) := (1− p2j+1)
n+ (2(j − jn) + 1)/(1− 2λ)

n+ (j − jn + 1)/(1− λ)
, jn := n(1/2− λ).

The binomially distributed variable n/2 − j concentrates around its mean value of nλ with high
probability

P
[
nλ− n1/2+ε3 ≤ n/2− j ≤ nλ+ n1/2+ε3

]
≥ 1− 2 exp(−2n2ε3),

where ε3 > 0 is an arbitrary constant. This follows from a straightforward application of Ho-
effding’s inequality (66) to the binomial distribution. Therefore, the mass of the distribution
Bn,λ(n/2− j) concentrates over values of j in the interval

Jn := {j| jn − n1/2+ε3 ≤ j ≤ jn + n1/2+ε3}. (33)

For all j ∈ Jn, the factor K(j, n, λ) = 1 + O(n−1/2+ε3) provided that λ is bounded away from
1/2, which is one of the reasons we chose to treat the two cases above separately. Additionally we
note that the factor K(j, n, λ) remains bounded over all values of j as long as λ < 1/2. From the
concentration of the binomial distribution over values of j ∈ Jn, and the value ofK(j, n, λ) in this
interval it follows that

pn,λ(Jn) = 1−O(n−1/2+ε3). (34)

A “which block” measurement corresponds to an output of a particular value of j from the dis-
tribution (32), and an associated posterior state ρwj,n. This value of j lies in the set Jn with high
probability, and serves to estimate the eigenvalue parameter λ. As in the case of the local adaptive
estimator in section 2, we shall define λ̂n as the ‘add-beta’ estimator introduced in equation (8),
with k = n/2 − j. A detailed discussion regarding this choice for the estimator λ̂n is postponed
to section 5. However we note that a possible physical implementation of such a measurement is
detailed in [20], and involves coupling the joint states to different bosonic field and performing a
homodyne measurement.
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3.3 Local asymptotic normality

The block state ρwj,n encodes information about the rotation parameters w = (u, v). The optimal
estimation strategy for these parameters has been established using results about the LAN of qubit
states [20]. This shows that for large n, the block states ρwj,n approach a Gaussian state φw of a
one-mode continuous variables system uniformly over all j ∈ Jn and ‖w‖ ≤ nη. The rotation pa-
rameters (u, v) are encoded linearly into the mean of the Gaussian state φw. So the problem of the
optimal estimation of these parameters for the block state can be translated into one of estimating
the displacement of φw. These ideas have been treated in detail in [20], and we only include a brief
overview here. The block states ρwj,n depend on the parameters (u, v) in the following way

ρwj,n = Uj

(
w√
n

)
ρ0j,nUj

(
w√
n

)∗
(35)

where the unitaries are defined as Uj(w) := exp(i(uJj,x + vJj,y), with Jj,l being the generators
of rotations in the irreducible representation πj of SU(2). The state ρ0j,n is expressed as

ρ0j,n =
1− p

1− p2j+1

j∑
m=−j

pj−m|j,m〉〈j,m| (36)

with p = λ/(1 − λ) as before. The set {|j,m〉 : m = −j, . . . , j} is an orthonormal basis on
Hj such that Jj,z|j,m〉 = m|j,m〉. It has been demonstrated [20] that the family of states Fn :=
{ρwj,n, ‖w‖ ≤ nη, j ∈ Jn} is asymptotically Gaussian. This mean that as n → ∞ the family
of states ρwj,n “converges” to a family of Gaussian states φw of a one-mode continuous variables
system, for all j ∈ Jn and ‖w‖ ≤ nη. In order to make this convergence more precise, we let

φ0 := (1− p)
∑
k=0

pk|k〉〈k| (37)

be a centred Gaussian state of a one mode continuous variables system, with {|k〉 : k ≥ 0} denoting
the Fock basis. The states φw are defined as

φw := D(
√

1− 2λαw)φ0D(−
√

1− 2λαw) (38)

where αw = −v + iu ∈ C. The operator D(α) := exp(αa∗ − αa) is the displacement operator
that for every α ∈ C maps the vacuum vector |0〉 to the coherent state |α〉, with a∗, a being the
creation and annihilation operators satisfying [a, a∗] = 1. The convergence of the block state ρwn,j
to the Gaussian state φw is formalised in the following Theorem.

Theorem 1. Let Vj : Hj → L2(R) be the isometry

Vj : |j,m〉 → |j −m〉 (39)
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that maps the orthonormal basis of Hj into the Fock basis of L2(R). Then for the family of block
states ρwn,j defined by (35), and the family of Gaussian states φw defined by (38), the following
convergence holds for any 0 ≤ η ≤ 1/6 and 0 < ε3 < 1/2

sup
‖w‖≤nη

max
j∈Jn

‖Vjρwj,nV ∗j − φw‖1 = O(n−1/4+η+ε3) (40)

over the set Jn = {j | jn − n1/2+ε3 ≤ j ≤ jn + n1/2+ε3}. The convergence is uniform over
λ ≥ 1/2(1 + δ) for an arbitrary fixed δ > 0.

The interpretation is that the block state ρwj,n can be mapped by means of physical transformations
(in this case an isometric embedding Tj(·) = Vj · V ∗j ) into the Gaussian state φw with vanishing
norm-one error, uniformly over the unknown parameter w and over the block index j. A possible
physical implementation is detailed in [20]; the ensemble of qubits is coupled with a Bosonic field
such that the state is transferred to the field after some time.
In order to estimate the rotation parametersw = (u, v), one first maps the qubit state via the isome-
try Vj , and then performs a heterodyne measurement, which is optimal for estimating displacement
(see Appendix A.3 for a description of the measurement). In the next section we discuss the Bures
risk of the estimation procedure described above.

