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Abstract 

The hormone gibberellin (GA) controls plant growth and regulates growth responses to 

environmental stress. In monocotyledonous leaves, GA controls growth by regulating division-

zone size. We used a systems approach to investigate the establishment of the GA distribution in 

the maize leaf growth zone to understand how drought and cold alter leaf growth. By developing 

and parameterizing a multiscale computational model that includes cell movement, growth-

induced dilution and metabolic activities, we revealed that the GA distribution is predominantly 

determined by variations in GA metabolism. Considering wild-type and UBI::GA20-OX-1 leaves, 

the model predicted the peak in GA concentration, which has been shown to determine division-

zone size. Drought and cold modified enzyme transcript levels, although the model revealed that 

this did not explain the observed GA distributions. Instead, the model predicted that GA 

distributions are also mediated by post-transcriptional modifications increasing the activity of 

GA20oxidase in drought and of GA2oxidase in cold, which we confirmed by enzyme activity 

measurements. This work provides a new, mechanistic understanding of the GA metabolism in 

plant growth regulation. 
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Significance statement 

Explanation of the significance of the research at a level understandable to an undergraduate-
educated scientist outside their field of specialty: 

Understanding why plant growth reduces in drought and cold is essential to understand how these 

conditions affect crop yields. Previous studies have shown that growth depends on the distribution 

of the hormone gibberellin (GA). By developing a computational model and comparing predictions 

with GA measurements, we show that the GA distribution is mainly created by spatial variations 

in GA synthesis and degradation. We reveal that although the synthesis and degradation enzyme 

transcripts are affected by drought and cold, this does not explain the GA distributions. Instead, 

we find that specific enzyme activities are increased to create the GA distributions that underlie 

the growth responses. Thus, we gain a fundamentally new understanding of plant growth 

inhibition by drought and cold. 
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Introduction 

The hormone gibberellin (GA) controls plant growth and plays a key role in growth responses to 

environmental conditions (1, 2). This growth regulation is thought to be underpinned by the GA 

distribution; however, how the GA distribution is regulated is largely unknown. In roots and 

monocotyledonous leaves, the sizes of the division zone (DZ) and elongation zone (EZ) are key 

parameters that determine overall organ growth rates (3-6).  The boundaries of these growth 

zones are dynamically controlled by hormone distributions (7), which depend on hormone 

metabolism, transport between cells, and dilution (due to cell growth). In Arabidopsis roots, for 

example, the DZ size has been shown to be regulated by GA synthesis (8-10), GA signaling (11), 

auxin transport (12, 13) and cross-talk between auxin and cytokinin (14-16).  

Maize leaves provide an alternative organ for studying growth regulation, with the major 

advantage that they enable direct measurement of spatial distributions of hormone and transcript 

levels and enzyme activities along the growth zone (9, 17). In maize leaves, bioactive gibberellins, 

GA1 and GA4, show a distinct maximum within the DZ (9, 17). Kinematic and hormone analysis 

of wild-type leaves, dwarf3 leaves (defective in GA synthesis), and UBI::GA20-OX-1 leaves (over-

expressing a key GA20ox biosynthesis enzyme) demonstrated that the GA1 distribution 

determines the length of the DZ (9) (similar to its function in the Arabidopsis root (8), although 

sensor observations suggest GA distribution differs (18)). Thus, the expression of GA metabolic 

enzymes plays a key role in creating the GA1 distribution and controlling DZ size (9). These GA 

metabolic enzymes also mediate growth responses to cold (19, 20), salt (21), nutrients (10, 22), 

light (23) and water (24), and crosstalk between the growth-regulatory hormone pathways (25, 

26), making them a key component of environmental growth responses. 

Although metabolite and transcript measurements along the growth zone provide insights into 

how hormone levels are related to local cell division and expansion, they essentially produce 

static measurements, making it hard to infer the underlying dynamic processes. Understanding 

how molecular and cellular processes interact to establish, maintain and adjust the hormone 

distributions that control organ growth can be challenging, and theoretical models have proven 

invaluable in providing a mechanistic understanding (13, 14, 16, 27-29). Considering the GA 

dynamics within the Arabidopsis root, previous modelling demonstrated that cell elongation 

causes significant dilution in the EZ (28). Thus, in contrast to auxin distribution being primarily 

determined by carrier-mediated transport (12, 13), the GA distribution appears to be controlled by 

an entirely different mechanism. 



In this study, we gain a mechanistic understanding of how GA distributions are controlled. We 

develop a multiscale model of GA dynamics within the maize leaf growth zone, by combining a 

detailed model of the GA metabolism within each cell with cellular growth dynamics. Focusing on 

the maize leaf enables us to compare model predictions to spatial metabolite and enzyme data 

(which is not feasible in smaller species such as Arabidopsis (17)), revealing that bioactive GA 

distribution is predominantly determined by spatial variations in metabolism.  

We apply the new model to investigate how drought and cold affect the GA distribution, to 

understand how these stresses alter leaf growth. Mild drought reduces maize leaf growth by 

reducing DZ size, bioactive GA levels and the transcript levels of the GA20oxidase biosynthesis 

enzymes (30). The model reveals that GA20oxidase activity is increased to counteract the 

reduction in GA20oxidase transcripts, suggesting that the lower bioactive GA levels and growth 

response is mediated instead by increased transcription of the GA2ox catabolic enzymes. 

The role of GA in the response to cold, which inhibits cell division rates but not DZ size (31), is 

still unclear. Measurements revealed a substantial reduction in the GA2oxidase transcripts, 

suggesting that cold reduces GA degradation. However, the model revealed that GA2oxidase 

activity is increased to counteract the reduced transcript levels and maintain bioactive GA 

concentrations at control levels. Thus, the model reveals new insights into drought and cold 

responses, suggesting modulation of specific oxidation rates determines bioactive GA 

distributions that underpin growth regulation. 

Results 

Model description 

To understand how GA distribution is regulated, we constructed a cell-based model that describes 

GA biosynthesis, degradation and dilution (due to cell growth) within the maize leaf growth zone 

(Fig. 1a,b). The model exploits the simple linear leaf geometry and represents the leaf as a single 

file of cells. Based on stable leaf elongation rate (LER) during the first 5 days after emergence 

(31), we consider leaf growth to be in steady state. The model integrates cell growth and division 

rates from experimental measurements (32) (Fig. 1c-f). Cell length decreases slightly close to the 

base of the leaf before increasing with distance along the growth zone (Fig. 1c). Velocity is zero 

at the base of the leaf and increases with distance along the growth zone (Fig. 1d). Using these 

data, we calculated the relative elongation rates (RER) (Fig. 1e), which follows a roughly bell-

shaped curve, and the cell division rates (Fig. 1f), which show a bell-shaped curve spanning the 



DZ. The model also integrates the increase in the leaf’s cross-sectional area along the growth 

zone to accommodate increases in cell volume when simulating dilution (33). Consistent with 

approximate doubling of both width and thickness of the leaf (33), volumetric quantifications 

showed that leaf cross section increases more than 5-fold across the growth zone (Fig. 1g). With 

these growth dynamics (Fig. 1c-f), the maize leaf growth zone is represented by a file of ca.1400 

cells, with ~700 cells in the DZ and ~700 cells in the EZ. These growth dynamics are used to 

simulate dividing and growing cells (see Supplementary Information text (SI)).  

In the model, we incorporated the sub-cellular structure of the cells. Within the DZ, cells 

predominantly contain nucleus and cytoplasm; we assumed that the nuclear volume is constant 

and equal to 50% of the cell volume at the most basal position (noting that nuclear volume stays 

constant in virtual absence of endoreduplication in maize leaves (31)), and thus, cell growth in 

the DZ occurs due to cytoplasmic expansion. Within the EZ, growth occurs primarily by rapidly 

increasing vacuolar volume. Based on cell length and cross-sectional area distributions (Fig. 

1c,g), we calculated that cell volume increases approximately 12-fold over the EZ, which, under 

the assumption of vacuolar expansion (with no increase in nucleus or cytoplasm volume), results 

in around 92% of the cells’ volume being vacuole when they enter the mature zone. This value 

agrees with previous suggestions that the vacuole takes up 90% − 95% of the cell volume (34). 

GA biosynthesis involves a series of oxidation steps, converting the precursor, 

geranylgeranyldiphosphate (GGPP), to the bioactive GA4 and GA1 (35, 36). GA biosynthesis has 

been shown to be predominantly regulated at the later steps of this pathway (37) whereby GA53 

and GA12 are converted to bioactive GAs (35, 36). Focusing on the pathway that leads to the more 

prevalent bioactive GA in maize, GA1 (9) (Fig. 1b), we simulated GA biosynthesis and degradation 

within each cell: GA53 undergoes a series of oxidation steps mediated by GA20ox to produce 

GA20, which is converted to the bioactive GA1 by GA3ox (35). GA2oxidases degrade the bioactive 

GA1 and precursor GA20 to GA8 and GA29, respectively, which are in turn converted by the 

GA2oxidase to their catabolite forms (35). We represented these reactions by a system of 

ordinary differential equations (ODEs) for the metabolite, enzyme and complex concentrations: 

each step was modelled using the law of mass action by assuming the GA metabolite first binding 

to the enzyme with a reversible reaction, and the resulting complex then dissociating into the next 

GA metabolite in the pathway and the enzyme (38). We assumed that enzymes are translated at 

a rate proportional to the transcript level.  

The reactions involved in the GA metabolism pathway downstream of GA53 occur in the cytoplasm 

(35, 36), and we assumed that the enzymes and complexes are only present in this compartment. 



Data in Arabidopsis suggest that GA metabolites are also present in the nucleus and the vacuole 

(39). In absence of analogous data in maize, we assumed this to be similar in maize, hence within 

the model assuming equal metabolite concentrations throughout the cell.  

Prescribing the growth dynamics and distributions of the GA53 concentration and GA20ox, GA3ox 

and GA2ox transcript levels, the cell-based model can be simulated to predict the distributions of 

the downstream metabolites, enzymes and complexes. The spatial distributions of the GA53 

concentration and GA20ox, GA3ox and GA2ox transcript levels are upstream inputs, each of 

which are represented by a sum of b-spline functions (40) with coefficients that are estimated 

using the experimental data as part of the model fitting (see SI).   

To summarize, we have developed a cell-based model that describes GA metabolism and dilution 

within the Maize leaf growth zone; the key assumptions behind this cell-based model (described 

above) are compiled in Table S1. 

 Derivation of a reduced model 

The cell-based model comprises 17 ODEs for each cell in the growth zone, which for 1400 cells, 

results in a system of 25200 ODEs, which can be simulated until they reach a steady state. For a 

given parameter set, the cell-based model took several hours to run to predict the steady-state 

distributions, making detailed parameter surveys impractical. To estimate model parameter 

values that enable the model to reproduce the experimental data, we needed to derive a reduced 

model to reduce the simulation time. We derived a continuum description of the cell-based model, 

considering quantities in terms of distance from the leaf base. We further reduced the model by 

assuming that the ratio between the enzyme concentrations and metabolite concentrations are 

small (an approximation typically taken when modelling enzyme reactions (41), and shown 

previously to be appropriate for GA20ox-mediated oxidation (42)). The resulting reduced model 

comprised a system of 6 ODEs in terms of distance from the leaf base for the concentrations of 

GA44, GA19, GA20, GA1, GA29 and GA8 (highlighted with green stars in Fig. 1b), which depend on 

8 oxidation rate constants (one associated with each oxidation step, which encompasses the 

translation rate, binding rates and enzyme activity), the 4 input functions (representing the spatial 

distributions of GA53 concentration and GA20ox, GA3ox and GA2ox transcript levels; pink stars in 

Fig. 1b) and the prescribed growth dynamics.  

To aid clarity, we provide a summary of the model assumptions underlying the reduced model in 

Supplementary Table S1. As described below, using the reduced model, we were able to estimate 



the reduced model parameters for a given experimental dataset and therefore all model results 

presented in Figures 2-5 are created by simulating the reduced model. 

GA1 distribution is predominantly determined by spatial variations in metabolism 

To test whether the reduced model could represent our observations, we initially parameterized 

the reduced model using published experimental measurements of metabolite and transcript 

levels within 12 leaf segments along the maize leaf growth zone, fitting the reduced model 

parameters independently to data from B104 (9) and B73 inbred lines (30). Prior to fitting, we 

converted the metabolite measurements (in ng/gDW) (Figs. S4, S5), to nM concentrations (Figs. 

S6 and S7; SI). After the conversion, the spatial metabolite distribution profiles are globally similar 

to the original data but can differ in detail; for example, in the nM concentration profile, the peak 

GA1 is slightly closer to the leaf base than in the corresponding GA1 measurements (Fig. S8). 

Based on these data, we estimated parameters by minimising a weighted sum of squares criterion 

(detailed in Supplementary text, section 2.3.4). With the estimated parameters, the reduced model 

showed a reasonable agreement with the experimental measurements (Figs. 2b-k, S10) and 

faithfully reproduced the peak in cytoplasmic GA1 level within the DZ (Fig. 2i).  

Using the reduced model enabled us to estimate the model parameters (i.e. the rate constants in 

the metabolism network); thus, we were able, for the first time, to assess the relative impact of 

individual cellular and subcellular processes on the established GA1 distribution. Removing either 

the presence of dilution (Fig. 3a) or the presence of cell movement (Fig. 3b), or the presence of 

both dilution and cell movement (Fig. 3c), had little effect on the predicted GA distributions. Similar 

results were obtained for B104 (Fig. S10). The influence of dilution and cell movement on the GA 

distribution depends on the magnitudes of the rate constants – with the estimated rate constants, 

the metabolism network quickly reaches an equilibrium within each cell so that dilution and cell 

movement are slower processes that have little effect on the predicted GA concentrations (see 

Fig S11, which shows how dilution and cell movement have an effect on the GA1 distribution if 

the rate constants are smaller). We conclude that dilution and cell movement have only minor 

effects on the GA distributions, and that the GA1 distribution is predominantly determined by the 

spatial variations in metabolism.  

The estimated parameters provide insights into the mechanisms that determine the distributions 

of the GA metabolites, and differences between the B73 and B104. The parameter estimates 

obtained (Table S2) suggests that for B73 the GA2ox-mediated degradation rate of the precursor 

GA20 is small, but that there is a faster GA3ox-mediated conversion of GA20 to the bioactive GA1, 



which explains the low GA20 concentrations observed. In contrast, for B104, the degradation of 

GA20 is fast, whereas the conversion of GA20 to GA1 is slower. To test this model prediction 

experimentally, we therefore directly compared the rates of GA2ox and GA3ox in the growth zone 

of B73 and B104 leaves. In agreement with the model prediction, these data revealed that in B73, 

GA3ox enzyme activity (producing GA1) is consistently higher than GA2ox activity (producing 

GA29; Fig. 3d). Moreover, as predicted by the model, in B104 the inverse situation occurs (Fig. 

3e). 

As one may expect, doubling the GA20ox-mediated oxidation rates increases the predicted GA1 

concentrations (Figs. 3f, S12), whereas doubling the GA2ox rates decreases the predicted GA1 

concentrations (Figs. 3f, S13) although the qualitative features of the GA1 distribution remain the 

same. Varying the oxidation rate associated with the GA3ox-mediated step had little effect on the 

GA1 predictions (Figs. 3f, S14; doubling the GA3ox oxidation rate increases the rate at which GA20 

is converted to GA1, however, this also decreases the GA20 concentrations: at quasi-steady state 

these processes cancel each other out, resulting in little effect on the GA1 distribution).  

The reduced model also enabled us to investigate the importance of the spatial distributions of 

the GA53 metabolite and enzyme transcript levels. With constant GA53, the predicted GA1 formed 

only a small peak in the DZ and increased as cells left the growth zone (Figs. 3g, S15), whereas 

with constant enzyme levels, the GA1 peak in the DZ was less pronounced (Figs. 3h, S16). We 

conclude that the spatial variations in both GA53 and enzyme transcription are essential to create 

the GA1 distribution that underpins the growth regulation.   

Activity of the heterologous GA20ox is higher than the native enzyme  

We next set out to test if the reduced model is able to explain the effect of experimental 

perturbations on GA metabolism, distribution and leaf growth. We first studied the effects of over-

expressing the AtGA20-oxidase1 biosynthesis enzyme (UBI::GA20-OX-1), which enhances 

bioactive GA levels and growth in both Arabidopsis (43, 44) and maize by increasing DZ size (9) 

(Fig. 4a). To investigate how over-expressing AtGA20-oxidase1 affects the metabolism dynamics, 

we simulated the UBI::GA20-OX-1 dynamics by including an additional enzyme, AtGA20ox, in the 

reduced model and incorporating terms representing the rate at which the AtGA20ox enzyme 

mediates the three oxidation steps: GA53 to GA44, GA44 to GA19, and GA19 to GA20. Initially, we 

assumed that for each of these steps the native and heterologous GA20oxidase enzyme 

transcripts mediate the same rate of metabolite oxidation, and tried to fit the reduced model to 

metabolite and transcript data from wild-type and UBI::GA20-OX-1 (9). With this assumption, we 



found that the reduced model could not recapitulate the spatial distributions of transcript and 

metabolite levels observed experimentally (Fig. S17); the reduced model suggests that for the 

downstream GAs to be higher in UBI::GA20-OX-1 requires GA53 to also be higher, which is not 

reflected in the experimental data (Fig. 4b,g-l).  

We solved this conundrum, by allowing each of the three GA20ox-mediated oxidation rates to be 

different between the native and heterologous enzymes, which led to reasonable agreement 

between the reduced model and data (Fig. 4b-l). Considering the estimated parameters (Table 

S4), the estimated conversion rate of GA53 to GA44 is approximately 20 times higher for AtGA20-

oxidase1 and the conversion rates of GA44 to GA19 and GA19 to GA20 are approximately double 

that of the native enzyme. This explains why downstream GA concentrations are higher in the 

over-expression line (Fig. 4g-l) despite GA53 concentrations being lower (Fig. 4b). These 

differences are likely due to differences in translation efficiency, protein degradation, or enzyme 

activity between the native and heterologous enzymes. The reduced model shows that the 

differences in GA20ox activity result in the GA1 concentration having a higher maximum, but 

reducing to a similar level at the boundary between the DZ and EZ (at ca 18 and 25 mm from the 

leaf base for wildtype and UBI::GA20-OX-1, respectively), consistent with the GA1 distribution 

controlling the DZ size via a threshold mechanism (i.e. the transition to the EZ occurring where 

GA1 levels reduce below a threshold value) (9). We conclude that the reduced model recapitulates 

published data and identifies new details in the molecular regulation of GA metabolism, such as 

differential specificity in the activities of the native and heterologous gene product.  

Drought and cold regulate distinct enzymatic reactions 

Next, we used the reduced model to determine if and how GA distributions are affected by 

environmental stress and if this could explain the growth response. We applied the reduced model 

to published experimental data involving drought conditions (30), and newly collected data in cold 

conditions (31). Both stresses reduced leaf elongation rate by 20-30% (30, 31) (Fig. 5a,b), but 

this was due to different underlying cellular behaviours: a reduction in DZ size in drought (30, 45) 

(Fig. 5c, Table S3) and a reduction in division and elongation rates in cold (31) (Fig. 5d, S2).  

Measured metabolite levels (in ng/g DW) showed GA1 levels are reduced in both drought and 

cold (Fig. 5e). We first converted these measurements to concentrations (nM), taking into account 

cross-sectional area. In drought, cross-sectional areas are similar to those of the control (Fig. 5f), 

so that, as for the GA1 measurements, GA1 concentrations (in nM) are also reduced in drought 

(Fig. 5g). However, in cold, cross-sectional areas are much lower (Fig. 5f), resulting in GA1 



concentrations in cold that are in fact similar to those in control conditions (Fig. 5g). We concluded 

that drought, but not cold, reduces the GA1 concentrations. Measured GA53 levels (in ng/gDW) 

were little affected by drought or cold (Fig. S4), resulting in GA53 concentrations that are increased 

in cold (once converted to nM), suggesting cold affects the pathway upstream of GA53 (Fig. 5h). 

These observations illustrate the importance of conversion to nM concentrations when 

interpreting metabolite measurements. 

Measurements of transcript levels revealed that drought reduces GA20oxidase and increases 

GA2oxidase levels (Fig. 5i,k), whereas cold reduces GA2oxidase levels (Fig. 5k). We first tested 

if these perturbed enzyme transcript levels cause the observed metabolite distributions, assuming 

identical oxidation rate constants, by fitting the reduced model to the control, cold and drought 

transcript and metabolite data. With this assumption, we were unable to reproduce the metabolite 

distributions (Fig. S18). The predicted difference between GA1 in control and drought conditions 

is much less than observed, whereas GA1 was predicted to be higher in cold than in control 

conditions, again in contrast to the data. 

To resolve this discrepancy, we hypothesized that drought and cold regulate the GA pathway by 

additional mechanisms (e.g. translation, protein stability or enzyme activity). To test this theory, 

we fitted the reduced model to the data allowing the oxidation rate constants for either the 

GA20oxidase-mediated steps, the GA3oxidase-mediated step or the GA2oxidase-mediated steps 

to be different in cold and drought. To select among the resulting 16 possible cases (Table S5), 

we used the Akaike Information Criterion (AICc) (46), a statistical measure which assesses the 

goodness of fit whilst penalizing model complexity by taking into account the number of model 

parameters. Fitting the model and calculating the AICc in each case provided a means to select 

among the possible cases. Considering the AICc values obtained (Table S5), our results 

suggested that the rate constants governing the GA20oxidase-mediated steps are perturbed in 

drought and the rate constants governing the GA2oxidase-mediated steps are perturbed in cold 

(Fig. 5h-q). The parameter estimates (Table S6) suggest that in drought, the conversion rates of 

GA53 to GA44 and GA19 to GA20 are similar to those in control conditions, whereas the conversion 

rate of GA44 to GA19 is approximately doubled, providing an explanation as to why GA19 

concentrations are similar in drought and control conditions, while GA44 is lower in drought. The 

parameter estimates suggest that in cold the degradation rates of both GA20 and GA29 are higher 

than in control conditions, so that overall degradation is substantially increased in cold despite 

the GA2oxidase transcript levels being lower.  



Thus, our modelling approach identified specific GA enzyme activities impacted by drought and 

cold and explain the observed metabolite levels. Although in drought GA20oxidase transcript 

levels are lower than in control conditions (Fig. 5i), the reduced model predicted that GA20oxidase 

enzymes mediate the GA44 to GA19 oxidation step at a higher rate. This suggests that GA1 

synthesis in drought is similar to that in control conditions, and that the lower GA1 concentrations 

are caused by increased degradation mediated by increased GA2oxidase transcript levels. In 

cold, the GA2oxidase transcripts are expressed at lower levels than in control conditions, but the 

rate constant associated with GA2ox-mediated GA20 degradation is increased, explaining why 

GA1 concentrations are similar in control and cold conditions. 

Enzyme activity measurements support model predictions 

To test the surprising model prediction that enzyme activities (relative to their transcript levels) 

increased in response to cold and drought, we performed further experiments to measure the 

enzyme activity directly. We considered six reactions for each condition: GA53, GA44 and GA19 

were used to determine GA20oxidase activities, and GA1, GA29 and GA8 to obtain GA2oxidase 

activities. The enzymes were extracted from 10mm segments from the maize leaf growth zone. 

These data (Fig. S19) were used to calculate the oxidation rate constants (see SI for details).  

In agreement with the model predictions, the oxidation rate mediated by GA2ox increased in cold 

conditions (Fig. 6). For drought, there was a trend for higher oxidation rates associated with 

GA20ox activity, also in support of the model predictions. Therefore, these in-vivo activity 

measurements support the in-silico prediction of increased specific enzyme activities in cold 

(GA2ox) and drought (GA20ox) conditions.  

Discussion 

GA regulates plant growth and growth response to environmental conditions (1, 2). Understanding 

how local bioactive GA levels are controlled is key to understanding these growth responses. 

However, often in studies of GA metabolism only static measurements are made of metabolite 

and transcript levels. Although static measurements have led to profound insight into how GA 

regulates growth, our innovative approach to use computational modeling in combination with in-

vivo measurements allows us to expand our knowledge to the dynamics of the reactions in 

responses to heterologous transgenes and environmental conditions. 



We present a mathematical model that simulates the key cellular and subcellular processes 

governing GA distribution in the maize leaf growth zone. The modelling revealed that the bioactive 

GA1 distribution is predominantly determined by the spatial variations in metabolism. We validated 

the model by demonstrating that it recapitulates experimental data from both wild type and plants 

over-expressing the AtGA20-oxidase1 biosynthesis enzyme (UBI::GA20-OX-1). This revealed 

that the heterologous AtGA20-oxidase1 enzyme is substantially more active than the native maize 

version, with a much higher rate of conversion of GA53 to GA44.  

The model also allowed us to obtain drought and cold responses that could not be deduced from 

the gene expression and metabolite distributions alone. The modelling suggested that the GA1 

concentrations in the stressed conditions are not the result of changes in enzyme transcript levels 

alone. Instead, oxidation rates associated with specific enzymes were increased in the stressed 

conditions, suggesting that stress-induced post-transcriptional regulation of enzyme activities has 

a major effect on GA1 levels under these conditions. Subsequent enzyme-activity assays 

validated these model predictions, suggesting that further studies of GA oxidation enzymes at the 

protein level are needed to understand the regulation of bioactive GA levels and growth. 

The predicted GA1 distributions provide an explanation for how GA metabolism regulates the 

growth dynamics. Higher GA1 concentrations in UBI::GA20-OX-1, and the lower GA1 

concentrations under drought shift the position at which the GA1 reaches a threshold value 

thought to determine the DZ length (9, 30) (i.e. a larger DZ in UBI::GA20-OX-1, and a smaller DZ 

in drought). The modelling enabled us to identify which specific oxidation steps are affected in 

these cases to create this GA1 distribution and growth response. The reduction in leaf growth in 

cold is due to a different cellular mechanism: a reduction in division and elongation rates rather 

than DZ length (31). Our study revealed that once converted to nM concentrations, the GA1 

distribution in cold is approximately the same as in control conditions, explaining why the growth 

zone lengths are not affected. Our findings therefore suggest that the growth inhibition by cold 

does not appear to be regulated by the GA pathway.  

While the model predictions generally agreed well with the experimental measurements, there 

are naturally some differences. These differences may be caused by variability in the data (for 

instance, differences between the predictions and data at the GA1 peak in the control case in Fig 

5o, may be caused by the relatively large standard errors in the measured GA1 levels in this 

region, shown in Fig 5e). Additional differences may be caused by biological phenomena or 

variability not explicitly considered in the model. 



Fitting the model to the data required us to develop a reduced model. Although cell-based models, 

which simulate populations of dividing, growing cells, are often used to investigate hormone 

dynamics (13, 29, 47), the simulation times involved typically make formal parameter estimation 

impractical. Simulations are particularly slow for the maize leaf growth zone which contains ~1400 

cells in each file (31), in contrast to only ~70 in Arabidopsis (48). This made it necessary to derive 

a continuum approximation of the cell-based model. This approach, to move from the Lagrangian 

(or material) viewpoint to the Eulerian (or spatial) one, has played a major role in understanding 

plant growth kinematics (49-51), although has received limited attention by hormone modellers 

(52, 53). We also considered methods for integrating spatially varying inputs (i.e. components 

that are regulated by upstream processes not included in the model) via b-spline representations. 

There is much potential to translate these modelling approaches to study dynamics in other cell-

based systems.  

Our study demonstrates the usefulness of a detailed model of GA metabolism within the growing 

maize leaf. To gain a more complete insight, this model could be extended, for example, to 

investigate the downstream GA signalling pathway and growth regulation, the parallel pathway 

that mediates the synthesis of the bioactive GA4 (which is the main bioactive GA in other species 

such as Arabidopsis (54)), GA metabolism dynamics in other plant organs or how GA metabolism 

enzymes are regulated by other hormones (29, 55). Furthermore, the transcript and metabolite 

measurements used here are from the whole leaf segment, although in Arabidopsis roots, GA 

levels and responses have been shown to vary between tissues (8, 56, 57).  Studying whether 

differences between tissues exist in maize leaves could motivate a more detailed 2D or 3D model 

that incorporates cellular geometries and tissue-specific processes. Such model developments 

would be able to reveal further details the intricate and interacting multiscale interactions involved 

in organ growth regulation. 

 
 
Methods 
 
Modelling 
Full details of the mathematical model are provided in the SI. We defined a cell-based model 
integrating growth, metabolism and dilution (SI, §2), and used this to derive a reduced model (SI, 
§3). We simulated the reduced model by specifying growth using experimental measurements 
(SI, §2.3.1), and used the metabolite and transcript data to estimate the reduced model 
parameters using Matlab’s lsqnonlin optimization algorithm (SI §2.3.2-4).  
 
Plant Material and Growth conditions 
Plant material and growth conditions were as described in (31) (cold) and (30) (drought).  
 



Hormone profiling 
For hormone profiling, sampling, extraction, purification and hormone metabolic profiling were 
performed as described in (9). Data for the UBI::GA20OX-1 experiment (Fig. 4) was previously 
published in (9). 
 
Transcript levels 
Enzyme transcript levels were measured as described in (9). Transcript data for the 
UBI::GA20OX-1 experiment (Fig. 4) is as in (9). In the drought-cold experiment (Fig. 5), GA20ox 
levels are the summation of the measured levels of GA20ox1, GA20ox2.1 and GA20ox2.2, GA3ox 
is the level of GA3ox2, and GA2ox levels are the summation of GA2ox3.1, GA2ox3.2, GA2ox4, 
GA2ox6.2, GA2ox7.1 and GA2ox7.3, each measurement being the mean of n=3-7 replicates 
for positions 0-30, located around the GA maximum, and 95 mm, located at the end of the growth 
zone, and of n=1-3 replicates for positions 35-85 mm where GA levels are relatively stable. 
 
Kinematic analysis  
Kinematic analysis and measurements of division-zone length were performed as described in 
(32). The cross-sectional areas were calculated by measuring the volumes of 1cm segments of 
leaf. 

Assay of gibberellin metabolism enzymes 

Enzymes were extracted from 10 segments of the 4th maize leaf, and enzyme activities were 
measured directly as described in SI §1. 

Acknowledgements 

This work was supported by the Leverhulme Trust (Early Career Fellowship to Dr Leah Band, 

ECF-2012-681); and the Human Frontier Science Program (Grant number, RGY0075/2020). 

Author contributions 

L.R.B., H.N. and G.T.S.B conceptualized the study; L.R.B. and S.P.P. developed, reduced and 

parameterised the mathematical model, H.N., B.R., E.P. and H.A.E. performed the lab-based 

experiments; L.R.B. and G.T.S.B. wrote the manuscript; all authors contributed to analyzing the 

results and data, and to editing the manuscript. 

 

Figure legends 

Figure 1 | Model summary. (a) Schematic representation of the maize leaf showing the 
division, elongation and mature zones. We model the leaf as a file of cells, with cytoplasmic 
expansion in the division zone and vacuolar expansion in the elongation zone. (b) The 
gibberellin biosynthesis and degradation network. In the network diagram, red boxes are used 
for the metabolites, blue boxes are used for the enzymes, pink stars label the components 
modelled as input/forcing functions (parameterised via data on GA53 metabolite levels and gene 
expression levels of GA20ox, GA3ox and GA2ox), whereas green stars label the components 



that are solutions of the ODEs (which are fitted to measurements of the corresponding 
metabolites). (c-g) Growth dynamics for maize leaf 4, B73. (c) Experimental measurements of 
cell lengths away from the leaf base, data show averages calculated via interpolation using 
measurements from n=3 leaves. (d) Cell velocities calculated from data in panel (c). (e) Cell's 
relative elongation rates calculated from data in panel (d). (f) Cell division rates calculated from 
data in panels (c) and (d). (g) Experimental data for the leaf cross-sectional area (mean ± s.e. 
with n=10). Panels c-f show bars at the x-axis marking the DZ region (n=3). The corresponding 
growth dynamics for other cases are shown in Figs. S1-3. 
 
Figure 2 | Summary and predictions of the reduced model, fitted to the control wild-type 
data for B73. (a) Schematic summarising the differences between the original cell-based model 
and the reduced model.  (b-k) Measured and predicted distributions of GA metabolites and 
enzymes along the maize leaf. Data for B73 maize are shown with red stars and fitted reduced 
model predictions with solid blue lines. Panel i also shows the mean position of the boundary 
between the DZ and EZ (dashed black lines, Table S3, n=3). Metabolite data (panels b, f-k) show 
mean concentrations calculated from mean values from data on metabolite levels (Fig S4), dry 
weight (Fig S3c) and leaf cross-sectional area (Fig S3a). Transcript data (panels c-e) show mean 
values for n=3-7 (positions 0-30 and 95 mm) and n=1-3 (positions 35-85 mm). 
 
Figure 3 | Analysing the reduced model predictions for control, wild-type dynamics. (a-c) 
Effect of model components on the predicted cytoplasmic GA1 concentration: (a) with (solid line) 
and without (dashed red line) dilution; (b) with (solid line) and without (dashed red line) cell 
movement away from the leaf base; (c) with (solid line) and without (dashed red line) dilution 
and cell movement away from the leaf base. (d,e) Degradation/oxidation of GA20 by GA2ox 
(production rate of GA29) and GA3ox (production rate of GA1) in (d) B73 (e) B104 wild-type 
leaves. Data show mean ± s.e. for n=4. (f) Effect of the oxidation rates on the predicted GA1 
distribution. (g) Effect of setting the GA53 concentrations to be spatially constant on the 
predicted GA1 distribution. (h) Effect of setting the enzyme transcript levels to be spatially 
constant on the predicted GA1 distribution (for panels f-h, see Figs. S12-16 for the 
corresponding predictions of the other components).  Panels a-c also show the mean position of 
the boundary between the DZ and EZ (dashed black lines, Table S3, n=3).  

 

Figure 4 | Effect of GA20ox over-expressing line (UBI::GA20-OX-1) on GA pathway. (a) 
Relative elongation rates for wild type and GA20ox over-expressing line (UBI::GA20-OX-1), 
calculated from mean cell velocity data given in Fig S2 (n=3). (b-l) Measured and predicted 
distributions of GA metabolites and enzymes along the maize leaf for wild type (blue) and the 
GA20ox over-expressing line (UBI::GA20-OX-1) (red). Predictions are from the reduced model 
with estimated parameters given in Table S4. