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The amino acid transporter SLC7A5 confers
a poor prognosis in the highly proliferative
breast cancer subtypes and is a key
therapeutic target in luminal B tumours
Rokaya El Ansari1, Madeleine L. Craze1, Islam Miligy1, Maria Diez-Rodriguez1, Christopher C. Nolan1, Ian O. Ellis1,2,
Emad A. Rakha1,2 and Andrew R. Green1*

Abstract

Background: Breast cancer (BC) is a heterogeneous disease characterised by variant biology and patient
outcome. The amino acid transporter, SLC7A5, plays a role in BC although its impact on patient outcome in
different BC subtypes remains to be validated. This study aimed to determine whether the clinicopathological
and prognostic value of SLC7A5 is different within the molecular classes of BC.

Methods: SLC7A5 was assessed at the genomic level, using Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) data (n = 1980), and proteomic level, using immunohistochemical analysis and tissue
microarray (TMA) (n = 2664; 1110 training and 1554 validation sets) in well-characterised primary BC cohorts.
SLC7A5 expression correlated with clinicopathological and biological parameters, molecular subtypes and patient
outcome.

Results: SLC7A5 mRNA and protein expression were strongly correlated with larger tumour size and higher
grade. High expression was observed in triple negative (TN), human epidermal growth factor receptor 2
(HER2)+, and luminal B subtypes. SLC7A5 mRNA and protein expression was significantly associated with the
expression of the key regulator of tumour cell metabolism, c-MYC, specifically in luminal B tumours only (p =
0.001). High expression of SLC7A5 mRNA and protein was associated with poor patient outcome (p < 0.001)
but only in the highly proliferative oestrogen receptor (ER)+/ luminal B (p = 0.007) and HER2+ classes of BC
(p = 0.03). In multivariate analysis, SLC7A5 protein was an independent risk factor for shorter breast-cancer-
specific survival only in ER+ high-proliferation tumours (p = 0.02).

Conclusions: SLC7A5 appears to play a role in the aggressive highly proliferative ER+ subtype driven by MYC
and could act as a potential therapeutic target. Functional assessment is necessary to reveal the specific role
played by this transporter in the ER+ highly proliferative subclass and HER2+ subclass of BC.
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Background
Altered metabolic pathways have been readily accepted as
part of the revised hallmarks of cancer where cancer cells
are able to regulate their metabolism to provide energy
and cellular building blocks required for their unremitting
proliferation [1]. Many cancer cells are highly reliant on
amino acids for their growth, not only because they are a
nitrogen donor for the synthesis of nucleotides and other
amino acids, but also because they activate mammalian
target of rapamycin complex1 (mTORC1) through nutri-
ent signalling pathways which in turn regulates protein
translation and cell growth [2, 3]. There is also increasing
evidence that oncogenes and/or tumour-suppressor genes
can reprogramme tumour cell metabolism including the
direct regulation of the amino acid transporter, solute car-
rier family 7 member 5 (SLC7A5), by the oncogene MYC
[4, 5] and the regulation of expression of the glutamine
transporter, SLC1A5, by the tumour suppressor retino-
blastoma (Rb) [6].
SLC7A5 is a sodium-independent transporter and

acts as an amino acid exchanger by transporting large
neutral amino acids such as leucine, phenylalanine and
tryptophan by exchange with intracellular glutamine
[7]. It therefore functions in supplying amino acids to
cancer cells and maintaining intra-cellular leucine,
which is considered a master regulator of the mTORC1
signalling pathway [8–10]. For functional expression on
the plasma membrane, SLC7A5 must heterodimerise
with the heavy chain of SLC3A2 [7, 11].
It has been reported that SLC7A5 is highly expressed

in a variety of cancers including oesophageal carcinoma
[12], oral cancer [13] and lung adenocarcinoma [14].
SLC7A5 is co-expressed with the glutamine transporter,
SLC1A5, in many cancers suggesting a functional coup-
ling of these transporters in supporting tumour pro-
gression [15]. In this study, we aimed to assess SLC7A5
gene copy number and mRNA expression, alongside
protein expression in large and well-characterised an-
notated cohorts of BC to determine its biological, clini-
copathological and prognostic value in the different BC
molecular classes with particular interest in the highly
proliferative aggressive subgroups.

Methods
SLC7A5 copy number and gene expression
A cohort of 1980 BC tumours in the Molecular Tax-
onomy of Breast Cancer International Consortium
(METABRIC) [16] was used to evaluate SLC7A5 gene
copy number aberrations (CNA) and gene expression.
DNA/RNA was isolated from fresh frozen samples and
genomic and transcriptional profiling was obtained
using the Affymetrix SNP 6.0 and Illumina HT-12v3
platforms respectively. CNA were considered at the
gene level by segments and the Šidák correction [17]

was applied for multiple testing. Gene expression data
were pre-processed and normalised as described previ-
ously [16]. In this cohort, patients included were
oestrogen receptor (ER)-positive (ER+) and/or lymph
node (LN)-negative (LN-) and did not receive adjuvant
chemotherapy, whereas ER- and LN+ patients received
adjuvant treatment. X-tile (version 3.6.1, Yale Univer-
sity, USA) was applied to dichotomise SLC7A5 mRNA
expression, based on prediction of breast-cancer-
specific survival (BCSS). The association between the
SLC7A5 mRNA expression and clinicopathological
parameters, molecular subtypes, and patient outcome
was investigated. The online dataset, Breast Cancer
Gene Expression Miner v4.0 (http://bcgenex.centregau-
ducheau.fr) and breast cancer data from The Cancer
Genome Atlas (TCGA) [18] were used for external val-
idation of SLC7A5 copy number/or mRNA expression.