4 Upper and lower bounds for collective measurements

The overall two stages adaptive measurement procedure we propose can be briefly summarised as
follows. The first stage is preliminary localisation step, where a vanishing number ñ of copies of
the state is used to localise the state ρ. The resulting estimate ρ̃ informs the choice of measurements
in the second stage, and is used in defining the local parametrisation θ = (λ, u, v) as described in
the previous section. When ρ̃ is within a fixed ball of radius δ > 0 around the fully mixed state,
standard tomographic measurements are performed on the remaining copies of the state. However,
if ρ̃ lies outside this ball, the measurements performed in second stage use techniques based on
the principle of LAN to estimate the parameter vector θ = (λ, u, v). In this section we look at
the Bures risk of the measurement estimator pair R(ρ, ρ̂n) := E

[
DB(ρ, ρ̂n)2

]
. As we will show

below, the risk of a good estimators scales as 1/n, and we would like to find asymptotic upper and
lower bounds for the rescaled maximum risk

rmax(ρ̂) = lim sup
n→∞

sup
ρ∈S2

nR(ρ, ρ̂n).

4.1 The upper bound

We now make concrete our final estimator for the state ρ. The first stage involves using a vanishing
number of copies ñ := n1−κ (with κ > 0) to get a rough estimate ρ̃. This estimate informs the
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second measurement stage. The subsequent measurement stage differs depending on whether the
state is estimated to be close to the fully mixed state.
Case 1. If the estimate ρ̃ lies in a small ball of radius δ > 0 around the fully mixed state, then
measurements in the standard σi, i = x, y, z basis are performed on (n − ñ)/3 copies of the
state. The outcomes of each measurement are ±1, and the associated probabilities are p(±1|σi) =
pi(±1) := Tr(ρP±1i ), where the projectors P±1i are defined via σi = P+1

i −P
−1
i . The total number

ni of +1 outcomes obtained by n/3 measurements of σi is binomially distributed Bn/3,pi(+1)(ni).
The final estimate of the state is constructed as the maximum likelihood (ML) estimate from these
measurement outcomes

ρ̂n = arg max
τ∈S2

∑
i=x,y,z

ni log Tr(τP+1
i ) + (n/3− ni) log Tr(τP−1i ) (41)

where the maximisation is over the space of all 2× 2 density matrices S2.
Case 2. On the other hand, if the preliminary estimate ρ̃ lies away from the fully mixed state, we
perform the following measurements to estimate the parameter vector θ = (λ, u, v). A ‘which
block’ measurement outputs a value of j from which the eigenvalue λ is estimated, cf. section 3.2.
Similarly to the separate measurements strategy, we consider the following ‘add-beta’ estimator
for the eigenvalue λ [22, 23]

λ̂n =



1/2
n+5/4 ,

n
2 − j = 0,

2
n+7/4 ,

n
2 − j = 1,

n/2−j+3/4
n+3/2 , n

2 − j = 2, . . . , n− 2,
n−1/4
n+7/4 ,

n
2 − j = n− 1,

n+3/4
n+5/4 ,

n
2 − j = n

(42)

The range of possible values of j is [0, n/2], and therefore only some of the rules of the estimator
described above are used. However, we describe the estimator over the range [0, n] as this will be
used shortly to upper bound the minimax risk.
Conditional on j, we are left with the block state ρwj,n. Using Theorem 1 we can isometrically map
this state onto the Fock space, close to the Gaussian state φw. In order to estimate the displacement
parameter w we perform a heterodyne measurement with outcome ŵn (see Appendix A.3 for a
description of the measurement). The final estimate of our the state ρ̂n is constructed from the
estimated parameter vector θ̂n = (λ̂n, ŵn) as

ρ̂n = U

(
ŵn√
n

)(
1− λ̂n 0

0 λ̂n

)
U

(
ŵn√
n

)∗
. (43)

We now state precisely the upper bound for the minimax risk of the Bures distance for the mea-
surement strategy described above.
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Theorem 2. Let ρ̂n be the estimator described above. The asymptotic rescaled maximum risk is
bounded from above as

lim sup
n→∞

sup
ρ

nR(ρ, ρ̂n) ≤ 3

2
. (44)

The proof of this theorem is detailed in the appendix (A.3), and here we only provide an outline of
the arguments. The choice of measurements in the second stage depend on whether the preliminary
estimate ρ̃ lies inside or outside a small ball of radius δ > 0 around the fully mixed state. In keeping
with this, let us therefore denote ρ̂1n as the estimator (41) chosen when |r̃| ≤ δ, and let ρ̂2n be the
LAN based estimator (43), when |r̃| > δ. The minimax risk can then be bounded from above as
follows

lim sup
n→∞

sup
ρ

nR(ρ, ρ̂n) ≤ max

{
lim sup
n→∞

sup
ρ∈B1

nE
[
DB(ρ, ρ̂1n)2

∣∣ |r̃| ≤ δ] ,
lim sup
n→∞

sup
ρ 6∈B2

nE
[
DB(ρ, ρ̂2n)2

∣∣ |r̃| > δ
]} (45)

where B1 and B2 are balls of radius δ + n−1/2+ε2 and δ − n−1/2+ε2 respectively. The two terms
are evaluated explicitly in section (A.3) of the appendix. The term corresponding to the estimator
ρ̂1n is straightforward to evaluate as the Bures distance is locally quadratic for states in B1. From
this quadratic expansion and the efficiency of the maximum likelihood estimator in the asymptotic
regime, the risk can be expressed as

E
[
DB(ρ, ρ̂1n)2

]
≈ 1

n
Tr
(
I(ρ)−1G

)
(46)

where G is the weight matrix reconstructing the quadratic approximation of the Bures distance,
and I is the Fisher information matrix. From the explicit form of G and I , the asymptotic risk can
be bounded as

lim sup
n→∞

sup
ρ∈B1

nE
[
DB(ρ, ρ̂1n)2

]
≤ 3

4

(
1 +

δ

1− δ

)
. (47)

