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Abstract A novel phase field formulation implemented within a material
point method setting is developed to address brittle fracture simulation in
anisotropic media. The case of strong anisotropy in the crack surface energy
is treated by considering an appropriate variational, i.e., phase field approach.
Material point method is utilized to efficiently treat the resulting coupled gov-
erning equations. The brittle fracture governing equations are defined at a set
of Lagrangian material points and subsequently interpolated at the nodes of
a fixed Eulerian mesh where solution is performed. As a result, the quality of
the solution does not depend on the quality of the underlying finite element
mesh and is relieved from mesh-distortion errors. The efficiency and validity
of the proposed method is assessed through a set of benchmark problems.

Keywords brittle fracture · anisotropy · phase field · material point method

1 Introduction

Anisotropy occurs naturally in several material such as timber, geo-materials,
and biological tissues due to inherent heterogeneities, inclusions and/ or con-
stituent distribution that in many cases are distributed in a random fashion.
Industrial materials may also exhibit anisotropy due to their controlled or
partially controlled manufacturing process as in the case of laminated com-
posites. Anisotropy significantly affects crack formation. In cases of even weak
anisotropy, stress concentrations pertinent to crack initiation and propagation
will preferentially develop along the weak directions of the deformable medium.
This intriguing mechanical response is being often highlighted in experiments.
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Very recently variational methods have been introduced, in particular phase-
field approximations, providing a robust mathematical framework for the de-
scription of discontinuities [14]. Phase-field fracture models represent cracks by
means of an additional continuous field (termed the phase-field) that is defined
over the entire deformable domain and smoothly varies from zero (inside the
crack) to one (away from the crack). Relieved from the singularity bottle-neck,
phase-field models overcome the need for algorithmic tracking of discontinu-
ities. Consequently, phase-field method is able to handle complex crack paths,
including crack branching and crack merging that are commonly observed in
dynamic brittle fracture problems [10]. Phase-field description of brittle and
ductile fracture has been extensively used in the literature for the isotropic
case (see, e.g., [1,23]). Very recently, extensions have been introduced to tackle
fracture albeit in particular cases, i.e., crystals demonstrating cubic symmetry
[12,21], arterial walls under the assumption of exponential anisotropy [16], and
cleavage fracture pertaining to crystal structures [34]. In this work, a mathe-
matical framework is formulated to address the case of phase-field description
of brittle fracture for the general case of a fully anisotropic material.

Crack initiation and propagation has been treated within the realm of par-
ticle based methods such as discrete element methods [32], smooth particle
hydrodynamics [7] and peridynamics [8]. Although such approaches are able
to resolve crack paths with extreme accuracy both in the quasi-static and
dynamic regime, they are computationally taxing as a large number of par-
ticles is required to highlight the underlying interactions. Furthermore, a set
of additional procedures is required to achieve convergence, i.e., high-order
integration schemes and neighbour searching [28].

Material Point Method (MPM) [37] has emerged as an extension of Particle-
In-Cell methods, combining concepts pertinent to both the Eulerian and La-
grangian description of classical mechanics [6]. To this point, MPM has been
proven advantageous in the analysis of large scale problems involving material
and geometric non-linearities, especially within the context of coupled field
problems, e.g., poro-mechanics [19,3]. In MPM, the deformable domain is dis-
cretised into a set of material points that are moving within a fixed (Eulerian)
computational grid. Solution of the governing equations is performed in the
Eulerian grid utilizing appropriate interpolation functions.

MPM has been found to offer significant computational advantages when
compared to purely meshless methods since it does not require time-consuming
neighbour searching. MPM has been proven to be sensitive to the so-called
cell crossing error manifested as an oscillation in the stress field when a mate-
rial point moves from one back-ground cell to another [36,35]. This has been
treated in the literature by various methods, most notably by introducing the
Generalized Interpolation Material Point Method (GIMPM) [4] or more re-
cently with a convected particle domain interpolation technique (CPDI) [30,
29]. In this work, the Eulerian Grid is formulated by high-order B-Splines
shape functions to treat this issue due to their implementational efficiency [36,
35]. Numerical investigations in this work show that the use of higher-order
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B-splines further improves the convergence rates of the coupled phase-field
formulation for crack propagation introduced.

Material Point Methods are advantageous when used to resolve crack paths
for two reasons. First, sharp discontinuities in the displacement field can be
naturally treated, as response is monitored at material points that move within
a fixed Eulerian grid. Thus, no re-meshing and or enrichment of the underlying
finite element mesh is required as the latter is relieved from the detrimental
effects of mesh distortion. In [33] and also [39] decohesion was treated by intro-
ducing a cohesive material constitutive framework at the material point level.
Brittle fracture within an MPM setting was examined for the first time in [26]
although considering only the case of pre-existing, i.e., explicit, crack geome-
tries by allowing multiple velocity fields to be defined at the background grid.
More recently, cohesive modelling approaches have been introduced in an ef-
fort to further generalize the applicability of the MPM for problems pertinent
to arbitrary crack paths [13,5,41,31]. A continuum damage mechanics MPM
methodology has also been introduced to tackle damage initiation and propa-
gation in the anisotropic regime [27]. Phase field simulation of brittle fracture
of isotropic materials has been introduced by the authors within an MPM
setting in [20]. In this work, MPM is reformulated to incorporate a general
anisotropic phase-field description for crack propagation and its merits and
bottlenecks are assessed as compared to a standard Finite Element (FEM)
implementation.

This work is organized as follows: the governing equations of brittle fracture
for the general case of an anisotropic medium together with the anisotropic
phase-field model developed in this work are introduced in Section 2. Next,
the Material Point Method implementation is discussed in Section 3. Finally,
in Section 4 a set of benchmark tests is presented and the efficiency of the
proposed formulation is assessed. The proposed MPM framework for fracture
in anisotropic media is verified against an anisotropic finite element phase-field
implementation.

2 Phase field modelling for anisotropic fracture

2.1 Preliminaries

In the following, the case of an arbitrary deformable domain Ω is considered.
The domain is sufficiently kinematically restrained along the boundary ∂Ωū ⊂
∂Ω. Furthermore, it is assumed that a crack path Γ evolves, under the action
of a set of tractions t̄ applied on ∂Ωt̄ ∈ ∂Ω and body forces b. In his theory
of brittle fracture, Griffith [15] postulated that the potential energy of the
deformable domain Ω with an evolving crack path is defined as

Ψpot = Ψel + Ψf =

∫
Ω

ψel (ε) dΩ +

∫
Γ

Gc (θ) dΓ (1)
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Fig. 1 Deformable domain Ω

where Ψel and Ψf are the elastic strain energy and the fracture energy (termed
herein as surface energy for brevity) respectively. Furthermore, ψel (ε) corre-
sponds to the elastic energy density, whereas ε is the symmetric strain tensor
which under the small strain assumption is defined as

ε =
1

2

(
∇u +∇uT

)
(2)

where the (∇) stands for the gradient operator and u(x, t) for the displacement
field.

The term Gc (θ) corresponds to the critical fracture energy density released
(surface energy density) over the crack path Γ . In the anisotropic case, this is
considered to explicitly depend on the angle of orientation of the crack path
θ. Thus, the integral expression representing the fracture energy in Eq. (1)
is defined on the assumption that both Γ and θ at the current configuration
are known. Standard computational fracture mechanics procedures revert to
path tracking and optimization algorithms to predict and resolve the crack
geometry as it evolves.

To avoid this, phase field approximation redefines the surface energy line
integral expression into a representation over the entire domain Ω through the
following approximation [11]

Ψf =

∫
Γ

Gc (θ) dΓ ≈
∫
Ω

ḠcZc,AnisdΩ (3)

where Zc,Anis is a phase-field based functional defined over the entire domain
Ω. Parameter Ḡc in Eq. (3) corresponds to the energy required to create a unit
area of fracture surface Ac. This multiplicative decomposition of the surface
fracture energy effectively implies the following property for the anisotropic
phase field functional, i.e.,

Ac =

∫
Ω

Zc,AnisdΩ



Title Suppressed Due to Excessive Length 5

In this work, the 4th order functional Zc,Anis introduced in [21] is employed
according to Eq. (4)

Zc,Anis =

 (c− 1)
2

4l0
+ l0|∇c|2 + l30

∑
ijkl

γijkl
∂2c

∂xi∂xj

∂2c

∂xk∂xl

 (4)

where c(x, t) ∈ [0, 1] is a phase-field defined over the domain Ω, l0 ∈ R is
a length scale parameter and γijkl, i, j, k, l = 1 . . . 3 are the components of
a 4th order anisotropic tensor corresponding to the anisotropic constitutive
behaviour of the material. The length scale parameter l0 essentially defines a
region in the vicinity of the crack path where the fracture energy is released.
The larger the value of l0 the larger the area over which the effect of fracture
is effectively smeared. Values of l0 → 0 provide solutions that converge to the
discrete fracture solution [11].