Patients and tumours
This study evaluated well-characterised cohorts of pa-
tients with early-stage primary operable invasive BC,
who presented aged ≤70 years. Patients in the discovery
set (n = 1110) presented at Nottingham City Hospital
between 1989 and 1998, while the validation set (n =
1554) includes patients who were presented between
1998 and 2006. Patient management was uniform and
based on tumour characteristics by Nottingham Prog-
nostic Index (NPI) and hormone receptor status.
Patients within the NPI excellent prognostic group
(score ≤3.4) received no adjuvant therapy, but those pa-
tients with NPI >3.4 received tamoxifen if ER-positive (±
goserelin (Zoladex) in case the patients were premeno-
pausal). Conversely, classical cyclophosphamide, metho-
trexate and 5-flurouracil (CMF) were used if the patients
were ER-negative and fit enough to receive chemother-
apy. None of the patients in this study received neoadju-
vant therapy. Clinical history, tumour characteristics and
information on therapy and outcomes are prospectively
maintained. Outcome data included development and
time to distant metastasis (DM) and breast-cancer-
specific survival (BCSS). There was no difference in the
distribution of clinicopathological parameters between
the discovery and validation cohorts or the METABRIC
series of patients (all correlation coefficients ≥0.91, all p
< 0.0001) (Additional file 1: Table S1).

Western blotting
The antibody specificity of anti-SLC7A5 (EPR17573,
Abcam, UK) was validated using western blotting in hu-
man embryonic kidney (HEK) 293 T over expression lys-
ate (Origene Technologies, Rockville, MD, USA) and
MDA-MB-175 (luminal B-like), T47D and MCF7 (lu-
minal A) [19] breast cancer lysate (American Type Cul-
ture Collection; Rockville, MD, USA). A dilution of
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1:200 of the primary antibody and 1:1000 HRP-
conjugated (Dako) secondary antibodies were applied:
5% milk /PBS-Tween (0.1%) (Marvel Original Dried
Skimmed Milk, Premier Food Groups Ltd., UK) was
used for blocking. Mouse monoclonal anti-β-actin pri-
mary antibody was used as a marker of endogenously
expressed control. SLC7A5 bands were visualised using
enhanced chemiluminescence (ECL) showing a single
specific band at the correct predicted size (40 kDa) for
the SLC7A5 protein.

Tissue arrays and immunohistochemical analysis
The discovery set (n = 1110) were arrayed as previously
described using a single 0.6-mm core sampled from the
periphery of each invasive tumour [20]. The validation set
(n = 1554) were similarly arrayed using a tissue microarray
(TMA) GrandMaster (3D Histech). Immunohistochemical
(IHC) staining was performed on 4-μm TMA sections
using the Novolink polymer detection system (Leica Bio-
systems, RE7150-K). Briefly, tissue slides were deparaffi-
nised with xylene and rehydrated through three changes
of alcohol. Heat-induced antigen epitope retrieval was per-
formed in citrate buffer (pH 6.0) for 20 min using a micro-
wave oven (Whirpool JT359 Jet Chef 1000 W).
Endogenous peroxidase activity was blocked by peroxidase
block for 5 min. Slides were washed with Tris-buffered sa-
line (TBS, pH 7.6), followed by application of protein
block for 5 min. Following another TBS wash, sections
were incubated with the primary SLC7A5 antibody diluted
at 1:50 in Leica antibody diluent (RE AR9352, Lieca, Bio-
sysytems, UK) overnight at 4 °C. Slides were washed with
TBS followed by incubation with post primary block for
30 min followed by a TBS wash. Novolink polymer was
applied for 30 min: 3,3′-diaminobenzidine (DAB)
chromogen was applied for 5 min. Slides were counter-
stained with Novolink haematoxylin for 6 min, dehydrated
and coverslipped.
Stained TMA sections were scored using high reso-

lution digital images (NanoZoomer; Hamamatsu

Photonics, Welwyn Garden City, UK), at × 20 magni-
fication. Evaluation of staining for SLC7A5 was based
on a semi-quantitative assessment of digital images of
the cores using a modified histochemical score (H-
score) which includes an assessment of both the in-
tensity and the percentage of stained cells [21]. Stain-
ing intensity was assessed as follows: 0, negative; 1,
weak; 2, medium; 3, strong, and the percentage of the
positively stained tumour cells was estimated subject-
ively. The final H-score was calculated by multiplying
the percentage of positive cells (0–100) by the inten-
sity (0–3), producing a total range of 0–300. Dichoto-
misation of protein expression in predicting BCSS
was determined using x-tile software.
Immunhistochemical staining and dichotomisation

of the other biomarkers included in this study were
as per previous publications [20, 22–30]. ER and

Fig. 1 SLC7A5 protein expression in invasive breast cancer cores. a Negative immunohistochemical (IHC) expression. b Positive IHC expression
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Consortium (METABRIC) cohort using one-way analysis of variance
and the post-hoc Tukey test
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Table 1 Clinicopathological associations of SLC7A5 protein expression in the discovery and validation breast cancer series

SLC7A5 protein

Discovery set Validation set

Number (%) Mean p value Adjusted
p value

Number (%) Mean p value Adjusted
p value

Patient’s age (years)

≥50 395 (36) 582.20 0.003 0.018 469 (30) 859.46 7.0 × 10
−12

<0.0001

<50 714 (64) 539.95 1070 (70) 730.79

Tumour size

≥2.0 cm 532 (48) 521.22 0.000002 <0.0001 939 (61) 729.47 6.5 × 10−9 <0.0001

˂2.0 cm 577 (52) 586.14 599 (39) 832.24

Lympho-vascular invasion

Negative 722 (65) 545.17 0.138 0.55 1086 (71) 743.95 0.000007 <0.0001

Positive 382 (35) 566.35 451 (29) 829.31

Site of distant metastasis

Brain

No 1044 (94) 546.62 0.0001 0.0008 N/A

Yes 61 (6) 662.27

Lung

No 1003 (91) 547.12 0.007 0.04 N/A

Yes 102 (9) 610.80

Bone

No 876 (79) 554.57 0.651 1.30 N/A

Yes 229 (21) 547.00

Liver

No 949 (86) 551.43 0.568 1.70 N/A

Yes 156 (14) 562.57

Number (%) Mean χ2 p value Adjusted p
value

Number (%) Mean χ2 p value Adjusted p
value

Tumour grade

1 190 (17) 450.77 171.5 5.6 × 10
−38

<0.0001 231 (15) 585.30 723.48 7.7 × 10
−72

<0.0001

2 366 (33) 473.19 622 (40) 647.46

3 550 (50) 642.43 685 (45) 942.43

Lymph node stage

1 674 (61) 542.19 4.811 0.09 0.45 955 (62) 754.30 12.56 0.002 0.004

2 341 (31) 574.98 428 (28) 767.94

3 91 (8) 556.75 153 (10) 858.69

Nottingham Prognostic Index

Good 332 (30) 458.21 102.4 5.6 × 10
−23

<0.0001 521 (34) 620.66 156.60 9.8 × 10
−35

<0.0001

Moderate 593 (53) 578.27 768 (50) 828.08

Poor 184 (17) 654.64 246 (16) 892.49

IHC subtypes

ER+/HER2- low
proliferation

250 (27) 391.92 178.4 1.8 × 10
−38

<0.0001 N/A

ER+/HER2- high
proliferation

351 (38) 419.54

Triple negative 191 (20) 617.95

HER2+ 143 (15) 519.69
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progesterone receptor (PgR) positivity was defined as
≥ 1% staining. Immunoreactivity of HER2 in TMA
cores was scored using standard HercepTest guide-
lines (Dako). Chromogenic in situ hybridisation
(CISH) was used to quantify HER2 gene amplification
in borderline cases using the HER2 FISH pharmDx™
plus HER2 CISH pharmDx™ kit (Dako) and was
assessed according to the American Society of Clinical
Oncology guidelines. BC molecular subtypes were de-
fined based on tumour IHC profile and the Elston-
Ellis [31] mitotic score as: ER+/HER2- low prolifera-
tion (mitotic score 1), ER+/HER2- high proliferation
(mitotic score 2 and 3); HER2-positive class: HER2+
regardless of ER status; triple negative: ER-, PgR- and
HER2- [32]. Basal-like phenotype was defined as tu-
mours expressing cytokeratin (Ck) 5/6, and/or Ck14
and/or Ck17.

Statistical analysis
Statistical analysis was performed using SPSS 22.0
statistical software (SPSS Inc., Chicago, IL, USA).
Spearman’s correlation coefficient was calcualted to
examine the association between continuous variables.
The chi-square test was performed to analyse rela-
tionships between categorical variables. For the con-
tinuous variables, differences between three or more
groups were assessed using one-way analysis of vari-
ance (ANOVA) with the post-hoc Tukey multiple
comparison test (for normally distributed data) or
Kruskal-Wallis test (for non-normal distribution). Dif-
ferences between two groups were assessed using the
t test (normally distributed data) or Mann-Whitney
test (non-normal distribution). Survival curves were
analysed by the Kaplan-Meier and log rank test. Cox’s
proportional hazard method was performed for multi-
variate analysis to identify the independent prognos-
tic/predictive factors. The p values were adjusted for
multiple testing using the Bonferroni correction. A p

value ˂0.05 was considered significant. The study end-
points were 10-year BCSS or distant metastasis-free
survival (DMFS).

Results
SLC7A5 genomic profiling
SLC7A5 was amplified in 0.3% and 0.6% of BC cases
in the METABRIC and TCGA datasets, respectively,
while deletion (deep and shallow) was detected in
56% and 68% of cases in the same cohorts respect-
ively. Point mutations in SLC7A5 were extremely rare,
where TCGA data reported just one case with a mis-
sense mutation (Additional file 2: Figure S4A) [33,
34]. SLC7A5 is situated on chromosome 16 (16q24.2);
all the annotated genes, which were located on 16q
[35] were selected to determine their CNV in relation
to SLC7A5 and assess whether these aberrations were
locus-specific or involved large chromosomal seg-
ments. There was significant positive correlation be-
tween SLC7A5 deletion and the deletion of all genes
(p < 0.001, Additional file 3: Table S2) in both the
METABRIC and TCGA data. However, amplification
of three genes (FANCA, CBFA2T3 and CDT1) showed
significant association with the amplified SLC7A5 (p
≤ 0.03, data not shown) in the afore-mentioned data-
sets together.

SLC7A5 expression in breast cancer
SLC7A5 protein expression was observed, predomin-
antly in the membrane of invasive breast cancer cells,
with expression levels varying from absent to high
(Fig. 1b and c). The distribution of the SLC7A5 protein
expression was unimodal and left-skewed. The SLC7A5
mRNA expression had a normal distribution. Expres-
sion of SLC7A5 mRNA and protein were dichotomised
using cut points derived from prediction of patient sur-
vival using X-tile (https://medicine.yale.edu/lab/rimm/
research/software.aspx; Yale University). Positive

Table 1 Clinicopathological associations of SLC7A5 protein expression in the discovery and validation breast cancer series
(Continued)

SLC7A5 protein

Discovery set Validation set

Number (%) Mean p value Adjusted
p value

Number (%) Mean p value Adjusted
p value

Histological type

Ductal (including mixed) 922 (83) 563.83 69.05 3.5 × 10
−14

<0.0001 1335 (87) 782.19 77.07 7.2 × 10
−16

<0.0001

Lobular 101 (9) 454.17 120 (8) 584.17

Medullary 26 (2) 832.02 13 (0.8) 1257.27

Miscellaneous 7 (0.6) 440.50 9 (0.6) 1037.78

Special type 53 (5.4) 472.75 57 (3.6) 655.12

IHC immunohistochemical analysis, ER oestrogen receptor, HER2 human epidermal growth factor receptor 2, NA Not applicable
p value in bold in these tables means statistically significant associations
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SLC7A5 expression (>15 H-score) was observed in 191/
1110 (17%) and 268/1554 (17%) of cases in the discov-
ery and validation sets, respectively, while high SLC7A5
mRNA expression (log2 intensity >8) was observed in

1019/1923 (53%) of the METABRIC breast cancer
cases. A total of 49/1980 (2.4%) of cases had a copy
number (CN) gain of SLC7A5 and 530/1980 (26.7%) a
CN loss. Significant association was observed between

a b

c d

g

e f

Fig. 3 SLC7A5 mRNA expression and its association with clinicopathological parameters and molecular subtypes. a SLC7A5 and tumour size. b
SLC7A5 and tumour grade. c SLC7A5 and lymph node stage. d SLC7A5 and Nottingham Prognostic Index. e SLC7A5 and Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC) integrative clusters. f SLC7A5 and prediction analysis of microarray 50 (PAM50) subtypes, g
SLC7A5 and SMCGENE subtypes in the METABRIC cohort using one-way analysis of variance with the post-hoc Tukey test
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SLC7A5 copy number variation (CNV) and SLC7A5
mRNA expression (p < 0.001, Fig. 2).

SLC7A5 and clinicopathological parameters
Table 1 summarises the associations between SLC7A5
protein expression including larger tumour size, high

tumour grade, and poor Nottingham Prognostic Index
(NPI) (all p < 0.001). Regarding BC metastatic sites, high
SLC7A5 protein levels were associated with the develop-
ment of distant metastases (DM) in the brain (p < 0.001)
and lung (p = 0.04), while there was no association with
development of DM in the bone or liver.

Table 2 Copy number aberrations of SLC7A5 in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
breast cancer series and their association with clinicopathological parameters, MYC copy number aberrations and breast cancer
subtypes

SLC7A5 copy number

Gain Loss

No,
number (%)

Yes,
number (%)

χ2 (p value) Adjusted p value No,
number (%)

Yes,
number (%)

χ2 (p value) Adjusted p value

Age (years)

≥50 1520 (97.7) 36 (2.3) 0.405 (0.524) 1.572 1098 (70.6) 458 (29.4) 27.479 (1.5 × 10− 7) <0.0001

˂50 372 (97.1) 11 (2.9) 321 (83.8) 62 (16.2)

Tumour size

≥2.0 cm 1291 (97.0) 40 (3.0) 5.226 (0.022) 0.132 976 (73.3) 355 (26.7) 0.094 (0.759) 0.282

˂2.0 cm 614 (98.7) 8 (1.3) 452 (72.7) 170 (27.3)

Tumour grade

1 170 (100.0) 0 (0.0) 10.154 (0.006) 0.042 99 (58.2) 71 (41.8) 107.36 4.8 × 10−24 <0.0001

2 756 (98.2) 14 (1.8) 495 (64.3) 275 (35.7)

3 918 (96.4) 34 (3.6) 799 (83.9) 153 (16.1)

Lymph node stage

1 1012 (97.8) 23 (2.2) 0.474 (0.789) 1.578 726 (70.1) 309 (29.9) 10.425 (0.005) 0.02

2 606 (97.4) 16 (2.6) 480 (77.2) 142 (22.8)

3 307 (97.2) 9 (2.8) 237 (75.0) 79 (25.0)

Nottingham Prognostic Index

Good 668 (98.2) 12 (1.8) 2.602 (0.272) 0.080 418 (61.5) 262 (38.5) 76.132 (2.9 × 10−17) <0.0001

Moderate 1071 (97.3) 30 (2.7) 864 (78.5) 237 (21.5)

Poor 192 (96.5) 7 (3.5) 168 (84.4) 31 (15.6)

Histological type

Ductal 1500 (97.2) 44 (2.8) 6.880 (0.230) 1.150 1154 (74.7) 390 (25.3) 29.544 (0.00001) 0.0001

Lobular 145 (98.6) 2 (1.4) 88 (59.9) 59 (40.1)

Medullary 30 (93.8) 2 (6.3) 30 (93.8) 2 (6.2)

Miscellaneous 12 (100.0) 0 (0.0) 9 (75.0) 3 (25.0)

Special type 113 (100.0) 0 (0.0) 74 (66.8) 39 (33.2)

PAM50 subtype

Luminal A 710 (98.9) 8 (1.1) 40.515 (3.3 × 10−8) <0.0001 423 (58.9) 295 (41.1) 248.3 (1.4 × 10−52) <0.0001

Luminal B 477 (97.7) 11 (2.3) 312 (63.9) 176 (36.1)

Basal 305 (92.7) 24 (7.3) 319 (97.0) 10 (3.0)

HER2+ 235 (97.9) 5 (2.1) 219 (91.3) 21 (8.7)

Normal-like 198 (99.5) 1 (0.5) 172 (11.9) 27 (5.1)

MYC gain

No 1228 (98.9) 14 (1.1) 25.0 (5.5 × 10−7) <0.0001 1446 (73.3) 528 (26.7) 0.132 (0.716) 1.432

Yes 703 (95.3) 35 (4.7) 4 (66.7) 2 (33.3)

PAM50 prediction analysis of microarray, HER2 human epidermal growth factor receptor 2
p value in bold in these tables means statistically significant associations
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High SLC7A5 mRNA expression was significantly
associated with larger tumour size (Fig. 3a, p < 0.001),
higher grade (Fig. 3b, p < 0.001), positive nodal me-
tastasis (Fig. 3c, p< 0.001) and poor NPI (Fig. 3d, p <
0.001). Both SLC7A5 mRNA and SLC7A5 protein
were associated with medullary-like tumours. Where
data were available, these associations were confirmed
using the Breast Cancer Gene-Expression Miner v4.0
(Additional file 4: Figure S1A, B) and the TCGA data
(Additional file 2: Figure S4B). In addition SLC7A5
copy number loss was significantly associated with
good prognostic parameters including, lower grade
and good NPI (Table 2, p < 0.001). There was positive
association between SLC7A5 copy number gain and
MYC gain (p < 0.001, Table 2).

SLC7A5 expression in molecular BC subtypes
SLC7A5 protein expression was associated with nega-
tive hormone receptor status and HER2+ tumours (all
p ≤ 0.002, Table 3) and it was highly expressed in triple
negative (TN) and basal-like phenotype malignancies
compared to non-TN and non-basal-like tumours (p <
0.001, Table 3). Similarly, high expression of SLC7A5
mRNA was significantly associated with hormone re-
ceptor negative (ER- and PgR-) and HER2+ tumours

(all p < 0.001, Table 4). These results were in concord-
ance with the findings of the Breast Cancer Gene-
Expression Miner v4.0 (Additional file 4: Figure S1C-
F) and TCGA data analysis (Additional file 2: Figure
S4C-E).
When comparing the levels of SLC7A5 mRNA expres-

sion in the intrinsic (prediction analysis of microarray 50
(PAM50)) subtypes [36], high expression was observed
in basal-like, HER2+ and lLuminal B tumours (Fig. 3f, p
< 0.001). Similarly, within the METABRIC integrative
clusters, high SLC7A5 mRNA expression was associated
with clusters 5 (ERBB2 amplified), 9 (luminal B sub-
group) and 10 (TN/basal-like) (p < 0.001, Fig. 3e). In the
SCMGENE subtypes there was higher expression of
SLC7A5 mRNA in the ER+/HER2- high proliferation
class (luminal B) compared with the ER+/HER2- low
proliferation class (luminal A) (p < 0.001, Fig. 3g). Asso-
ciation between SLC7A5 mRNA and PAM50 subtypes
was confirmed using the Breast Cancer Gene-Expression
Miner v4.0 (Additional file 4: Figure S1G). There was
lower expression of SLC7A5 protein in the low-
proliferation tumours than in the other defined molecu-
lar subtypes subtypes (p < 0.001, Table 1).
At the gene level, there was a greater copy number

gain of SLC7A5 (p < 0.001, Table 2 in the basal-like

Table 3 Association of SLC7A5 protein expression and the expression of other molecular biomarkers in the discovery and validation
sets

SLC7A5 protein

Discovery set Validation set

Number (%) Mean p value Adjusted p value Number (%) Mean p value Adjusted p value

ER

Negative 270 (25) 722.20 3.2 × 10−48 <0.0001 300 (19) 1094.70 4.6 × 10−76 <0.0001

Positive 827 (75) 492.45 1240 (81) 692.06

PgR

Negative 435 (41) 619.12 8.8 × 10−27 <0.0001 612 (42) 855.53 1.3 × 10−34 <0.0001

Positive 630 (59) 473.54 853 (58) 645.09

HER2

Negative 921 (87) 521.78 0.00004 0.0001 1337 (92) 718.53 0.001 0.002

Positive 143 (13) 601.54 116 (8) 824.67

Triple negative

No 896 (83) 503.50 4.5 × 10−35 <0.0001 1286 (83) 696.76 1.5 × 10−62 <0.0001

Yes 185 (17) 722.61 225 (17) 1094.6

Basal phenotype

No 794 (74) 510.96 6.8 × 10−13 <0.0001 N/A

Yes 285 (26) 620.90

P53 protein

Negative 760 (72) 499.14 4.1 × 10−13 <0.0001 N/A

Positive 298 (28) 606.92

ER oestrogen receptor, PgR progesterone receptor, HER2 human epidermal growth factor receptor, NA not applicable
p value in bold in these tables means statistically significant associations
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subtype, while SCL7A5 copy number loss was mainly
observed in the luminal A subtype (p < 0.001, Table 2).

SLC7A5 expression and other associated markers
Correlation between SLC7A5 mRNA and associated genes
was investigated in the METABRIC dataset (Table 5). The
genes were selected based on previous publications, and
were either regulatory genes or others that share or sup-
port the SLC7A5 biological function, which focused
mainly on glutamine transport and glutamine metabolism
[2, 5, 15, 37–41]. There was positive correlation between
SLC7A5 mRNA expression and the expression of regula-
tory genes, several amino acid transporters and genes in-
volved in the glutamine-proline regulatory axis. There was
a positive relationship between SLC7A5 and MYC, mTOR
and ATF4 (p < 0.001) and the positive relationship be-
tween MYC, HIF2A and SLC7A5 was only observed in lu-
minal B tumours (p = 0.01 and p < 0.001, respectively).
High SLC7A5 mRNA expression was specifically asso-

ciated with the enzymes involved with conversion of glu-
tamine (Gln) to proline, where PYCR1 and ALDH18A1
showed a positive relationship with SLC7A5 in almost
all subtypes (p < 0.02).
The majority of glutamine transporters were signifi-

cantly associated with SLC7A5 expression primarily in
triple negative tumours and to a lesser extent luminal

and HER2+ subtypes. SLC7A5 was significantly corre-
lated with SLC1A5 in all subtypes (p < 0.02).
TP53 mutations were also highly prevalent in breast tu-

mours where there was high SLC7A5 mRNA expression (p
< 0.001, Tables 3 and 4). Moreover, high SLC7A5 protein
was positively associated with high p53 protein (p < 0.001).
SLC7A5 protein expression was significantly

expressed in breast tumours with high Ki67, and the
upstream effector MYC (p < 0.001, Table 6). SLC1A5,
GLS, PYCR1 and PIK3CA were significantly expressed
in breast tumours with high expression of SLC7A5 (p
< 0.001), while the low expression of SLC7A5 was asso-
ciated with high levels of p-mTORC1 (p < 0.001)
(Table 6).

SLC7A5 expression and patient outcome
Both high SLC7A5 mRNA (p < 0.001) (Fig. 4a) and
protein (p < 0.001) expression were associated with
poor BCSS in the discovery and validation sets
(Fig. 5a, b). This association was anticipated as the
cutoff was based on the prediction of BCSS.
While SLC7A5 mRNA expression was not predict-

ive of BCSS in any specific molecular class (Fig. 4b-
e), high expression of SLC7A5 protein was only pre-
dictive of shorter BCSS in ER+ high proliferation (p =
0.007, Fig. 5d) and HER2+ tumours (p = 0.03, Fig. 5f ).

Table 4 Association of SLC7A5 mRNA expression and the expression of other molecular biomarkers in the Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC) series

SLC7A5 mRNA expression

Number (%) Mean t test p value Adjusted p value

Estrogen receptor

Negative 474 (24) 9.543 26.90 5.6 × 10− 113 <0.0001

Positive 1506 (76) 7.943

Progesterone receptor

Negative 940 (47) 8.862 18.73 1.07 × 10−71 <0.0001

Positive 1040 (53) 7.841

HER2

Negative 1733 (88) 8.216 −12.35 1.1 × 10−29 <0.0001

Positive 247 (12) 9.095

Triple negative (ER-, PR-, HER2-)

No 1660 (84) 8.065 −22.12 1.9 × 10−73 <0.0001

Yes 320 (16) 9.676

Basal phenotype

No 1645 (83) 8.036 −25.70 1.5 × 10−91 <0.0001

Yes 329 (17) 9.788

TP53 mutation

Wild-type 721 (88) 8.132 −7.47 1.2 × 10−11 <0.0001

Mutation 99 (12) 9.148

ER oestrogen receptor, PgR progesterone receptor, HER2 human epidermal growth factor receptor 2
p value in bold in these tables means statistically significant associations
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Table 5 Correlation of SLC7A5 expression with the expression of other related genes in the Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC) data