The other term in (45) corresponding to the estimator ρ̂2n uses the local parameterisation of states
θ = (λ,w), and the approximation of the Bures distance used in section 2, and detailed in the
appendix (A.2). We therefore get that the risk can be bounded as

E
[
DB(ρ, ρ̂2n)2

]
≤ E

[
DH(λ, λ̂n)2 +

1

4
Φ2

]
+O(Φ4) (48)

≤ E
[
DH(λ, λ̂n)2

]
+

1

n
E
[
(u− ûn)2 + (v − v̂n)2

]
+O(n−2) (49)

The term corresponding to the rotation parameters has been evaluated in [20] using LAN based
techniques. Since LAN holds in the limit of large n, the problem of estimating the rotation param-
eters is translated to one of determining the displacement of a Gaussian state φw. The heterodyne
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measurement is known to be the optimal measurement in this case [20, 21]. The first term corre-
sponding to the Hellinger risk is bounded from above by the Kullback-Leibler (KL) risk of esti-
mating a binomial parameter λ from outcomes k distributed as Bn,λ(k). The ‘add-beta’ estimator
is known to be minimax optimal in this case, and its rate is known in the literature. Together with
the LAN results for the rotation parameters, we bound risk as

lim sup
n→∞

sup
ρ6∈B2

nR(ρ, ρ̂2n) ≤ lim sup
n→∞

sup
λ
nEBinom

[
DKL(λ, λ̂n)

]
+ 1 ≤ 3

2
. (50)

Comparing this bound with (47), we arrive at the stated upper bound of 3/2 in Theorem 2 provided
δ < 1/2.

4.2 The lower bound

In this section we derive a lower bound on the asymptotic rescaled risk with respect to the Bures
distance. The key idea is to restrict the attention to a smaller state space region where the state is
“hardest” to estimate, and evaluate the minimax risk over this region, thus obtaining a lower bound
for the overall minimax risk.
Let us consider that the true state ρ lies in a local neighbourhood of size n−1/2+ε around an arbitrary
but fixed state ρ0 as defined in equation (25), whose smallest eigenvalue satisfies 0 < λ0 < 1/2.
For any estimation procedure ρ̂n we have the lower bound for the maximum risk

lim sup
n→∞

sup
ρ∈S2

nR(ρ, ρ̂n) ≥ lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ε

nR(ρ, ρ̂n)

≥ lim sup
n→∞

inf
ρ̂n

sup
‖ρ−ρ0‖1≤n−1/2+ε

nR(ρ, ρ̂n)

:= rminmax(ρ0) (51)

where the right side is the local minimax risk at ρ0.
Since the state ρ0 is taken to be away from the boundary of the Bloch sphere, we can parametrise
its local neighbourhood using the local parameter θ = (h,u)

ρ = ρθ := U

(
w√
n

)(
1− λ0 − h/

√
n 0

0 λ0 + h/
√
n

)
U

(
w√
n

)∗
. (52)

The Bures distance is locally quadratic

DB(ρθ, ρθ′)
2 =

1

n
(θ − θ′)TΓ0(θ − θ′) +O(n−3/2) (53)

where Γ0 is the weight matrix

Γ0 =

 1
4λ0(1−λ0) 0 0

0 (1− 2λ0)
2 0

0 0 (1− 2λ0)
2

 . (54)
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In this case we can apply the LAN theory [20] to obtain the local minimax risk for Bures dis-
tance. The upshot of the theory is that the classical statistical model given by the distribution over
blocks (cf. equation (31)) can be approximated by a one-dimensional Gaussian model N(h, v0)
with fixed variance v0 = λ0(1− λ0) and mean equal to the unknown local parameter h. Addition-
ally, the quantum statistical model described by the quantum state of the irreducible block can be
approximated by a quantum Gaussian shift model (independent of the classical one), as described
in Theorem 1. The optimal measurement here is the heterodyne, and after rescaling by a con-
stant factor we obtain the unbiased estimator û which has a two-dimensional Gaussian distribution
û ∼ N(u, w0 · I2) with w0 = (1 − λ0)/(2(1 − 2λ0)

2). The local minimax risk is the sum of the
contribution from the classical and respectively the quantum part of the Gaussian model, weighted
with the matrix Γ0

Rminmax(ρ0) = Γ00E[(ĥ− h)2] + Γ11E[(û− u)2] + Γ22E[(v̂ − v)2]

=
1

4λ0(1− λ0)
v0 + 2(1− 2λ0)

2w0 =
1

4
+ (1− λ0) =

5

4
− λ0. (55)

As the state ρ0 defining the local neighbourhood is chosen arbitrarily, we see that the right side of
the above equation achieves its maximum as λ0 → 0, and we therefore get the asymptotic lower
bound for the rescaled maximum risk of any estimator.

lim sup
n→∞

sup
ρ∈S2

nR(ρ, ρ̂n) ≥ 5

4
.

As expected, the above lower bound is smaller than the 3/2 upper bound derived in section 4.1.

5 The minimax optimal estimator

In deriving the minimax bounds for both the proposed estimators, the key observation was that the
Bures risk decomposes locally into contributions from the Hellinger risk of estimating the eigen-
value parameter λ and a quadratic risk corresponding to the estimation of the rotation parameters
(see (11) and appendix A.2). The Hellinger risk was then bounded from above by the Kullback-
Leibler (KL) risk of estimating the binomial parameter. The estimator of the binomial parameter
achieving the minimax rate for the KL risk is known to be ‘add-beta’ estimator, and both the local
and global estimators for the state ρ proposed use this estimator for the eigenvalue parameter, cf.
equations (8) and (42) .
The reason why we were not able to prescribe an asymptotically minimax estimator is that we
could not devise a minimax estimator for the binomial parameter λ, with respect to the Hellinger
distance. The following proposition follows immediately from the asymptotic analysis of section
4 and shows that the original optimal state estimation problem reduces to the ‘classical’ one of
estimating the binomial parameter λ, which for the moment remains an open problem.
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Proposition 1. Let λ̂opt be an asymptotically minimax estimator of the binomial parameter λ under
the Hellinger loss function. Then a state estimator defined by replacing the ‘add-beta’ estimators
for λ in equation (42) with λ̂opt is asymptotically minimax optimal for qubit states.