Considering the limit value of phase field c = 1 in Eq. (4) results in the
minimum value of the crack surface integral, i.e., Ψf = 0 which corresponds
to the uncracked state. Similarly, it can be shown that the limit value c = 0
corresponds to the maximum value of Ψf by asking that ∂Zc,Anis/∂c.

The tensor γ is conveniently defined in the three dimensional space utilizing
Voigt notation as

γ =


γ1111 γ1122 γ1133 γ1112 γ1123 γ1113

γ2211 γ2222 γ2233 γ2212 γ2223 γ2213

γ3311 γ3322 γ3333 γ3312 γ3323 γ3313

γ1211 γ1222 γ1233 γ1212 γ1223 γ1213

γ2311 γ2322 γ2333 γ2312 γ2323 γ2313

γ1311 γ1322 γ1333 γ1312 γ1323 γ1313

 (5)

whereas in the two-dimensional case γ reduces to

γ =

γ1111 γ1122 γ1112

γ2211 γ2222 γ2212

γ1211 γ1222 γ1212

 (6)

Fracture propagation emerges form Eq. (3) through the minimization of the
total potential energy; in addition, as a crack propagates within the domain Ω
the value of the surface energy integral will be increasing with a corresponding
decrease in the elastic strain energy.

This decrease corresponds to the degradation of material properties at
the vicinity of the crack Γ and is accounted for in phase field modelling by
introducing a non-decreasing degradation function g(c). This is superimposed
on the positive part of the elastic strain energy density. Here, an additive
decomposition of the energy density is implied into a purely tensile and a
purely compressive part (see, e.g., [25]).

ψel = g(c)ψ+
el + ψ−el (7)
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where ψ+
el and ψ−el correspond to the positive and negative parts of the elastic

strain energy density and g(c) ∈ [0, 1]. In this work, the degradation function
introduced in [24] is utilized which assumes the following form

g = (1− k)c2 + k (8)

where 0 ≤ k � 1 is a model parameter introduced in [2] to treat potential ill-
conditioning. In this work the model parameter is considered to be k = 0 with
no impact on the stability of the resulting system of governing equations. It is
evident from Eq. (7) that as c→ 0, i.e., when a crack evolves the degradation
function decreases, thus reducing the overall positive part of elastic strain
energy density in the deformable domain Ω.

2.2 Derivation of coupled strong form

The strong form of the anisotropic brittle fracture problem is established herein
by employing the methodology introduced in [9] for the purely isotropic case.
The energy balance equation of the problem is defined in Eq. (9) as

K̇ (u̇) + Ẇint (u̇, ċ,∇ċ)− Ẇext (u̇) = 0 (9)

where u̇ = du/dt corresponds to the velocity field, ċ = dc/dt is the phase
field time derivative and ∇ċ corresponds to the rate of the phase field spatial
derivative, i.e.,

∇ċ =
d

dt

(
∂c

∂xi

)
(10)

for i = 1, ..., 3.

The kinetic energy rate functional K̇ (u̇) is evaluated as

K̇ (u̇) =
d

dt

∫
Ω

1

2
ρ|u̇|2dΩ (11)

where ρ corresponds to the mass density and Ẇext (u̇) is the rate of external
work functional expressed as

Ẇext (u̇) =

∫
∂Ωt̄

(t̄ · u̇) d∂Ωt̄ +

∫
Ω

(b · u̇) dΩ (12)

Finally, the rate of internal work functional Ẇint (u̇, ċ,∇ċ) is evaluated as

Ẇint (u̇, ċ,∇ċ) =
dΨpot
dt

=
d

dt

∫
Ω

(
ψel + ḠcZc,Anis

)
dΩ (13)
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Applying the divergence theorem and performing the necessary algebraic
manipulation, the balance of energy equation (9) becomes

∫
∂Ωt̄

([σn− t̄] · u̇) d∂Ω +

∫
Ω

([ρü−∇ · σ − b] · u̇) dΩ+

∫
∂Ω

Ḡcl02∇c− Ḡcl30
∑
ijkl

γijkl

(
∂3c

∂xj∂xk∂xl

)
− Ḡcl30

∑
ijkl

γijkl

(
∂3c

∂xi∂xj∂xk

) · nċ
 d∂Ω+

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
d

dt

(
∂c

∂xi

)
∂2c

∂xk∂xl

)
+ Ḡcl30

∑
ijkl

γijkl

(
∂2c

∂xi∂xj

d

dt

(
∂c

∂xl

)) · n
 d∂Ω+

∫
Ω

ψelc +
(c− 1)

2l0
− Ḡcl02∆c+ 2Ḡcl30

∑
ijkl

γijkl

(
∂4c

∂xi∂xj∂xk∂xl

) ċ dΩ = 0

(14)
where σ is the stress field derived from the following relation

σ =
∂ψel
∂ε

(15)

whereas ü = d2u/dt2 is the acceleration field, n is the outward unit normal
vector of the boundary and ψelc = ∂ψel/∂c = 2 (1− k) cψ+

el is the derivative of
elastic strain energy density with respect to the phase field c. The methodology
employed for deriving Eq. (14) is presented in Appendix A.

Since Eq. (14) must hold for arbitrary values of u̇ and ċ, the resulting
strong form is eventually derived as



∇ · σ + b = ρü on [Ω0, Ωt](
4l0 (1− k)H

Ḡc
+ 1

)
c− 4l20∆c

+ 4l40
∑
ijkl

γijkl
∂4c

∂xi∂xj∂xk∂xl
= 1

on [Ω0, Ωt]

(16)

where H is the history field defined as the maximum value of the tensile part
of the elastic energy density ψ+

el obtained in the domain [0, t].
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The coupled field equations (16) are subject to the set of boundary and
initial conditions presented in Eq. (17)



σn = t̄, on [∂Ωt̄0 , ∂Ωt̄t ]

u = ū, on [∂Ωū0
, ∂Ωūt ]

u = u0, on Ω0

u̇0 = u̇0, on Ω0

ü = ü0, on Ω0

4l20∇c− 2l40
∑
ijkl γijkl

(
∂3c

∂xj∂xk∂xl

)
− 2l40

∑
ijkl γijkl

(
∂3c

∂xi∂xj∂xk

)
= 0, on [∂Ωt0 , ∂Ωt]

2l40
∑
ijkl γijkl

(
∂2c

∂xk∂xl

)
+ 2l40

∑
ijkl γijkl

(
∂2c

∂xi∂xj

)
= 0, on [∂Ωt0 , ∂Ωt]

c = c0, on Ω0

(17)
where u0, u̇0, ü0 and c0 are the initial conditions for the displacement, velocity,
acceleration and phase field respectively. Furthermore, Ω0, ∂Ωt̄0 , ∂Ωū0

corre-
spond to the initial domain volume, traction surface and constrained surfaces
respectively whereas ∂Ωt̄t , ∂Ωūt correspond to the traction and constrained
surfaces at time t.

2.3 Elastic Energy density decomposition

The decomposition of the elastic strain energy density into a positive (due to
tension) ψ+

el and negative (due to compression) ψ−el (see Eq. (7)) is an integral
aspect of phase field methodology employed to essentially couple the evolution
of phase field c to the evolution of tensile stresses within the domain Ω. During
the past few years, various methodologies have been introduced to address this
energy split; a detailed review of the existing models can be retrieved in [22].

In this work, we adopt the elastic strain energy density decomposition for
isotropic materials introduced in [25]. According to this approach, the tensile
and negative components are defined as

ψ+
el =

1

2
λ〈Tr [ε]〉+

2

+ µTr
[(
ε+
)2]

(18)

and

ψ−el =
1

2
λ〈Tr [ε]〉−

2

+ µTr
[(
ε−
)2]

(19)
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respectively, where λ and µ are the Lamé constants and ε corresponds to the
strain tensor. The symbols 〈.〉+ and 〈.〉− are defined as 〈x〉+ = (x+ |x|) /2 and
〈x〉− = (x− |x|) /2 respectively, whereas the symbol Tr stands for the trace.
The positive part of the strain tensor ε+ in Eq. (18) is defined through the
following spectral decomposition

ε+ = PΛ+P T (20)

where P is a matrix whose columns comprise the eigen-vectors of the strain
tensor ε and Λ+ is a diagonal matrix defined as

Λ+ = diag
(
〈λ1〉+, 〈λ2〉+, 〈λ3〉+

)
(21)

where λi, i = 1, . . . , 3 are the eigen-values of the strain tensor. The negative
part of strain tensor in relation (19) is evaluated as

ε− = ε− ε+ (22)

In view of the definition of the decomposition of the elastic energy density
(Eq. (7)), the corresponding analytical expressions defined in Eqs. (18) and
(19) and the stress field in Eq. (15) the material constitutive tangent stiffness
matrix is readily derived from equation

D =
∂σ

∂ε
(23)

2.4 Special cases of anisotropy in surface energy density

In this work, the cases of both cubic and orthotropic symmetry are considered
for the surface energy density. In the case of cubic symmetry the 4-th order
tensor γ introduced in Eq. (5) is expressed in the material principal axes, as

γ =


γ11 γ12 γ12 0 0 0
γ12 γ11 γ12 0 0 0
γ12 γ12 γ11 0 0 0
0 0 0 4γ44 0 0
0 0 0 0 4γ44 0
0 0 0 0 0 4γ44

 (24)

Voigt notation is employed in Eq. (24) for brevity [40]. Similarly, in the case
of orthotropic symmetry the γ assumes the following form

γ =


γ11 γ12 γ13 0 0 0
γ12 γ22 γ23 0 0 0
γ13 γ33 γ33 0 0 0
0 0 0 4γ44 0 0
0 0 0 0 4γ55 0
0 0 0 0 0 4γ66

 (25)

In Section 4 examples are presented for both cases and the corresponding
responses are compared and discussed.
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(a) (b)

Fig. 2 Polar plots of (a) surface energy density Gc (θ) and (b) reciprocal of surface energy
density 1/Gc (θ) for increasing values of component γ11

2.5 Influence of anisotropic parameters in surface energy density

To further highlight the assumed anisotropic material behaviour with respect
to fracture, the form of the surface energy density Gc (θ) as a function of the
fracture orientation θ is investigated in this section for characteristic cases of
anisotropy. Detailed derivations of the surface energy plots presented herein is
provided in Appendix B.