SLC7A5 mRNA expression

All cases (n = 1980) Luminal A (n = 368) Luminal B (n = 367) HER2+ (n = 110) Triple negative (n = 150)

Correlation Coefficient (p value) Adjusted p value

Regulatory and other associated genes

MYC 0.133 (2.4 × 10
−9)

<0.0001 0.012 (0.752) 4.145 0.155 (0.001) 0.019 0.066 (0.310) 4.650 0.103 (0.062) 0.434

mTOR 0.085 (0.0001) 0.001 −0.005 (0.904) 1.824 0.088 (0.052) 0.728 −0.023
(0.723)

5.784 0.067 (0.226) 1.130

VEGFA 0.352 (6.4 × 10
−59)

<0.0001 0.166
(0.000008)

0.0002 0.260 (5.3 × 10
−9)

<0.0001 0.269
(0.00002)

0.0005 0.244 (0.000008) 0.0002

HIF2A −0.050 (0.028) 0.168 −0.023 (0.536) 4.896 0.215 (0.000002) <0.0001 0.112 (0.083) 1.328 −0.282 (1.8 × 10
−7)

<0.0001

ATF4 0.159 (1.0 × 10
−12)

<0.0001 − 0.029 (0.433) 5.100 0.057 (0.208) 2.080 0.143 (0.026) 0.468 0.108 (0.050) 0.450

Glutamine-proline regulatory axis

GLS 0.048 (0.032) 0.192 0.008 (0.829) 3.428 0.055 (0.222) 1.998 −0.006
(0.927)

4.635 −0.115 (0.038) 0.456

ALDH4A1
−0.053 (0.019) 0.133 0.018 (0.638) 4.512 0.063 (0.163) 1.793 −0.028

(0.663)
5.967 −0.134 (0.015) 0.225

PRODH 0.004 (0.858) 1.716 −0.034 (0.369) 4.763 −0.032 (0.483) 2.415 0.037 (0.573) 5.73 0.030 (0.582) 1.746

PYCR1 0.32 (1.5 × 10
−50)

<0.0001 0.143 (0.0001) 0.001 0.253 (1.3 × 10
−8)

<0.0001 0.210 (0.001) 0.024 0.303 (1.9 × 10
−8)

<0.0001

ALDH18A1
0.222 (1.6 × 10
−23)

<0.0001 0.151 (0.00004) 0.0008 0.144 (0.001) 0.018 0.168 (0.009) 0.180 0.356 (2.9 × 10
−11)

<0.0001

GLUL −0.18 (3.3 × 10
−16)

<0.0001 0.134 (0.0003) 0.005 0.008 (0.863) 1.726 −0.001
(0.991)

1.982 −0.122 (0.028) 0.392

GLUD1 −0.38 (4.3 × 10
−69)

<0.0001 − 0.161
(0.00001)

0.0002 − 0.237 (1.1 × 10
−7)

<0.0001 −0.148
(0.022)

0.418 −0.112 (0.042) 0.420

Glutamine/glutamate transporters

SLC1A5 0.29 (4.5 × 10
−41)

<0.0001 0.170
(0.000005)

0.0001 0.150 (0.001) 0.017 0.208 (0.001) 0.023 0.25 (0.000002) <0.0001

SLC3A2 0.17 (1.1 × 10
−14)

<0.0001 0.067 (0.072) 3.780 0.193 (0.00001) 0.0002 0.184 (0.004) 0.084 0.158 (0.004) 0.064

SLC6A19 0.004 (0.869) 1.738 0.041 (0.273) 4.428 −0.008 (0.859) 2.577 0.047 (0.473) 5.676 −0.103 (0.061) 0.488

SLC7A6 0.362 (2.7 × 10
−62)

<0.0001 0.254 (5.3 × 10
−12)

<0.0001 0.33 (2.0 × 10−
14)

<0.0001 0.284
(0.000008)

0.0002 0.071 (0.201) 1.206

SLC7A7 0.19 (4.6 × 10
−19)

<0.0001 0.007 (0.857) 2.712 0.085 (0.061) 0.793 0.041 (0.530) 5.830 −0.22 (0.00005) 0.0001

SLC7A8 −0.42 (1.1 × 10
−88)

<0.0001 −0.115 (0.002) 0.034 −0.103 (0.022) 0.352 −0.203
(0.002)

0.044 −0.40 (3.9 × 10−
14)

<0.0001

SLC7A9 − 0.068 (0.002) 0.01 0.025 (0.510) 4.82 0.044 (0.333) 2.331 −0.123
(0.056)

0.952 0.283 (1.8 × 10
−7)

<0.0001

SLC38A1 −0.10
(0.000003)

<0.0001 −0.041 (0.270) 3.549 0.039 (0.391) 2.346 0.053 (0.413) 5.369 0.113 (0.041) 0.451

SLC38A2 −0.055 (0.015) 0.120 −0.074 (0.048) 1.05 −0.103 (0.022) 0.330 0.007 (0.917) 5.502 −0.119 (0.032) 0.416

SLC38A3 <0.0001 0.140 (0.0001) 0.002 0.046 (0.311) 2.488 0.003 (0.958) 2.874 0.196 (0.0003) 0.005
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There was no association between SLC7A5 protein
and outcome in ER+ low proliferation (Fig. 5c) or in
TNBC (Fig. 5e). In multivariate Cox regression ana-
lysis, SLC7A5 mRNA was a predictor of shorter BCSS
independent of tumour size, grade or lymph node
stage (p = 0.006, Additional file 5: Table S3) but not
in any specific subtype. However, SLC7A5 protein
was significant only in the ER+ high-proliferation tu-
mours (p = 0.02, Table 7) and not in any other sub-
types (data not shown).
Likewise, high SLC7A5 protein expression was associ-

ated with shorter distant metastases-free survival
(DMFS) (p < 0.001; Additional file 6: Figure S2A, B)
within the ER+ high-proliferation class (p = 0.03,
Additional file 6: Figure S2D) but not in other subtypes
(Additional file 6: Figure S2C, E, F). This association
was identified in the discovery set and validated in the
validation set. The relationship between high SLC7A5
mRNA expression and poor patient outcome in ER+
disease, but not ER- disease, was confirmed using
Breast Cancer Gene-Expression Miner (Additional file 7:
Figure S3A, B, C).

Discussion
Breast cancer is a heterogeneous disease with various sub-
types [42] differing in terms of morphology, molecular
and biological profiles, response to therapy and clinical be-
haviour. In addition, different subtypes exhibit disparity in
their metabolic pathways and their nutritional needs. The
most common form of BC (~ 55–80%) is the ER+/luminal
tumour [43, 44], and tumours that belong to this class are
also variable in terms of recurrence, mortality rates and
disease prognosis [43]. Therefore, understanding the biol-
ogy of BC and exploring the metabolic pathways could
help to identify potential novel therapeutic targets.
Cancer cells must alter their metabolism in order to

satisfy the demands of necessary energy and cellular
building blocks. It is widely known that amino acid
transport systems play a principal role in sustaining
the proliferation of cancer cells by supplying the re-
quired amino acids for protein synthesis and by acti-
vation of nutrient signalling through the mTORC1
complex. This study has revealed for the first time
that SLC7A5 is a key amino acid transporter in the
more aggressive and highly proliferative ER+ tumours.
SLC7A5 is located in 16q24.2. This study showed

that SLC7A5 deletion, but not amplification, was sig-
nificantly correlated with all the annotated genes lo-
cated in the same chromosomal region, indicating that
the deletion was not locus-specific. Interestingly, E-
cadherin (CDH1), which was located in 16q22.1, was
also implicated. It is widely known that most lobular
tumours harbour loss of heterozygosity (LOH) at
chromosome 16 and are missing the wild type CDH1
allele [45]. In this study, approximately 40% of
METABRIC cases with SLC7A5 loss were associated
with invasive lobular histology. In addition, SLC7A5
protein expression in lobular carcinoma has a rela-
tively lower mean rank value compared to the other
histological subtypes, confirming that deletions in-
volve large segments of q16, which can reflect the BC
phenotype.

Table 6 Correlation between SLC7A5 protein expression and
other biomarkers in the discovery set

SLC7A5 protein

Biomarker Correlation coefficient p value Adjusted p value

c-MYC 0.164 8.2 × 10−7 <0.0001

Ki67 0.311 1.1 × 10−21 <0.0001

P-mTORC1 −0.150 0.00001 <0.0001

PIK3CA 0.190 3.4 × 10−7 <0.0001

SLC1A5 0.331 1.1 × 10−25 <0.0001

GLUD1 0.053 0.09 0.180

GLS 0.371 2.2 × 10−30 <0.0001

PYCR1 0.283 1.07 × 10−16 <0.0001

p value in bold in these tables means statistically significant associations

Table 5 Correlation of SLC7A5 expression with the expression of other related genes in the Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC) data (Continued)

SLC7A5 mRNA expression

All cases (n = 1980) Luminal A (n = 368) Luminal B (n = 367) HER2+ (n = 110) Triple negative (n = 150)

Correlation Coefficient (p value) Adjusted p value

0.18 (8.3 × 10
−17)

SLC38A5 0.011 (0.627) 2.574 −0.069 (0.066) 1.08 −0.077 (0.090) 1.080 −0.017
(0.793)

5.551 −0.017 (0.757) 1.514

SLC38A7 0.306 (3.8 × 10
−44)

<0.0001 0.270 (2.0 × 10
−13)

<0.0001 0.32 (1.2 × 10
−13)

<0.0001 0.064 (0.324) 4.536 0.177 (0.001) 0.017

SLC38A8 0.023 (0.312) 1.560 −0.019 (0.612) 4.466 0.011 (0.801) 3.204 −0.006
(0.930)

3.720 −0.039 (0.482) 1.928

p value in bold in these tables means statistically significant associations
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SLC7A5 is widely expressed in many human cancers
and various cancer cell lines [46]. The current study in-
cluded two large discovery and validation cohorts to
confirm the significant association between the high
SLC7A5 protein expression and the poor prognostic
clinico-pathological parameters, including larger tumour
size, higher grade and poor NPI. Furthermore, high
SLC7A5 expression was significantly associated with
higher expression of the proliferative marker (Ki67). This
supports the results of previous studies which

demonstrated that these two biomarkers are significantly
correlated in tongue cancer [47], neuroendocrine carcin-
oma of the lung [48], thymic carcinoma [49] and breast
cancer [50], indicating that SLC7A5 is critical for prolif-
eration in cancer cells.
With respect to the breast cancer ER+ subtypes,

SLC7A5 expression was lower in ER+ tumours that have
low proliferation (luminal A subtype) compared with the
highly proliferative ER+ (luminal B) malignancies, and it
was primarily associated with poor patient outcome and

a b

c

e

d

Fig. 4 SLC7A5 mRNA and breast cancer patient outcome. a SLC7A5 vs breast-cancer-specific survival (BCSS) in all cases. b SLC7A5 vs BCSS in lu-
minal A tumours. c SLC7A5 vs BCSS in luminal B tumours. d SLC7A5 vs BCSS in triple negative tumours. e SLC7A5 vs BCSS in human epidermal
growth factor receptor 2 (HER2+) tumours
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shorter DMFS in the latter class only. This is most likely
due to their heavier energy and nutrient requirements
for cell survival, proliferation and metastasis. This was
anticipated, as it has been shown that over expression of
SLC7A5 is actively involved in the proliferation of vascu-
lar smooth muscle cells [51] and it is co-expressed with
vascular endothelial growth factor (VEGF) in the pri-
mary and metastatic sites of many cancers [37], which
may be implicated for the metastatic process. In this

study the most significant positive correlation between
mRNA expression of SLC7A5 and VEGFA was identified
in the luminal B subtype. In this regard, Bartlett et al. in-
cluded SLC7A5 as a part of the five-gene Mammostrat®
immunohistochemistry panel, where the higher expres-
sion is used to predict recurrence-free survival (RFS),
DMFS and overall survival (OS) in ER+ breast cancer
during endocrine therapy [52]. However, they did not
consider the different molecular subtypes of BC.

a b

c d

e f

Fig. 5 SLC7A5 and breast cancer patient outcome. a SLC7A5 vs breast-cancer-specific survival (BCSS) in all discovery set cases. b SLC7A5 vs BCSS
in all validation set cases. c SLC7A5 vs BCSS in oestrogen receptor (ER) + low proliferation tumours in the combined discovery and validation
cases. d SLC7A5 vs BCSS in ER + high proliferation tumours in the combined discovery and validation cases. e SLC7A5 vs BCSS of triple negative
tumours in the combined discovery and validation cases. f SLC7A5 vs BCSS human epidermal growth factor receptor 2 (HER2)+ tumours in the
combined discovery and validation cases
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SLC7A5 mRNA and protein was also highly expressed
in TNBC and HER2+ BC, in concordance with Furuya
et al. [50]. However, in these subtypes the significant as-
sociation between SLC7A5 protein expression and pa-
tient outcome was only observed in the HER2+
tumours. Among all BC subtypes, SLC7A5 protein ex-
pression was an independent predictor of short BCSS in
ER+ high-proliferation tumours only. In this regard, the
larger sample of ER+ high-proliferation cases might re-
flect the stronger significance compared with the smaller
sample of HER2+ and TNBC tumours. We therefore
suggest that further confirmation in larger cohorts of
HER2+ and TN tumours is warranted.
Previous studies have shown regulation of SLC7A5 by

other proteins including the tumour oncogene Myc,
which induces SLC7A5 [4, 5]. In the current study, the
relationship between SLC7A5 and other regulatory pro-
teins in both mRNA and protein expression was investi-
gated. A positive relationship was observed between
SLC7A5 and Myc in both protein and mRNA levels, and
this correlation remained significant only in luminal B
subtype, when different subtypes were investigated.
ATF4-dependent transcripts also encode for SLC7A5
upon amino acid deprivation [39] and in this study there
was positive correlation between ATF4 and SLC7A5
gene expression, in line with expectations. A previous
study showed that activation of the HIF2α pathway in-
creases mTORC1 activity by upregulating expression of
the amino acid carrier SLC7A5 [38] and the current
study confirmed the positive correlation between HIF2α
and SLC7A5, which was only observed in luminal B tu-
mours. SLC7A5 functions by importing essential amino
acids to cancer cells and research has detailed the role of
amino acids, particularly leucine, in activating mTORC1,
which in turn controls protein translation and cell prolif-
eration, and prevents apoptosis in malignant cells [2, 3].
This study showed positive correlation between SLC7A5
and mTOR at the mRNA level. However, there were
conflicting results in the analysis of protein levels of
SLC7A5, whereby high SLC7A5 expression was associ-
ated with lower expression of the mTORC1 phosphory-
lated at ser (2448), which was included in this study.

This was unsurprising as Cheng et al. confirmed that
phosphorylation of mTORC1 at ser (2448), which is
stimulated by growth factors, was mutually exclusive
with mTORC1 phosphorylated at thr (2446), which is
regulated by amino acids [53]. These observations may
explain why SLC7A5 over expression is primarily associ-
ated with poor outcome only in the high proliferation
ER+ tumours.
This study further investigated the association of SLC7A5

expression with other glutamine transporters, in which
some variability in the expression of amino acid trans-
porters across molecular subtypes was observed. For ex-
ample, the TN subtype was the main class associated with
the transporters required for glutamine influx, perhaps be-
cause it depends on delivery of glutamine instead of synthe-
sis. In contrast, positive correlation between SLC7A5 and
the glutamine synthase enzyme GLUL was observed in lu-
minal A tumours, suggesting that this subtype might rely
on glutamine neosynthesis rather than uptake. SLC1A5
functionally couples with SLC7A5 to allow the cellular in-
flux and efflux of glutamine, as SLC1A5 mediates uptake of
glutamine, while SLC7A5 uses intracellular glutamine con-
centrations to adjust the essential amino acid cytoplasmic
pool for metabolic demands and signalling to mTORC1
[15]. Here we observed that SLC7A5 and SLC1A5 are posi-
tively correlated in all the BC subtypes.
Previous studies have raised awareness and revealed

the importance of the proline-glutamine (Pro-Gln) regu-
latory axis in BC. SLC7A5 appears to have a pivotal role
in this regulatory axis, as its expression was highly asso-
ciated with the enzymes that mediate glutamate degrad-
ation to form the amino acid proline, which has been
shown to play a role in assisting tumour growth by dif-
ferent mechanisms [54].
Blocking of SLC7A5 using its inhibitor, 2-

aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH),
efficiently decreased colony formation of MDA-MB-231
TNBC cells [55]. Even though the consequences of
blocking SLC7A5 in the highly proliferative ER+ tu-
mours remain undetermined, this study suggests that
SLC7A5 can potentially be used as a therapeutic target
for luminal B BC.

Table 7 SLC7A5 protein expression and patient outcome in the combined discovery and validation sets in all cases and in ER-
positive high proliferation tumours

SLC7A5 protein

All cases ER+ high proliferation

Parameter Hazard ratio (95% CI) p value Adjusted p value Hazard ratio (95% CI) p value Adjusted p value

SLC7A5 1.001 (1.000–1.003) 0.063 0.126 1.004 (1.001–1.006) 0.006 0.024

Lymph node stage 2.060 (1.813–2.341) 1.7 × 10−28 <0.0001 1.756 (1.427–2.161) 1.04 × 10−7 <0.0001

Size 1.365 (1.111–1.678) 0.003 0.009 1.169 (0.838–1.632) 0.358 0.716

Grade 2.454 (2.023–2.977) 1.8 × 10−20 <0.0001 1.756 (1.154–2.672) 0.009 0.027

p value in bold in these tables means statistically significant associations
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Conclusion
This study revealed and confirmed that the glutamine
transporter SLC7A5 is associated with poor prognos-
tic characteristics and poor survival outcome. Over
expression of SLC7A5 appears to play a role in the
proliferation and progression of the aggressive ER+
subtype of breast cancer, thus it could act as a poten-
tial therapeutic target. Functional assessment is neces-
sary to reveal the specific role played by this amino
acid transporter in the highly proliferative subclass
and HER2+ BC.
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