Although we were not able to devise a minimax estimator under the Hellinger distance, we would
like to make some comments on this problem, emphasising that it is crucial to study what happens
at the boundary when λ ≈ 0. Indeed, for values of λ away from this boundary, the local asymptotic
minimax rate is easily derived as the squared Hellinger distance square is locally quadratic and the
classical asymptotic efficiency theory [25] applies. The standard estimator λ̂ = k/n is a natural first
choice as it is unbiased and achieves the Cramer Rao lower bound with variance Var(λ̂) = (nI)−1,
where I = 1

λ(1−λ) is the Fisher information. In the region where λ > 0, using a locally quadratic
approximation for the Hellinger risk, we have

EBinom

[
DH(λ, λ̂)2

]
=

1

4λ(1− λ)
Var(λ̂) + o(n−1) =

1

4n
+ o(n−1).

This holds for every fixed λ ∈ (0, 1/2], and gives the same rate as the one in the lower bound (55).
However the convergence is not uniform over λ close to the zero, which affects the constant in the
asymptotic maximum risk. To see this, consider the case when λ is n-dependent such that nλ→ µ,
with µ > 0 being a fixed constant. The Hellinger risk is given by

EBinom

[
DH(λ, λ̂)2

]
= EBinom

[(
λ̂1/2 − λ1/2

)2]
+EBinom

[(
(1− λ̂)1/2 − (1− λ)1/2

)2]
. (56)

The second term on the right in the above equation is bounded as

EBinom

[(
(1− λ̂)1/2 − (1− λ)1/2

)2]
≤ EBinom

[
(λ− λ̂)2

]
/(1− λ) = µ/n2. (57)

Substituting (57) in (56), we have

EBinom

[
DH(λ, λ̂)2

]
= EBinom

[
(λ̂1/2 − λ1/2)2

]
+O(n−2) (58)

=
1

n
EPo(µ)

[(
K1/2 − µ1/2

)2]
+O(n−2) (59)

In the last equality we used the fact that under the scaling nλ → µ, the Binomial random variable
converges to a Poisson random variable K ∼ Po(µ). Therefore the risk in this case is given by
the function R(µ) = EPo(µ)

[(
K1/2 − µ1/2

)2]
, where the expectation is taken with respect to the

Poisson distribution with parameter µ. If this function was bounded such that R(µ) ≤ 1/4, then it
would suggest that the standard estimator λ̂ might be globally asymptotically minimax. However,
plotting the function R(µ) numerically, we see from Figure 1 that it attains a maximum value of
maxR(µ) ≈ 0.455 around µ = 1.11, and converges to 1/4 for large values of µwhich corresponds
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Figure 1: Plots of the Hellinger risk functions R(µ) and RB(µ) for various values of the Poisson
parameter µ. The horizontal blue line marks a value of 1/4. See main text for details.

to λ away from zero. This shows that the standard estimator doesn’t achieve a minimax constant of
1/4 for all λ, and illustrates that the difficulty in deriving a minimax rate for the Hellinger distance
lies in the Poisson range.

As an alternative to the standard estimator, we consider the Bayes estimator µ̂1/2B for µ1/2, and

plot numerically the ‘frequentist’ risk of this estimator RB(µ) := Eµ
[
(µ̂

1/2
B − µ1/2)2

]
. We now

describe the Bayes estimator µ̂1/2B of the Poisson parameter. It is known that a conjugate family for
the Poisson model is the Gamma family of priors, i.e

µ ∼ fα,β(t) =
tα−1 exp (−t/β)

βαΓ(α)
, t > 0 (60)

where α, β are the shape and scale parameters respectively. Given an outcome K = k from the
Poisson distribution Po(µ), the posterior distribution for µ is easily calculated to be Γ(α+k, β

β+1).
The Bayes estimator is then the expectation of

√
µ taken with respect to the posterior distribution.
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This is easily calculated to be

µ̂
1/2
B :=

Γ(k + α+ 1/2)

Γ(k + α)

(
β

β + 1

)1/2

(61)

In Figure 1, we plot the ‘frequentist’ risk RB(µ) for the Bayes estimate (61) under a particular
prior with α = 0.41 and β = 200 (chosen for its favourable maximum risk), and a range of values
for µ. We see that the risk remains upper-bounded by a value only slightly greater than 1/4, and
for large values of µ the risk tends to a limiting value of 1/4. This supports the conjecture that the
minimax constant for the Hellinger distance is 1/4.

6 Quantum Relative Entropy

In our derivation of the minimax upper bounds, we bounded the Hellinger risk of estimating the
eigenvalues by the Kullback-Leibler (KL) risk for which the asymptotic minimax rate is known. As
the KL distance is the classical analogue of the quantum relative entropy S(ρ‖ρ′) = Tr[ρ(log ρ−
log ρ′)], a question naturally arises - can the techniques used in this paper be applied to derive the
minimax rate for the quantum relative entropy (QRE)? A key element would be to decompose the
QRE locally. Similar to decomposition of the Bures distance in (11), the QRE risk can be shown to
locally decompose into a sum of contributions from the KL risk and a term involving the ‘rotation
parameters’ . For qubit states, the QRE between the state ρ and the estimate ρ̂n is represented in
terms of the Bloch vectors as [26]

S(ρ‖ρ̂n) =
1

2

[
log (1− |r|2)− log (1− |r̂n|2) + |r| log

(
1 + |r|
1− |r|

)
(62)

− |r| cos Φ log

(
1 + |r̂n|
1− |r̂n|

)]
where Φ is the angle between the Bloch vectors of the two states. This can be rewritten as

S(ρ‖ρ̂n) = DKL(λ, λ̂n) +
1− 2λ

2
(1− cos Φ) log

(
1− λ̂n
λ̂n

)

= DKL(λ, λ̂n) +
1− 2λ

4
(Φ2 +O(Φ4)) log

(
1− λ̂n
λ̂n

)
(63)

where DKL(λ, λ̂) is the Kullback-Leibler distance between the two distributions λ = (λ, 1 − λ)
and λ̂ = (λ̂, 1− λ̂), and in the second equality we expanded the cosine term to leading order in Φ.
The proof of this decomposition can be found in appendix A.4.
We will show that the global estimator discussed in section 4 achieves the rate O(n−1 log n) and
no estimator can achieve faster rates, in particular the ‘standard’ rate n−1.
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Consider the estimator defined by equations (42) and (43), and note that the classical component
estimator λ̂n is the minimax optimal estimator for the binomial model and is always larger than
c/n for some fixed constant c > 0. Using the same arguments as in Theorem 2 we find

sup
ρ

E[DKL(λ, λ̂n)] = O(n−1).

On the other hand, since λ̂n ≥ c/n, the second term in equation (63) is bounded by c′ log n(Φ2 +
O(Φ4)); since Φ is estimated at standard rate, the second term is therefore upper bounded as

sup
ρ

E

[
1− 2λ

4
(Φ2 +O(Φ4)) log

(
1− λ̂n
λ̂n

)]
= O(n−1 log n)

which determines the rate.
We will now show that no estimator can have maximum risk converging faster that n−1 log n.
Since we are interested in the maximum risk, we will set λ = 0 (pure states), and show that the
risk cannot decrease faster that n−1 log n even if we know that the state is pure! As a consequence
of local asymptotic normality, any estimator will have the property that P[1 − cos Φ ≥ c/n] ≥ ε
for some constants c, ε. Therefore we will consider the contribution to the risk conditional on
1− cos Φ ≥ c/n. By expanding the DKL(λ, λ̂) term we have

S(ρ‖ρ̂n) ≥ log
1

1− λ̂n
+

c

4n
log

(
1− λ̂n
λ̂n

)
. (64)

However, the righthand side achieves its minimum at λ̂n = c/4n, so the risk is larger than
c′ log n/n. This shows that the minimax risk for the quantum relative entropy scales as log n/n.

7 Conclusion

In this paper we proposed two adaptive estimators for the qubit mixed state, one based on local
measurements and the other on collective global measurements. In section 2 we upper-bounded
the minimax Bures distance risk for the estimator based on local measurements and showed that
it scales as 1/n. In section 3, we proposed an estimator based on collective measurements and
used LAN theory to obtain upper and lower bounds for the risk of 3/2n and 5/4n respectively.
A key element in obtaining the upper bounds was the local decomposition of the Bures risk into
contributions from the Hellinger risk of estimating the eigenvalue, and a quadratic contribution
from the risk of estimating the ‘rotation parameters’. While the contribution to the Bures risk from
the ‘rotation terms’ is easily shown to scale asO(1/n), we noticed that the difficulty in establishing
minimax results for the Bures distance is encapsulated in the challenges of establishing minimax
results for the Hellinger risk. Finally in section 5, we considered these challenges and proposed that
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a minimax optimal estimator for the mixed qubit state ρ is immediately obtained given a minimax
optimal estimator for the binomial parameter under the Hellinger loss function.
We also briefly considered the derivation of minimax bounds for the quantum relative entropy
(QRE) risk. We derived a local decomposition of the QRE similar to the one obtained for the Bures
distance, and demonstrated that the global estimator proposed achieves a rate of O(n−1 log n). We
also showed that no estimator can achieve faster rates and established that the minimax QRE risk
scales as O(n−1 log n).
Directions for future work include generalise the results presented in this paper to the multi-qubit
case, and to investigate the minimax rate for the Hellinger distance under the binomial/multinomial
distributions. Another topic of interest would be to study the behaviour of the maximum Bures risk
in the case when the measurement outcomes are noisy. In particular, it has been pointed out in [4]
that in the case of the noisy coin, a maximum risk of O(n−1/2) is intrinsic to the setup and in fact
unavoidable. This is of relevance to the study of the maximum Bures risk in the noisy measurement
scenario as locally the ‘classical’ component of the Bures risk is given by the Hellinger risk of
estimating the bias of a coin.
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[8] Bagan E, Ballester M A, Gill R D, Muñoz Tapia R and Romero-Isart O 2006 Phys. Rev. Lett.
97(13) 130501

[9] Hou Z, Zhu H, Xiang G Y, Li C F and Guo G C 2016 Npj Quantum Information 2 16001 EP

23



[10] Okamoto R, Iefuji M, Oyama S, Yamagata K, Imai H, Fujiwara A and Takeuchi S 2012 Phys.
Rev. Lett. 109(13) 130404

[11] Fujiwara A 2006 Journal of Physics A: Mathematical and General 39 12489

[12] Ferrie C 2014 Phys. Rev. Lett. 113(19) 190404

[13] Fischer D G, Kienle S H and Freyberger M 2000 Phys. Rev. A 61(3) 032306

[14] Granade C, Ferrie C and Flammia S T 2016 arXiv:1605.05039

[15] Hannemann T, Reiss D, Balzer C, Neuhauser W, Toschek P E and Wunderlich C 2002 Phys.
Rev. A 65(5) 050303

[16] Kravtsov K S, Straupe S S, Radchenko I V, Houlsby N M T, Huszár F and Kulik S P 2013
Phys. Rev. A 87(6) 062122

[17] Straupe S S 2016 JETP Letters 104 510–522 ISSN 1090-6487

[18] Bagan E, Ballester M A, Gill R D, Monras A and Muñoz Tapia R 2006 Phys. Rev. A 73(3)
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A Appendix

A.1 Proof of Lemma 2

The proof is a straightforward application of Hoeffding’s inequality.
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Theorem 3 (Hoeffding’s inequality). Let R1, . . . , Rm be independent random variables with ai ≤
Ri ≤ bi. Let S =

∑m
i=1Ri, and µ = E[S]. Then for all t > 0

P (|S − µ| ≥ nt) ≤ 2 exp−2n
2t2/

∑
i(bi−ai) . (65)

We have Xi ∈ [−1, 1], and E
∑

iXi = ñ
3 rx. Applying Hoeffding’s inequality we get

P

(∣∣∣∣ 3ñ∑
i

Xi − rx
∣∣∣∣2 ≥ t2

)
≤ 2 exp−2t

2ñ/3 (66)

and similarly for the other spin components. Applying the three inequalities together, with t2 =
n2ε2 − 1 and ε2 > 0, we have

P

 ∑
j=x,y,z

|r′j − rj |2 ≥ 3n2ε2−1

 ≤ 6 exp−2ñn
2ε2−1/3 . (67)

The estimate ρ̃ is then the closest state in trace distance to the matrix 1
2(1 + r′ ·σ). As ‖ρ− ρ̃‖21 =∑

i=x,y,z |r̃i − ri|2, (67) implies the stated bound.

A.2 Expansion of the Bures distance

Here we derive the expansion (11) of the Bures distance DB(ρ, ρ′)2 := 2
[
1−

√
F (ρ, ρ′)

]
. We

know that for qubits the fidelity between two states can be expressed in terms of the Bloch vectors
as

F (ρ, ρ′) :=
1

2

(
1 +

√
1− |r|2

√
1− |r′|2 + r · r′

)
=

1

2

(
1 +

√
1− |r|2

√
1− |r′|2 + |r||r′| cos Φ

)
where Φ is the angle between the Bloch vectors. For two sufficiently close states, the angle Φ is
small and the cosine term can be expanded as

F (ρ, ρ′) =
1

2

(
1 +

√
1− |r|2

√
1− |r′|2 + |r||r′| − |r||r

′|
2

Φ2 +
|r||r′|

24
Φ4

)
=
(√

(1− λ)(1− λ′) +
√
λλ′
)2
− |r||r

′|
4

Φ2 +
|r||r′|

24
Φ4
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where we have use the fact that |r| = 1− 2λ. Therefore the Bures distance is given by

DB(ρ, ρ′)2 = 2

[
1−

√(√
(1− λ)(1− λ′) +

√
λλ′
)2
− |r||r

′|
4

Φ2 +
|r||r′|

24
Φ4

]

= 2

[
1−

(√
(1− λ)(1− λ′) +

√
λλ′
)

+
1

8

|r||r′|√
(1− λ)(1− λ′) +

√
λλ′

Φ2 +O(Φ4)

]

= DH(λ,λ′)2 +
1

4

(1− 2λ)(1− 2λ′)√
(1− λ)(1− λ′) +

√
λλ′

Φ2 +O(Φ4)

where DH(λ,λ′)2 is the Hellinger distance between the binary distributions λ = (λ, 1 − λ) and
λ′ = (λ′, 1− λ′).

A.3 Proof of Theorem 2

Since the first measurement stage is the localisation of the true state by the estimate ρ̃, we write the
risk as a sum of two terms

R(ρ, ρ̂n) = E
[
DB(ρ, ρ̂n)2

]
= P (|r̃| ≤ δ) · E

[
DB(ρ, ρ̂n)2 | |r̃| ≤ δ

]
+ P (|r̃| > δ) · E

[
DB(ρ, ρ̂n)2 | |r̃| > δ

]
(68)

The expectation is taken over the measurement outcomes given the true state ρ. The final estimate
ρ̂n is defined by either (41) or (43) depending on the preliminary estimate ρ̃. Specifically, if the es-
timate ρ̃ is within a ball of radius δ > 0 of the fully mixed state, we perform standard tomographic
measurements on the remaining copies of the state. The final estimate is then the maximum likeli-
hood (ML) estimate given by (41). While in the other instance the technology of LAN is utilised
and the final estimate is (43). In order to make the difference between the two estimators explicit,
we let ρ̂1n denote the final estimator in the case when |r̃| ≤ δ and ρ̂2n be the final estimate when
|r̃| > δ. Therefore, we have

R(ρ, ρ̂n) = P (|r̃| ≤ δ) · E
[
DB(ρ, ρ̂1n)2

∣∣ |r̃| ≤ δ]+ P (|r̃| > δ) · E
[
DB(ρ, ρ̂2n)2

∣∣ |r̃| > δ
]

= R1 +R2. (69)

We consider the contribution to the risk from the term R1 first. Let B1 be a ball of radius δ +
n−1/2+ε2 around the centre of the Bloch sphere. When the true state ρ 6∈ B1, we note that the
probability P (|r̃| ≤ δ) goes to zero exponentially fast in n. This is because the estimate ρ̃ lies
within a ball of radius O(n−1/2+ε2) around the true state with high probability (Lemma 2). This
along with the fact that the Bures distance is bounded as DB(σ, π) ≤ 2 for any pair of density
matrices σ, π implies that when ρ 6∈ B1, the term R1 can be neglected. However, when ρ ∈ B1,
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the term R1 has a non zero contribution and is written as

R1 =

{
E
[
DB(ρ, ρ̂1n)2

∣∣ |r̃| ≤ δ] · P (|r̃| ≤ δ) , ρ ∈ B1

o(1) ρ /∈ B1
(70)

The term R2 can be treated similarly. Let B2 be a ball of radius δ − n−1/2+ε2 around the centre
of the Bloch sphere. As the probability P(|r̃| > δ) decays exponentially if ρ ∈ B2, the term R2 is
relevant only when ρ 6∈ B2{

R2 = E
[
DB(ρ, ρ̂2n)2

∣∣ |r̃| > δ
]
· P (|r̃| > δ) , ρ 6∈ B2

o(1) ρ ∈ B2
(71)

Substituting (70), (71) in (69) we see that the minimax risk is bounded from above as

lim sup
n→∞

sup
ρ

nR(ρ, ρ̂n) ≤ lim sup
n→∞

max

{
sup
ρ∈B1

nE
[
DB(ρ, ρ̂1n)2

∣∣ |r̃| ≤ δ] ,
sup
ρ6∈B2

nE
[
DB(ρ, ρ̂2n)2

∣∣ |r̃| > δ
]} (72)

Case 1 : ρ ∈ B1 and |r̃| ≤ δ
We now evaluate the risk when the state ρ is in B1 while the estimate ρ̃ is within a ball of radius
δ > 0 around the fully mixed state. The final estimate ρ̂1n is the ML estimate and given by (41).
The outcomes from the n/3 repeated measurements in a setting σi are i.i.d, this implies that the ML
estimate of the Bloch vector parameters rx, ry, rz from the outcomes of the standard tomographic
measurements are asymptotically Gaussian in distribution

lim
n→∞

√
n(r̂i − ri) = N (0, I(ρ)−1), i = x, y, z (73)

where the covariance matrix is the inverse of the Fisher information matrix I(ρ). The elements of
the matrix I(ρ) are defined for each i, j ∈ {x, y, z} as

I(ρ)i,j =
1

(1 + ri)(1− ri)
δi,j (74)

The local expansion of the Bures distance for states away from the boundary of the Bloch sphere
is quadratic in the Bloch vector components

DB(ρ, ρ̂1n)2 = (r − r̂)TG(r − r̂) +O(‖r − r̂‖3) (75)

where G is the weight matrix of the Bures distance

Gj,k :=
1

4

(
1 +

r2i
(1− |r|2)

)
δj,k.
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The asymptotic behaviour of the ML estimator (41) together with this local expansion of the Bures
distance, implies that the risk of the ML estimate scales as follows for large n

E
[
DB(ρ, ρ̂1n)2

]
=

1

n
Tr
(
I(ρ)−1G

)
+ o(n−1) (76)

It is easy to see that I(ρ) ≥ 1, and therefore we have that asymptotically the minimax Bures risk
is upper bounded by

lim sup
n→∞

sup
ρ∈B1

nE
[
DB(ρ, ρ̂1n)2

]
≤ 3

4

(
1 +

δ

1− δ

)
(77)

where we used the fact that |r| ≤ δ +O(n−1/2+ε2).

Case 2: |r̃| > δ, ρ 6∈ B2

We now consider the case when ρ̃ is away from the fully mixed state. Since the state ρ̃ is within
the ball of radius O(n−1/2+ε2) of the true state ρ 6∈ B2, we consider the local parametrisation of
the states θ = (λ,w), and perform the secondary measurements on the joint state ρθn = ρ⊗nθ of n
qubits. Using the approximation of the Bures distance in (11), the risk is expressed as

E
[
DB(ρ, ρ̂2n)2

]
= E

DH(λ, λ̂n)2 +
1

4

(1− 2λ)(1− 2λ̂n)(√
(1− λ)(1− λ̂n) +

√
λλ̂n

)Φ2

+O(n−2)

≤ E
[
DH(λ, λ̂n)2

]
+

1

n
E
[
(u− ûn)2 + (v − v̂n)2

]
+O(n−2).

The second term on the right corresponding to the rotation parameters has been evaluated in [20].
Since LAN holds in the limit of large n, the problem of estimating the rotation parameters is trans-
lated to one of determining the displacement of a Gaussian state φw. The heterodyne measurement
is known to be the optimal measurement in this case [20,21]. This measurement along with a possi-
ble physical implementation is detailed in [20]. Here we only note that a heterodyne measurement
involves the joint measurement of the quadraturesQ1 := (Q+Qv)/

√
2 and P2 := (P −Pv)/

√
2,

such that [Q1,P2] = 0. Where Qv and Pv are vacuum quadratures and Q := (â + â∗)/
√

2,
P := −i(â−â∗)/

√
2. Since the quadratureQ is distributed asN

(√
2(1− 2λ)u, 1/(2(1− 2λ))

)
,

and P as N
(√

2(1− 2λ)v, 1/(2(1− 2λ))
)

, we have that the rescaled distribution of the output(
(Q+Qv)/

√
2(1− 2λ), (P − Pv)/

√
2(1− 2λ)

)
, (78)

is given by
N (u, (1− λ)/(2(1− 2λ)2))×N (v, (1− λ)/(2(1− 2λ)2)). (79)
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Therefore the rescaled result of the heterodyne measurement is seen to be an unbiased estimator
of the parameters (u, v). From the above distribution it is clear that that both E

[
(u− ûn)2

]
and

E
[
(v − v̂n)2

]
are bounded from above by (1− λ)/(2(1− 2λ)2) ≤ 1/2. Substituting these values,

the minimax risk becomes

lim sup
n→∞

sup
ρ 6∈B2

nR(ρ, ρ̂2n) = lim sup
n→∞

sup
θ
nE
[
DB(ρ, ρ̂2n)

]
≤ lim sup

n→∞
sup
λ
nE
[
DH(λ, λ̂n)2

]
+ 1. (80)

The minimax risk is upper bounded by 1 plus the minimax risk of the Hellinger distance. We now
deal with this term. The expectation is taken over the probability distribution pn,λ(j) defined in
equation (32),

E
[
DH(λ, λ̂n)2

]
=

n/2∑
j=0,1/2

DH(λ, λ̂n(j))2Bn,λ(n/2− j)×K(j, n, λ)

≤
n/2∑

j=0,1/2

DH(λ, λ̂n(j))2Bn,λ(n/2− j)× |1−K(j, n, λ)|

+

n/2∑
j=0,1/2

DH(λ, λ̂n(j))2Bn,λ(n/2− j) = E1 + E2. (81)

We now consider the term E1 separately. We split the sum in E1 over the values of j ∈ Jn, and
j 6∈ Jn, where Jn is interval defined in (33). Thus, we have

E1 =
∑
j∈Jn

DH(λ, λ̂n(j))2Bn,λ(n/2− j)× |1−K(j, n, λ)|

+
∑
j 6∈Jn

DH(λ, λ̂n(j))2Bn,λ(n/2− j)× |1−K(j, n, λ)|

≤ max
j∈Jn

|1−K(j, n, λ)|
∑
j∈Jn

DH(λ, λ̂n(j))2Bn,λ(n/2− j)

+ max
j 6∈Jn

|1−K(j, n, λ)|
∑
j 6∈Jn

DH(λ, λ̂n(j))2Bn,λ(n/2− j)

≤ O(n−1/2+ε3)
∑
j∈Jn

DH(λ, λ̂n(j))2Bn,λ(n/2− j)

+ max
j 6∈Jn

|1−K(j, n, λ)|
∑
j 6∈Jn

2Bn,λ(n/2− j). (82)
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In the last inequality, we used the fact that K(j, n, λ) = 1 +O(n−1/2+ε3) on the values of j ∈ Jn,
and that DH(p, q)2 ≤ 2 for any pair of probability distributions p, q. The value maxj 6∈Jn |1 −
K(j, n, λ)| is uniformly bounded for λ away from 1/2. This along with the fact that the mass of the
binomial distribution Bn,λ(n/2 − j) is concentrated on values of j ∈ Jn implies that the second
term in (82) goes to zero exponentially fast in n. Therefore,

E1 ≤ O(n−1/2+ε3)
∑
j∈Jn

DH(λ, λ̂n(k))2Bn,λ(k). (83)

Substituting this back in (81), we have that the Hellinger risk is upper bounded by

E
[
DH(λ, λ̂n)2

]
≤ O(n−1/2+ε3)

∑
j∈Jn

DH(λ, λ̂n(j))2Bn,λ(n/2− j)

+

n/2∑
j=0,1/2

DH(λ, λ̂n(j))2Bn,λ(n/2− j)

≤ O(n−1/2+ε3)
n∑
k=0

DH(λ, λ̂n(k))2Bn,λ(k) +
n∑
k=0

DH(λ, λ̂n(k))2Bn,λ(k)

=
(

1 +O(n−1/2+ε3)
)

EBinom

[
DH(λ, λ̂n(k))2

]
(84)

≤
(

1 +O(n−1/2+ε3)
)

EBinom

[
DKL(λ, λ̂n(k))

]
. (85)

In the second line we expand the sums over the entire support of the binomial distribution k ∈
{0, . . . , n}, and let EBinom mark expectation with respect to the binomial distribution. The last
inequality employs the inequality between the squared Hellinger distance and the Kullback-Leibler
(KL) distance, defined as DKL(p, q) := p log p

q + (1 − p) log 1−p
1−q . Substituting (85) in (80), and

noting that the ‘add-beta’ estimator λ̂n was defined in (42) over the full support, we have

lim sup
n→∞

sup
ρ 6∈B2

nR(ρ, ρ̂2n) ≤ lim sup
n→∞

sup
λ
nEBinom

[
DKL(λ, λ̂n)

] (
1 +O(n−1/2+ε3)

)
+ 1 ≤ 1

2
+ 1.

The rate follows from the fact that the ‘add beta’ estimator of the binomial parameter, defined in
equation (42), is known to be asymptotically minimax for the KL risk, achieving the rate 1

2n(1 +
o(1)) [22, 23].
Comparing this rate with the one in (77), we see that 3/2 is the larger value provided δ < 1/2.
This gives the upper bound stated in Theorem 2.

A.4 Expansion of Quantum Relative Entropy

We derive the expansion of the quantum relative entropy S(ρ‖ρ′) = Tr[ρ(log ρ − log ρ′)]. For
qubits the relative entropy between two states can be expressed in terms of the Bloch vector com-
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ponents as

S(ρ‖ρ′) =
1

2

[
log (1− |r|2)− log (1− |r′|2) + |r| log

(
1 + |r|
1− |r|

)
(86)

− |r| cos Φ log

(
1 + |r′|
1− |r′|

)]
where Φ is the angle between the Bloch vectors of the two states. For sufficiently close states, the
angle Φ is small and the cosine term in the above equation can be expanded as

S(ρ‖ρ′) =
1

2

[
log (1− |r|2)− log (1− |r′|2) + |r| log

(
1 + |r|
1− |r|

)
(87)

− |r| log

(
1 + |r′|
1− |r′|

)]
+
|r|
4

(Φ2 +O(Φ4)) log

(
1 + |r′|
1− |r′|

)
Using the fact that |r| = 1− 2λ and simplifying, we get

S(ρ‖ρ′) =
1

2

[
log

(
λ(1− λ)

λ′(1− λ′)

)
− (1− 2λ) log

(
λ(1− λ′)
λ′(1− λ)

)]
+
|r|
4

(Φ2 +O(Φ4)) log

(
1 + |r′|
1− |r′|

)
= λ log

(
λ

λ′

)
+ (1− λ) log

(
1− λ
1− λ′

)
+

1− 2λ

4
(Φ2 +O(Φ4)) log

(
1− λ′

λ′

)
(88)

= DKL(λ,λ′) +
1− 2λ

4
(Φ2 +O(Φ4)) log

(
1− λ′

λ′

)
(89)

Where DKL(λ,λ′) is the Kullback-Leibler distance between the two distributions λ = (λ, 1− λ)
and λ′ = (λ′, 1− λ′).
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