The two-dimensional case is considered herein for brevity, in which case
the anisotropic tensor γ (see equation (25)) reduces to

γ =

γ11 γ12 0
γ12 γ22 0
0 0 4γ44


In Fig. 2, the distribution of the surface energy density Gc (θ) and its recip-

rocal 1/Gc (θ) is shown for the case of increasing values of component γ11 while
all other components are kept constant. When γ11 = γ22 the case of four-fold
symmetry, i.e., cubic symmetry is manifested whereas in the case of γ11 6= γ22

the case of two-fold symmetry, i.e., orthotropic symmetry is revealed. Increas-
ing values of component γ11 result in increasing surface energy density values
along the 90 deg and 270 deg fracture directions.

Similarly, increasing values of component γ22 when all other components
of the anisotropic fracture tensor are kept constant results in increasing values
of the surface energy density along the 0 deg and 180 deg directions of fracture
as shown in Fig. 3.

Thus, the values of the normal components of the anisotropic tensor γ
control the extreme values of the corresponding surface energy density. The
effect of the shear components of the anisotropic tensor, i.e., γ12 and γ44 is
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(a) (b)

Fig. 3 Polar plots of (a) surface energy density Gc (θ) and (b) reciprocal of surface energy
density1/Gc (θ) for increasing values of component γ22

(a) (b)

Fig. 4 Polar plots of (a) surface energy density Gc (θ) and (b) reciprocal of surface energy
density 1/Gc (θ) for increasing values of component γ12

illustrated in Figs. 4 and 5 respectively. Both parameters control the extreme
values of both the surface energy density and its reciprocal at a rotated coor-
dinate system with respect to the origin.
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(a) (b)

Fig. 5 Polar plots of (a) surface energy density Gc (θ) and (b) reciprocal of surface energy
density 1/Gc (θ) for increasing values of component γ44

3 Numerical Implementation

3.1 Material Point Method approximation

MPM approximation is based on the discretization of a deformable domain
Ω with a set of material points (Fig. 6). These can be defined arbitrarily as
collocation points within any appropriate tessellation of the domain Ω. In
this work, initial positions of material points are chosen to coincide with the
Gauss points of the corresponding standard finite element discretization, both
for brevity but also to facilitate comparisons with the standard FEM. In Fig.
6, the domain Ω is discretized into a set P = {p | p = 1, 2, . . . , Np}, where
Np ∈ Z is the total number of material points and subscript p indexes the pth

material point.
Based on this discretization, both the mass density ρ and domain volume Ω

are additively decomposed into the corresponding material point contributions,
i.e,

ρ (x, t) =

Np∑
p=1

ρpδ (x− xpt) (26)

and

Ω (x, t) =

Np∑
p=1

Ωpδ (x− xpt) (27)

respectively. In Eqs. (26) and (27) above, ρp = Mp/Ωp is the mass density of
the material point, Mp is the material point mass, Ωp is the material point
volume and δ is the Dirac function.

Kinematics of the material points are introduced in a straightforward man-
ner following the Lagrangian description of continuum mechanics [6]. Under an
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Fig. 6 Deformable domain discretization into material points

arbitrary motion Φ (xp0 , t) an initial material configuration C0 is transformed
onto the current configuration Ct. The displacement of each material point is
defined as upt = xpt − xp0

where xp0
and xpt are the position vectors of the

pth material point respectively.

Further to the material point discretization, MPM introduces a finite el-
ement grid, termed the background or Eulerian grid (Fig. 7). This is a non-
deforming mesh where material point response quantities, e.g., displacements
are mapped into and solution of the governing equations is performed. The
Eulerian grid is essentially the computational space through which material
points are moving. At any given time instant t, the background grid comprises
the set of active cells, i.e., cells where at a material point resides and the in-
active cells where no material point exists. In this work, the background grid
is constantly updated according to the topology of the material points, thus
reducing the solution space at any time instant.

Mapping of the material point response quantities into the nodes of the cor-
responding background active cell is performed by means of the finite element
interpolation functions pertinent to this active cell. In this work, the back-
ground grid is defined using a structured mesh of quadrilateral plain stress/
strain elements employing higher-order B-Splines as interpolation functions.
The use of higher-order B-splines is necessitated by the 4th order phase field
functional utilized in this work (see also Section 2) but also results in an effi-
cient treatment of cell crossing errors pertinent to MPM [36].



14 E. G. Kakouris, S.P. Triantafyllou

Fig. 7 Material Point Method Eulerian Grid

3.1.1 B-spline interpolation

B-Splines are defined through a non-decreasing sequence of real numbers (i.e.
ξI ≤ ξI+1), termed the knot vectors, and formally described as

Ξ = {ξ1, ξ2, ..., ξNnξ+qξ+1} (28)

where Nnξ and qξ are the number of basis functions and the polynomial order

in the ξ direction respectively. The Ith B-spline basis function of qξ-degree is
defined recursively as

NI,qξ(ξ) =
ξ − ξI

ξI+qξ − ξI
NI,qξ−1(ξ) +

ξI+qξ+1 − ξ
ξI+qξ+1 − ξI+1

NI+1,qξ−1(ξ) (29)

where

NI,0(ξ) =

{
1 ξI ≤ ξ ≤ ξI+1

0 otherwise
(30)

Furthermore, the derivative of a B-Spline basis function is expressed as

N
′

I,qξ
(ξ) =

qξ
ξi+qξ − ξi

NI,qξ−1(ξ)− qξ
ξi+qξ+1 − ξi+1

NI+1,qξ−1(ξ) (31)

Higher order derivatives are evaluated recursively from relation (31). A B-
Spline curve is evaluated as

C(ξ) =

Nnξ∑
I=1

NI,qξ(ξ)PI (32)

where PI ∈ Rd, I = 1, 2, .., Nnξ are the coordinates of control points. d is the
dimension of the problem.
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(a) (b)

Fig. 8 High-Order B-Splines: (a) Quadratic basis functions (C1) and (b) their first deriva-
tives

The two-dimensional quadratic basis functions ((qξ = qη = 2)) together
with their first derivatives are shown in Fig. 8 for knot vectors Ξ = H =
{0, 0, 0, 0.25, 0.50, 0.75, 1, 1, 1}.

3.1.2 Material Point Method computational cycle

The overall computational cycle of the material point method is based on the
incremental exchange of information between the Lagrangian and Eulerian
components of the method. In each incremental step, the updated material
point stress components are mapped onto the background mesh nodes using
the B-spline interpolation functions described in Section 3.1.1.

Next, solution is performed either in an explicit or implicit fashion and
the resulting updated displacement components are mapped back onto the
material points to identify their new state in terms of displacements, strains
and stresses. At the end of the computational cycle, the background mesh
is reset to its initial position. This is a crucial step within the MPM setting
as distortion of the solution space is avoided thus resulting in a high-fidelity
computational procedure for complex phenomena (see, e.g., [19,5,17]). The
MPM computational cycle within an incremental step is summarized in Fig.
9. Further information on the numerical scheme can be found in [37,38].

3.2 Discrete equilibrium equations

The discrete form of the MPM equilibrium equations is derived in a straight-
forward manner by means of the Galerkin approximation [6]. In this work
only quasi-static problems are considered. The weak form of the equilibrium
equations introduced in the first of Eqs. (16) is expressed as∫

Ω

(σ :∇w) dΩ =

∫
∂Ωt̄

(t̄ ·w) d∂Ωt̄ +

∫
Ω

(b ·w) dΩ (33)
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Fig. 9 Material Point Method computational cycle

where the following solution space is defined for the weighting functions w.

D = {w ∈ H1 (Ω) | w = 0 on ∂Ωū}

Similarly, the following Hilbert space is considered for the trial functions of
the displacement field, i.e.,

V = {u ∈ H1 (Ω) | u = ū on ∂Ωū}

Substituting for the material point approximation introduced in equations
(26) and (27) the following discrete equation is established

Np∑
p=1

(σp :∇wp)Ωp =

∫
∂Ωt̄

(t̄ ·w) d∂Ωt̄ +

Np∑
p=1

(bp ·wp)Ωp (34)

where wp, σp and bp are the test functions, stress field and body forces eval-
uated at each material point xp.

The test functions wp and their spatial derivatives ∇wp are interpolated
in the Galerkin sense according to relations (35)

wp =

Nn∑
I=1

NI(xp)wI (35)

and (36) respectively

∇wp =

Nn∑
I=1

∇NI(xp)wI (36)

where Nn is the number of grid nodes and NI(xp) are the higher-order B-spline
interpolation functions (Eq. (29)) evaluated at the material points. Further-
more, wI are the test function nodal values whereas I refers to the Ith grid
node. Similar expressions hold for the displacement test functions.
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Substituting in relation (34), considering equation (23) and performing
the necessary algebraic manipulation, the following set of discrete equilibrium
equations is finally established

Ru
I
(uI) = F intI − F extI = 0, I = 1 . . . , Nn (37)

where F intI is the vector of corresponding internal forces defined as

F intI =

Np∑
p=1

(σp · ∇NI(xp))Ωp (38)

and F extI corresponds for the equivalent vector of external forces evaluated at
grid node I expressed as

F extI =

∫
∂Ωt̄

(t̄NI(xp)) d∂Ωt̄ +

Np∑
p=1

bpNI(xp)Ωp (39)

The residual nodal values Ru
I

are expressed as a function of the discrete dis-
placement field u

I
.

3.3 Discrete anisotropic phase field equations

The discrete form of the anisotropic phase field governing equations introduced
in the second of Eqs. (16) is derived accordingly. In particular, the phase field
weak introduced in the second of Eqs. (16) becomes∫

Ω

(4l0(1− k)H
Ḡc

+ 1
)
cq dΩ +

∫
Ω

4l20(∇c : ∇q) dΩ

+

∫
Ω

4l40
∑
ijkl

γijkl

(
∂2c

∂xi∂xj

∂2q

∂xk∂xl

)
dΩ

=

∫
Ω

q dΩ

(40)

where c is the phase field and q are the corresponding weighting functions.
The phase field c and the corresponding weighting functions q are defined
with respect to the following spaces, i.e.,

Y = {c ∈ H2 (Ω)}

and

Q = {q ∈ H2 (Ω)}
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Introducing the MPM approximation (Eq. (27)) into Eq. (40), the following
expression is retrieved

Np∑
p=1

FpcpqpΩp +

Np∑
p=1

4l20p(∇cp : ∇qp)Ωp

+

Np∑
p=1

4l40p

∑
ijkl

γijklp

(
∂2cp
∂xi∂xj

∂2qp
∂xk∂xl

)
Ωp =

Np∑
p=1

qpΩp

(41)

where cp, qp and γijklp are the phase field, weighting functions and anisotropic
tensor components evaluated at the material point p. Parameter Fp in Eq.
(41) is expressed as

Fp =
4l0p(1− kp)Hp

Ḡcp
+ 1 (42)

where l0p , kp, Hp and Ḡcp are the length scale parameter, model parameter,
history field and critical fracture energy density of material point xp.

Both cp and qp are interpolated at the nodal points of the background
mesh, using the higher-order B-spline interpolation functions as in the case of
the displacement field. Use of B-spline functions is required in this case, as
second derivatives of the phase field appear on the variational expression (40).
Thus, the interpolation relations considered assume the following form for the
test functions and their first and second derivatives, i.e.,

qp =

Nn∑
I=1

NI(xp)qI (43)

∇qp =

Nn∑
I=1

∇NI(xp)qI (44)

and

∆qp =

Nn∑
I=1

∆NI(xp)qI (45)

respectively. In Eqs. (43)-(45), NI(xp) are the background mesh shape func-
tions pertinent to the phase field interpolation and qI are nodal values of the
corresponding test functions.

Similarly, the material point phase field is interpolated at the nodal values
of its parent cell cI according to Eq. (46)

cp =

Nn∑
I=1

NI(xp)cI (46)

whereas a similar interpolation scheme is assumed for its first

∇cp =

Nn∑
I=1

∇NI(xp)cI (47)
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and second derivative

∆cp =

Nn∑
I=1

∆NI(xp)cI (48)

respectively.
Substituting, Eqs. (43),(44) and (45) into the discrete expression (41), the

following relation is established

RcI(cI) =(I) S1 +(I) S2 +(I) S3 −(I) S4 = 0, I = 1 . . . , Nn (49)

where

(I)S1 =

Np∑
p=1

FpcpNI(xp)Ωp, (50)

(I)S2 =

Np∑
p=1

4l20p(∇cp · ∇NI(xp))Ωp, (51)

(I)S3 =

Np∑
p=1

4l40p

∑
ijkl

γijklp

(
∂2cp
∂xi∂xj

∂2NI(xp)

∂xk∂xl

)
Ωp, (52)

and

(I)S4 =

Np∑
p=1

NI(xp)Ωp (53)

respectively whereas RcI(cI) denotes the residual nodal values for the phase
field.

Furthermore, introducing the phase field interpolation schemes (Eqs. (46)
to (48)) and performing the necessary algebraic manipulation, the material
point discrete phase field equations for the case of anisotropic fracture are
cast in the following convenient form

Kcc = F c (54)

where Kc is an (Nn × Nn) coefficient matrix whose Kc
I,J component is ex-

pressed as

Kc
I,J =

Np∑
p=1

(
FpNJ(xp)NI(xp) + 4l20p

(
∇NJ(xp) · ∇NI(xp)

)
+ 4l40p

∑
ijkl

γijklp

(
∂2NJ(xp)

∂xi∂xj

∂2NI(xp)

∂xk∂xl

))
Ωp

(55)
Vector c is the (Nn × 1) vector of unknown nodal phase fields and F c is the
(Nn × 1) vector whose F cI component is defined as

F cI =

Np∑
p=1

NI(xp)Ωp (56)

The vector quantity F c will be termed herein as the phase field forcing term.
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3.4 Phase field Material Point Method solution scheme

In this work, a staggered iterative scheme [25] is adopted for the solution of
the system of coupled discrete equations (37) and (54). In this, the phase field
equations are initially solved for the current value of the history field H, and
a prediction for the phase field nodal values cI is established. Next, the phase
field nodal values cI are mapped to each material point and the degradation
function gp is evaluated at each material point. Using the current value of
the degradation function gp, the equilibrium equations are iteratively solved
within a Newton-Raphson scheme (j = 1, 2, . . . , Niters) and the incremental
nodal displacements ∆uI are derived. Within a displacement control setting,
Eq. (37) is reformulated as

δRu
I
(∆uI) = ∆FintI −∆F extI = 0, I = 1 . . . , Nn (57)

where the symbol∆ denotes incremental quantities e.g.∆X = X(h)−X(h−1),

whereas the symbol δ denotes iterative quantities e.g. δX = X(j) −X(j−1).
Convergence is achieved when the Euclidean norm of the equilibrium equations
is sufficiently small i.e. ‖δRu(j)‖ ≤ tolu where tolu stands for the Newton-
Raphson tolerance.

Finally, with the derived incremental displacement field nodal ∆uI , the
positive part of elastic strain energy density ψ+

el is evaluated at each material
point to correct the values current history field H. Similarly, convergence is
achieved when Euclidean norm of the phase field equations is small enough

i.e. ‖Rc(k)
(h) ‖ ≤ tolc where tolc corresponds to the phase field tolerance. This

predictor-corrector procedure is continued until the convergence of both the
equilibrium as well as phase field equations.

The pseudo-code is provided in Algorithm 1. In this, Ep and vp correspond
to the Young’s modulus and Poisson’s ratio respectively. Pre-existing crack
paths can be defined with an initial history field Hp0

(see [10] for details).
Furthermore, Nn, Ndofs and Ncells correspond to the total active number of
grid nodes, total active unconstrained grid degree of freedom and total active
cells of the Eulerian Grid respectively. These parameters, are redefined in
the beginning of each time-step h according to the current material point
position xp. Moreover, the basis functions N(xp(h)

) and their first ∇N(xp(h)
)

and second derivatives ∆N(xp(h)
) for all material points are evaluated in the

beginning of each time-step h.
To evaluate the anisotropic phase field coefficient matrix (see Eq. (55)),

the derivatives of basis functions are evaluated in the material principal axes.
Thus, if (∇N(xp)) and (∆N(xp)) are the first and second derivatives of basis
functions in global axes, then (∇Nφp(xp)) and (∆Nφp(xp)) are the corre-
sponding quantities in the material principal axes of the pth material point. In
the two-dimensional case, coordinate transformation from the global system
to the material principal system is achieved through relation (58) below{

x1φp

x2φp

}
=

[
cos(φp) − sin(φp)
sin(φp) cos(φp)

]{
x1

x2

}
= xφp = Rpx (58)
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and

Rp =

[
cos(φp) − sin(φp)
sin(φp) cos(φp)

]
(59)

where φp is the material orientation of the material point (counter clockwise)
and xφp are the coords in the material principal axes.

4 Examples

In this section, a series of benchmark tests are examined with the proposed
scheme. For verification purposes, both the Phase Field Material Point Method
(MPM-PF) as well as its Finite Element counterpoart (FEM-PF) have been
implemented in an in-house Fortran code.

4.1 Squared plate under pure tension

In this example, the case of a square plate with a horizontal notch placed
under pure tension is examined. The notch is positioned at mid-height and
spans the half-length of the specimen. The geometry and boundary conditions
of the problem are shown in Fig. 10a. Displacements in segment BC are re-
strained along Y whereas a pin support is considered at point O restraining
displacement in both directions. A load is applied at point A along Y . All
points in segment AB - with the exception of B - are restrained so that their
corresponding displacement components along Y are equal. The restrain is
achieved by using a Penalty method with penalty parameter α = 1000000 [6]
(see Appendix of [20] for imposing kinematical constrains with Penalty method
in MPM). Plain strain conditions are assumed with the elastic isotropic prop-
erties of the material, E = 1000000 kN/m2 and ν = 0.3 for the Young modulus
and Poisson’s ratio respectively.

To gain insight the influence of surface energy into crack path, two cases
are considered, namely that of cubic and orthotropic symmetry. The corre-
sponding material properties are presented in Table 1. Furthermore, the polar
plot of their surface energy density Gc (θ) and their reciprocals 1/Gc (θ) for
material orientation φ = 0 are represented in Figs. 10b and 10c respectively.
For cubic symmetry the maximum and minimum surface energy density are
Gcmax = 1.1575 kN/m and Gcmin = 0.7071 kN/m respectively. For the case
of orthotropic symmetry these are Gcmax = 1.2292 kN/m and Gcmin = 0.7071
kN/m respectively.

A displacement control Newton Raphson scheme is utilized with the max-
imum value of the monitored displacement u = 0.006 m. A force based con-
vergence criterion is employed with a corresponding tolerance tolu = 1e−7. A
staggered solution procedure has been implemented with a single prediction
step (Nstaggs = 1)

The problem is solved using both the FEM-PF method and the MPM-PF
method. Results obtained by both solution approaches also agree with the re-
sults provided in [21] where however a purely meshless solution procedure was
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Data: Define computational grid, material point properties (xp(0)
,

Ωp(0)
, Ep, νp, l0p , kp, Ḡcp , γijklp , φp, Hp(0)

, σp(0)
, εp(0)

)

for each time step h = 1, 2, .., Nsteps do
Reset the computational grid: Find active part of Eulerian Grid,
Nn, Ndofs, Ncells;

Compute: N(xp(h)
), ∇N(xp(h)

) and ∆N(xp(h)
), for all material

points. ;
Compute: ∇Nφp(xp(h)

) and ∆Nφp(xp(h)
), for all material points. ;

Define: δRu(1) = ∆F ext(h) ;

for each staggered iteration k = 1, 2, .., Nstaggs do

Compute: F
c(k)
(h) (see Eq. (56)). ;

Compute: Kc (see Eq. (55)). according to N(xp(h)
),

∇Nφp(xp(h)
) and ∆Nφp(xp(h)

) ;

Solve: Kcc
(k)
(h) = F

c(k)
(h) ;

Map phase field (c
(k)
(h)) from grid nodes to material points.

Evaluate: c
(k)
p(h)

, ∇c(k)
p(h)

, ∆c
(k)
p(h)

, g
(k)
p(h)

, for all material points (see

Eq. (46), (47),(48) and (8)). ;

Initialize ∆u(0) = 0 ;
for each inner iteration j = 1, 2, .., Niters do

Compute stiffness matrix of the structure: Ku (for
constitutive matrix see Eq. (23)) ;

Solve: Kuδu(j) = δRu(j), with displacement contol. ;

Compute: ∆u(j) = ∆u(j−1) + δu(j) ;

Compute: ∆ε
(j)
p , for all material points (see Eq. (2)). ;

Compute: ε
(j)
p(h)

= εp(h−1)
+∆ε

(j)
p , for all material points. ;

Compute: σ
(j)
p(h)

, for all material points (see Eq. (15)) ;

Compute: ∆F int(j) = {∆F intI },
∆F intI =

∑Np
p=1Ω

(j)
p (σ

(j)
p(h)
− σp(h−1)

) · ∇NI(xp(h)
) ;

Compute Residual (Displacement-Field):
δRu(j) = ∆F ext(h) −∆F

int(j) ;

Convergence Check (Displacement Field): If ‖δRu(j)‖ ≤ tolu
or j ≥ Niters then ”exit” from loop else j = j + 1 go to next
inner iteration. ;

end

Compute: ψ+
elp(h)

, for all material points (see Eq. (18))

→ Hp(h)
=

{
ψ+
elp(h)

, for ψ+
elp(h)

> Hp(h−1)

Hp(h−1)
, otherwise

;

Compute Residual (Phase-Field): R
c(k)
(h) (see Eq. (49)) according

to c
(k)
p(h)

, ∇c(k)
p(h)

, ∆c
(k)
p(h)

, Hp ;

Convergence Check (Phase Field): If ‖Rc(k)
(h) ‖ ≤ tolc or

k ≥ Nstaggs then ”exit” from loop else k = k + 1 go to next
stagger iteration. ;

end

Compute: ∆up(h)
=
∑Nn
I=1NI(xp(h)

)∆u
(j)
I , for all material points. ;

Compute: up(h)
= up(h−1)

+ ∆up(h)
, for all material points. ;

Compute: xp(h)
= xp(h−1)

+ ∆up(h)
, for all material points. ;

end
Algorithm 1: Anisotropic Phase-Field Material Point Method pseudo-code
(Stagger Solution Algorithm).
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adopted. The finite element mesh comprises 29929 quadratic C1-continuous
patches with a mesh size h = 0.00578 m. A 3x3 quadrature rule is used for
the quadratic basis functions as it is suggested in [18]. The MPM-PF mesh
consists of 32041 back-ground quadratic C1-continuous cells (patches) with a
mesh size h = 0.00578 m. The initial cell density utilized is 3x3=9 material
points per cell. All the simulation parameters are summarized in Table 1.

Eleven different material orientation angles are considered, namely

φ = {−50o,−40o,−30o,−20o,−10o, 0o,+10o,+20o,+30o,+40o,+50o} (60)

The resulting load displacement paths for the case of φ = 0o and φ = −50o

are shown in Figs. 11a and 12a for the case of cubic and orthotropic symmetry
respectively. Results between the MPM and FEM are in perfect agreement, as
also shown by the corresponding relative divergence shown in Figs. 11b and
12b. In both angles, the relative divergence is smaller than 1%. However, as
the imposed displacement increases the divergence increases accordingly. This
is attributed to the fact that in MPM-PF the position of sampling points,
i.e., the material points, is updated. Conversely, the crack geometry is also
updated. The variation of the ultimate limit load as a function of the material
orientation angle is shown in Figs. 13a and 13b for cubic and orthotropic
symmetry respectively. Results derived from the MPM implementation agree
with FEM.

Figs. 14a-14d and 14e-14h represent the phase field evolution for cubic
symmetry and different values of material orientation φ for both FEM-PF
and MPM-PF respectively. Similarly, Figs. 15a-15d and 15e-15h represent the
phase field for orthotropic symmetry of both FEM-PF and MPM-PF respec-
tively.

The figures show that when φ < 45o, the crack path evolves in the lower
half of the plate for both the cases of cubic and orthotropic symmetry (see Figs.
14a-14c,14e -14g and 15a-15c,15e-15g). However, when the material orientation
angle increases, i.e., when 45 < φ < 90o, then the crack path propagates along
the higher half of the plate for cubic symmetry (see Figs. 14d,14h) and in
the lower half of the plate for orthotropic symmetry (see Figs. 15d,15h). This
pattern is anticipated due to four-fold and two-fold symmetry aspects of cubic
symmetry and orthotropic materials respectively.

4.2 Three point layered bending test

The case of a three point bending test on a composite beam is considered
in this example. The geometry and boundary conditions of the specimen are
shown in Fig. 16a. Plain strain conditions are assumed. The beam comprises
two layers, namely A and B. The two layers have similar material properties
as shown in Table 2. The elastic isotropic material properties are the same as
in the previous example (see section 4.1).
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(a)

(b) (c)

Fig. 10 Squared plate under pure tension: (a) Geometry and boundary conditions. (b)
Surface energy densities and (c) their Reciprocals for material orientation φ = 0 in polar
coordinates.

Cubic symmetry is considered for the surface energy density in both layers.
The polar plots of the surface energy density and its reciprocal are shown
in Figs. 16b and 16c respectively. The anisotropic parameters considered are
presented in Table 2. Three different scenaria are examined for the material
orientation of the two layers. In cases 1 and 2 the material orientations of both
layers are φ = 0o (case 1) and φ = −15o (case 2) respectively. In case 3 the
material orientation of layer A is φ = −15o and layer B is φ = +15o.

A displacement control non-linear static analysis scheme is utilized with
a constant displacement increment ∆u ≈ 0.0033 mm at midspan for 1550
steps. Staggered solution algorithm is utilized with a single prediction step
(Nstaggs = 1). A FEM-PF analysis is also made for verification purposes. The
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Material Parameters
Elastic Material Properties Anisotropic Material Properties

E 1000000 [kN/m2]
γ11

1.00 (Cubic symmetry)
20.00 (Orthotropic symmetry)

[–]

ν 0.30 [–] γ22 1.00 [–]
γ12 0.00 [–]
γ44 18.50 [–]
l0 0.01 [m]
Ḡc 0.50 [kN/m]

Gcmax
1.1575 (Cubic symmetry)
1.2292 (Orthotropic symmetry)

[kN/m]

Gcmin
0.7071 (Cubic symmetry)
0.7071 (Orthotropic symmetry)

[kN/m]

φ -50,-40,-30,-20,-10,0,+10,+20,+30,+40,+50 [Deg]
Finite Element Method Model

Number Of Control Points 30625
Number Of Cells (Patches) 173x173=29929
Cell (Patch) spacing 0.00578 [m]
qξ = qη 2nd
Ξ = H {0, 0, 0, 0.00578, 0.01156, ..., 0.9884, 0.9942, 1, 1, 1}
Quadrature rule 3x3

Material Point Method Model
Number Of Control Points 32761
Number Of Cells (Patches) 179x179=32041
Cell (Patch) spacing 0.00578 [m]
qξ = qη 2nd
Ξ = H {0, 0, 0, 0.00559, 0.01117, ..., 0.9888, 0.9944, 1, 1, 1}
Initial Cell density 3x3

Solution Algorithm Parameters
∆u 0.006 [mm]
Nsteps 1000
tolu 1e-7
Nstaggs 1
Penalty parameter α 1000000

Table 1 Squared plate under pure tension: Simulation parameters.

(a) (b)

Fig. 11 Squared plate under pure tension: (a) FEM-PF vs MPM-FEM comparison and (b)
relative divergence for cubic symmetry.
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(a) (b)

Fig. 12 Squared plate under pure tension: (a) FEM-PF vs MPM-FEM comparison and (b)
relative divergence for orthotropic symmetry.

(a) (b)

Fig. 13 Squared plate under pure tension: Critical Load vs Material Orientation for (a)
cubic symmetry and (b) orthotropic symmetry.

simulation parameters of both MPM-PF and FEM-PF are summarized into
Table 2.

The corresponding load paths are shown in Figs. 17. The two methods
demonstrate very good agreement for all three cases. In Figs. 18a,18c and 18e
the phase field distribution retrieved from FEM-PF for case 1, case 2 and
case 3 respectively is shown. The corresponding results from the MPM-PF are
shown in Figs. 18b,18d and 18f. All the results in Figs. 18 are retrieved at a
vertical displacement u = 5 mm.

The crack paths derived from both methods are practically identical. In
case 1 - with a material orientation angle - φ = 0o - (see Figs. 18a and 18b), the
crack propagates along the Y axis, exactly as in the case of isotropic surface
energy. However, in case 2 (see Figs. 18c and 18d) the anisotropic surface
energy forces the crack to diverge from the Y axis. Finally, in case 3 (see Figs.
18e and 18f) a crack ’kick’ is observed in the interface of two layers as a result
of their different material orientations φ. The evolution of the hydrostatic
stress for case 3 and MPM-PF implementation is shown in Figs. 19 for three
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 14 Squared plate under pure tension: Phase field for u = 0.006 m and cubic symmetry.
Finite Element Method for material orientation (a) 0o, (b) +20o, (c) +40o and (d) +50o.
Material Point Method for material orientation (e) 0o, (f) +20o, (g) +40o and (h) +50.

timesteps, u = 4.6 mm, u = 4.7 mm and u = 4.9 mm respectively. From these
figures it can be verified that the crack propagates only due to tension as a
result of the strain energy density ψel decomposition.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 15 Squared plate under pure tension: Phase field for u = 0.006 m and orthotropic
symmetry. Finite Element Method for material orientation (a) 0o, (b) +20o, (c) +40o and
(d) +50o. Material Point Method for material orientation (e) 0o, (f) +20o, (g) +40o and
(h) +50.
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(a)

(b) (c)

Fig. 16 Three point layered bending test: (a) Geometry and boundary conditions. (b) Sur-
face energy density and (c) its Reciprocal for material orientation φ = 0 in polar coordinates.
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Material Parameters
Elastic Material Properties Anisotropic Material Properties

Layer A Layer B Layer A Layer B

E 1000000 1000000 [kN/m2] γ11 1.00 1.00 [–]
ν 0.30 0.30 [–] γ22 1.00 1.00 [–]

γ12 0.00 0.00 [–]
γ44 18.50 18.50 [–]
l0 0.005 0.005 [m]
Ḡc 0.50 0.50 [kN/m]
Gcmax 1.1575 1.1575 [kN/m]
Gcmin 0.7071 0.7071 [kN/m]

Case 1 0 0
φ Case 2 -15 -15 [Deg]

Case 3 -15 +15
Finite Element Method Model

Number Of Control Points 41584
Number Of Cells (Patches) 450x90=40500
Cell (Patch) spacing 0.0022 [m]
qξ = qη 2nd
Ξ {0, 0, 0, 0.0022, 0.0044, ..., 0.9955, 0.9977, 1, 1, 1}
H {0, 0, 0, 0.0111, 0.0222, ..., 0.9777, 0.9888, 1, 1, 1}
Quadrature rule 3x3

Material Point Method Model
Number Of Control Points 44884
Number Of Cells (Patches) 456x96=43776
Cell (Patch) spacing 0.0022 [m]
qξ = qη 2nd
Ξ {0, 0, 0, 0.0021, 0.0043, ..., 0.9956, 0.9978, 1, 1, 1}
H {0, 0, 0, 0.0104, 0.0208, ..., 0.9791, 0.9895, 1, 1, 1}
Initial Cell density 3x3

Solution Algorithm Parameters
∆u 0.0033 [mm]
Nsteps 1550
tolu 1e-7
Nstaggs 1

Table 2 Three point layered bending test: Simulation parameters.
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(a) (b)

(c)

Fig. 17 Three point layered bending test: Load displacement paths for (a) Case 1 (b) Case
2 (c) Case 3
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(a) (b)

(c) (d)

(e) (f)

Fig. 18 Three point layered bending test: Phase field for u = 5 mm. Finite Element Method
for (a) case 1, (c) case 2 and (e) case 3 respectively. Material Point Method for (b) case 1,
(d) case 2 and (f) case 3 respectively.
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(a)

(b)

(c)

Fig. 19 Three point layered bending test: Hydrostatic Stress (case 3) for (a) u = 4.6 mm,
(b) u = 4.7 mm and (c) u = 5.0 mm respectively. Material Points with cp < 0.02 have been
removed.
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5 Conclusions

A robust framework for the resolution of evolving fractures in brittle anisotropic
materials is introduced. The method employed is based on a phase field ap-
proximation of the fracture surface energy defined on the basis of a fourth order
anisotropic functional. The phase field is subsequently coupled to the material
stress field by introducing the former as a degradation parameter on the elastic
energy density of the material. Through a purely variation framework, the cou-
pled partial differential equations of the problem are introduced. A Material
Point Method approach is used to derive the discrete governing coupled equa-
tions of the problem. The latter are then solved in a staggered fashion. In this
work, the specific cases of both cubic symmetry and orthotropy are examined
in representative examples. Based on these, the proposed methodology is veri-
fied by means of comparison against the standard finite element phase field im-
plementation. Results demonstrate that the Material Point Method performs
extremely well in resolving fracture propagation problems. This work will thus
form the basis for subsequent derivations pertaining to large displacement dy-
namic problems where Material Point Methods have proven advantageous as
compared to finite element methods.

Appendix A Variational approach of the anisotropic phase-field
model

In the energy balance equation (9) the rate of the kinetic energy is evaluated
as

K̇ (u̇) =
d

dt

∫
Ω

1

2
ρ|u̇|2dΩ =

∫
Ω

([ρü] · u̇) dΩ (61)

Similarly, the rate of the external work is expressed as

Ẇext (u̇) =

∫
∂Ωt̄

(t̄ · u̇) d∂Ωt̄ +

∫
Ω

(b · u̇) dΩ (62)

and the rate of the internal work is defined accordingly as

Ẇint (u̇, ċ,∇ċ) =
dΨpot
dt

=
d

dt

∫
Ω

(
ψel + ḠcZc,Anis

)
dΩ (63)

Applying the divergence theorem in equation (63), the rate of the internal
work Ẇint (u̇, ċ,∇ċ) assumes the following form

Ẇint (u̇, ċ,∇ċ) = B1 + B2 + B3 + B4 (64)

where the components Bi, i = 1 . . . 4 assume the following expressions

B1 =
d

dt

∫
Ω

ψeldΩ

=

∫
∂Ω

([σn] · u̇) d∂Ω −
∫
Ω

([∇ · σ] · u̇) dΩ +

∫
Ω

(ψelc ċ) dΩ

(65)
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B2 =
d

dt

∫
Ω

(
Ḡc

[
(c− 1)

2

4l0

])
dΩ =

∫
Ω

([
Ḡc

(c− 1)

2l0

]
ċ

)
dΩ (66)

B3 =
d

dt

∫
Ω

(
Ḡc
[
l0|∇c|2

])
dΩ

=

∫
∂Ω

([
Ḡcl02∇c

]
· nċ

)
d∂Ω −

∫
Ω

([
Ḡcl02∆c

]
ċ
)
dΩ

(67)

and

B4 =
d

dt

∫
Ω

Ḡc
l30∑

ijkl

γijkl
∂2c

∂xi∂xj

∂2c

∂xi∂xj

 dΩ

=

∫
Ω

Ḡc
l30∑

ijkl

γijkl
d

dt

(
∂2c

∂xi∂xj

∂2c

∂xk∂xl

) dΩ

=

∫
Ω

Ḡc
l30∑

ijkl

γijkl

(
d

dt

(
∂2c

∂xi∂xj

)
∂2c

∂xk∂xl
+

∂2c

∂xi∂xj

d

dt

(
∂2c

∂xk∂xl

)) dΩ

= T1 + T2

(68)
respectively, where

T1 =

∫
Ω

Ḡc
l30∑

ijkl

γijkl

(
d

dt

(
∂2c

∂xi∂xj

)
∂2c

∂xk∂xl

) dΩ (69)

and

T2 =

∫
Ω

Ḡc
l30∑

ijkl

γijkl

(
∂2c

∂xi∂xj

d

dt

(
∂2c

∂xk∂xl

)) dΩ (70)
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Components T1 and T2 are further expanded employing the divergence theorem
into

T1 =

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
d

dt

(
∂c

∂xi

)
∂2c

∂xk∂xl

) · n
 d∂Ω −

∫
Ω

Ḡcl30∑
ijkl

γijkl

(
d

dt

(
∂c

∂xi

)
∂3c

∂xj∂xk∂xl

) dΩ

=

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
d

dt

(
∂c

∂xi

)
∂2c

∂xk∂xl

) · n
 d∂Ω

−

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
dc

dt

∂3c

∂xj∂xk∂xl

) · n
 d∂Ω −

∫
Ω

Ḡcl30∑
ijkl

γijkl

(
dc

dt

∂4c

∂xi∂xj∂xk∂xl

) dΩ


=

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
d

dt

(
∂c

∂xi

)
∂2c

∂xk∂xl

) · n
 d∂Ω

−

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
∂3c

∂xj∂xk∂xl

) · nċ
 d∂Ω −

∫
Ω

Ḡcl30∑
ijkl

γijkl

(
∂4c

∂xi∂xj∂xk∂xl

) ċ
 dΩ


(71)

and

T2 =

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
∂2c

∂xi∂xj

d

dt

(
∂c

∂xl

)) · n
 d∂Ω −

∫
Ω

Ḡcl30∑
ijkl

γijkl

(
∂3c

∂xi∂xj∂xk

d

dt

(
∂c

∂xl

)) dΩ

=

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
∂2c

∂xi∂xj

d

dt

(
∂c

∂xl

)) · n
 d∂Ω

−

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
∂3c

∂xi∂xj∂xk

dc

dt

) · n
 d∂Ω −

∫
Ω

Ḡcl30∑
ijkl

γijkl

(
∂4c

∂xi∂xj∂xk∂xl

dc

dt

) dΩ


=

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
∂2c

∂xi∂xj

d

dt

(
∂c

∂xl

)) · n
 d∂Ω

−

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
∂3c

∂xi∂xj∂xk

) · nċ
 d∂Ω −

∫
Ω

Ḡcl30∑
ijkl

γijkl

(
∂4c

∂xi∂xj∂xk∂xl

) ċ
 dΩ


(72)

respectively.
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Substituting equations (71) and (72) in Eq. (68) the following expression
is derived for B4

B4 =

∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
d

dt

(
∂c

∂xi

)
∂2c

∂xk∂xl

)
+ Ḡcl30

∑
ijkl

γijkl

(
∂2c

∂xi∂xj

d

dt

(
∂c

∂xl

)) · n
 d∂Ω

−
∫
∂Ω

Ḡcl30∑
ijkl

γijkl

(
∂3c

∂xj∂xk∂xl

)
+ Ḡcl30

∑
ijkl

γijkl

(
∂3c

∂xi∂xj∂xk

) · nċ
 d∂Ω

+ 2

∫
Ω

Ḡcl30∑
ijkl

γijkl

(
∂4c

∂xi∂xj∂xk∂xl

) ċ
 dΩ

(73)

Substituting Eq. (73) in the energy balance equation (9) expression (14) is
finally established.

Appendix B Transformation of surface energy density to polar
coordinates

The surface energy density and their corresponding reciprocal expression po-
lar plots are evaluated according to the methodology introduced in [21]. In
this, the Cartesian coordinate system x (x1, x2) is transformed to xθ (x1θ , x2θ )
where the x1θ -axis is defined along the crack path Γ and x2θ -axis is the axis
normal to the crack interface as shown in Fig. 20. Angle θ is the counter-
clockwise angle between x1-axis and x1θ .

Thus, coordinate transformation from x (x1, x2) to xθ (x1θ , x2θ ) is per-
formed through the transformation equation (74){

x1θ

x2θ

}
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]{
x1

x2

}
= xθ = Rθx (74)

with the inverse transformation defined as{
x1

x2

}
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]{
x1θ

x2θ

}
= x = RT

θ xθ (75)

Assuming that c (x (xθ)) ≈ c (x (x2θ )) and applying the chain rule, the phase
field first spatial derivatives are expressed as

∂c

∂x1
=

∂c

∂x1θ

∂x1θ

∂x1
+

∂c

∂x2θ

∂x2θ

∂x1
≈ ∂c

∂x2θ

∂x2θ

∂x1
=

∂c

∂x2θ

sin(θ) (76)

and
∂c

∂x2
=

∂c

∂x1θ

∂x1θ

∂x2
+

∂c

∂x2θ

∂x2θ

∂x2
≈ ∂c

∂x2θ

∂x2θ

∂x2
=

∂c

∂x2θ

cos(θ) (77)
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respectively. Similarly, the second spatial derivatives are expressed as

∂2c

∂x1
2

=
∂

∂x1

(
∂c

∂x1

)
=

∂

∂x1θ

(
∂c

∂x1

)
∂x1θ

∂x1
+

∂

∂x2θ

(
∂c

∂x1

)
∂x2θ

∂x1
≈

∂

∂x2θ

(
∂c

∂x1

)
∂x2θ

∂x1
=

∂2c

∂x2
2θ

sin2(θ)

(78)

∂2c

∂x2
2

=
∂

∂x2

(
∂c

∂x2

)
=

∂

∂x1θ

(
∂c

∂x2

)
∂x1θ

∂x2
+

∂

∂x2θ

(
∂c

∂x2

)
∂x2θ

∂x2
≈

∂

∂x2θ

(
∂c

∂x2

)
∂x2θ

∂x2
=

∂2c

∂x2
2θ

cos2(θ)

(79)

and

∂2c

∂x1∂x2
=

∂

∂x1

(
∂c

∂x2

)
=

∂

∂x1θ

(
∂c

∂x2

)
∂x1θ

∂x1
+

∂

∂x2θ

(
∂c

∂x2

)
∂x2θ

∂x1
≈

∂

∂x2θ

(
∂c

∂x2

)
∂x2θ

∂x1
=

∂2c

∂x2
2θ

cos(θ) sin(θ) ≈ ∂2c

∂x2∂x1

(80)

respectively. Higher order spatial derivatives are defined accordingly as

∂3c

∂x1
3
≈ ∂3c

∂x3
2θ

sin3(θ) and
∂3c

∂x2
3
≈ ∂3c

∂x3
2θ

cos3(θ) (81)

and

∂4c

∂x1
4
≈ ∂4c

∂x4
2θ

sin4(θ) ,
∂4c

∂x2
4
≈ ∂4c

∂x4
2θ

cos4(θ) ,
∂4c

∂x1
2∂x2

2
≈ ∂4c

∂x4
2θ

cos2(θ) sin2(θ)

∂4c

∂x1∂x2
3
≈ ∂4c

∂x4
2θ

cos3(θ) sin(θ) ,
∂4c

∂x2∂x1
3
≈ ∂4c

∂x4
2θ

sin3(θ) cos(θ)

(82)
Employing equations (76) to (82), the functional Zc,Anis of equation (4) is
expressed in polar coordinates as

Zc,Anis =

 (c− 1)
2

4l0
+ l0|∇c|2 + l30

∑
ijkl

γijkl
∂2c

∂xi∂xj

∂2c

∂xk∂xl

 ≈
[

(c− 1)
2

4l0
+ l0

(
∂c

∂x2θ

)2

+ l30γθ

(
∂2c

∂x2
2θ

)2
] (83)

where

γθ = γ1111 sin4(θ) + γ2222 cos4(θ) + γ1212 cos2(θ) sin2(θ)+

2γ1122 cos2(θ) sin2(θ) + 2γ1112 cos(θ) sin3(θ)+

2γ2212 sin(θ) cos3(θ)

(84)
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Furthermore, the Euler-Lagrange equation is rewritten in the form

c− 1− 4l20∆c+ 4l40
∑
ijkl

γijkl
∂4c

∂xi∂xj∂xk∂xl
= 0⇒

c− 1− 4l20

(
∂2c

∂x2
2θ

)
+ 4l40γθ

(
∂4c

∂x4
2θ

)
= 0

(85)

Equation (85) can then be numerically solved subject to the following bound-
ary conditions, i.e.,

c (0) = 0

∂c (0)

∂x2θ

= 0

∂c (±∞)

x2θ

(
≈ ∂c (±xlb)

∂x2θ

)
= 0

∂2c (±∞)

∂x2
2θ

(
≈ ∂2c (±xlb)

∂x2
2θ

)
= 0

(86)

where xlb is the distance from the boundary, assuming that xlb = 20l0. Finally,
the surface energy density is numerically evaluated as

Gc (θ) =

∫ +∞

−∞
ḠcZc,Anisdx2θ ≈

∫ +xlb

−xlb
ḠcZc,Anisdx2θ (87)

The maximum and minimum values of Gc (θ) for θ ∈ [0, 2π] define the Gcmax
and Gcmin respectively. The polar plot of surface energy density Gc (θ) can be
rotated by angle φ through relation (88) below

γφ = QφγQ
T
φ (88)

The rotation matrix Qφ is defined as

Qφ =

c2 s2 −2cs
s2 c2 2cs
cs −cs c2 − s2

 (89)

where c = cos (φ) and s = sin (φ). The angle φ goes clockwise. In the cases of
cubic and orthotropic symmetry the 4-th order tensor γ is expressed, in global
axes, as

γ =

γ1111 γ1122 γ1112

γ2211 γ2222 γ2212

γ1211 γ1222 γ1212

 =

 γ11 γ12 2γ14

γ12 γ22 2γ24

2γ14 2γ24 4γ44

 (90)
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Fig. 20 Coordinate system transformation.

References

1. Ambati, M., Kruse, R., De Lorenzis, L.: A phase-field model for ductile fracture at
finite strains and its experimental verification. Computational Mechanics 57(1), 149–
167 (2016)

2. Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by el-
liptic functional via t-convergence. Communications on Pure and Applied Mathematics
43(8), 999–1036 (1990)

3. Bandara, S., Soga, K.: Coupling of soil deformation and pore fluid flow using material
point method. Computers and Geotechnics 63, 199–214 (2015)

4. Bardenhagen, S., Kober, E.: The generalized interpolation material point method. Com-
puter Modeling in Engineering and Sciences 5(6), 477–495 (2004)

5. Bardenhagen, S.G., Nairn, J.A., Lu, H.: Simulation of dynamic fracture with the Ma-
terial Point Method using a mixed J-integral and cohesive law approach. International
Journal of Fracture 170(1), 49–66 (2011)

6. Bathe, K.J.: Finite element procedures. Prentice Hall, Upper Saddle River, NJ. (2007)
7. Batra, R., Zhang, G.: Search algorithm, and simulation of elastodynamic crack propa-

gation by modified smoothed particle hydrodynamics (MSPH) method. Computational
Mechanics 40(3), 531–546 (2007)

8. Bobaru, F., Hu, W.: The Meaning, Selection, and Use of the Peridynamic Horizon and
its Relation to Crack Branching in Brittle Materials. International Journal of Fracture
176(2), 215–222 (2012)

9. Borden, M.J., Hughes, T.J., Landis, C.M., Verhoosel, C.V.: A higher-order phase-field
model for brittle fracture: Formulation and analysis within the isogeometric analysis
framework. Computer Methods in Applied Mechanics and Engineering 273, 100–118
(2014)

10. Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J., Landis, C.M.: A phase-field
description of dynamic brittle fracture. Computer Methods in Applied Mechanics and
Engineering 217–220, 77–95 (2012)

11. Bourdin, B., Francfort, G.A., Marigo, J.J.: The Variational Approach to Fracture. Jour-
nal of Elasticity 91(1-3), 5–148 (2008)

12. Clayton, J., Knap, J.: Phase field modeling and simulation of coupled fracture and
twinning in single crystals and polycrystals. Computer Methods in Applied Mechanics
and Engineering 312, 447–467 (2016)

13. Daphalapurkar, N.P., Lu, H., Coker, D., Komanduri, R.: Simulation of dynamic crack
growth using the generalized interpolation material point (GIMP) method. International
Journal of Fracture 143(1), 79–102 (2007)

14. Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization
problem. Journal of the Mechanics and Physics of Solids 46(8), 1319–1342 (1998)

15. Griffith, A.A.: The phenomena of rupture and flow in solids. Philosophical Transactions
of the Royal Society of London A 221, 163–198 (1921)



Title Suppressed Due to Excessive Length 41

16. Gültekin, O., Dal, H., Holzapfel, G.A.: A phase-field approach to model fracture of arte-
rial walls: theory and finite element analysis. Computer Methods in Applied Mechanics
and Engineering 312, 542–566 (2016)

17. Homel, M.A., Herbold, E.B.: Field-gradient partitioning for fracture and frictional con-
tact in the material point method. International Journal for Numerical Methods in
Engineering 109(7), 1013–1044 (2017)

18. Hughes, T., Reali, A., Sangalli, G.: Efficient quadrature for NURBS-based isogeometric
analysis. Computer Methods in Applied Mechanics and Engineering 199(5-8), 301–313
(2010)

19. Jassim, I., Stolle, D., Vermeer, P.: Two-phase dynamic analysis by material point
method. International Journal for Numerical and Analytical Methods in Geomechanics
37(15), 2502–2522 (2013)

20. Kakouris, E.G., Triantafyllou, S.P.: Phase-Field Material Point Method for Brittle
Fracture. International Journal for Numerical Methods in Engineering (2017). DOI
10.1002/nme.5580

21. Li, B., Peco, C., Milln, D., Arias, I., Arroyo, M.: Phase-field modeling and simulation
of fracture in brittle materials with strongly anisotropic surface energy. International
Journal for Numerical Methods in Engineering 102(3-4), 711–727 (2015)

22. Li, T., Marigo, J.J., Guilbaud, D., Potapov, S.: Gradient damage modeling of brittle
fracture in an explicit dynamics context. International Journal for Numerical Methods
in Engineering 108(11), 1381–1405 (2016)

23. Miehe, C., Aldakheel, F., Raina, A.: Phase field modeling of ductile fracture at finite
strains: A variational gradient-extended plasticity-damage theory. International Journal
of Plasticity 84, 1–32 (2016)

24. Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack
propagation: Robust algorithmic implementation based on operator splits. Computer
Methods in Applied Mechanics and Engineering 199(45-48), 2765–2778 (2010)

25. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field
models of fracture: Variational principles and multi-field FE implementations. Interna-
tional Journal for Numerical Methods in Engineering 83(10), 1273–1311 (2010)

26. Nairn, J.A.: Material Point Method Calculations with Explicit Cracks. Computer Mod-
eling in Engineering and Sciences 4(6), 649–664 (2003)

27. Nairn, J.A., Hammerquist, C., Aimene, Y.E.: Numerical Implementation of Anisotropic
Damage Mechanics. International Journal for Numerical Methods in Engineering (2017).
DOI 10.1002/nme.5585

28. Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.: Meshless methods: A review and
computer implementation aspects. Mathematics and Computers in Simulation 79(3),
763–813 (2008)

29. Sadeghirad, A., Brannon, R., Guilkey, J.: Second-order convected particle domain in-
terpolation (CPDI2) with enrichment for weak discontinuities at material interfaces.
International Journal for Numerical Methods in Engineering 95(11), 928–952 (2013)

30. Sadeghirad, A., Brannon, R.M., Burghardt, J.: A convected particle domain interpola-
tion technique to extend applicability of the material point method for problems involv-
ing massive deformations. International Journal for Numerical Methods in Engineering
86(12), 1435–1456 (2011)

31. Sanchez, J., Schreyer, H., Sulsky, D., Wallstedt, P.: Solving quasi-static equations with
the material-point method. International Journal for Numerical Methods in Engineering
103(1), 60–78 (2015)
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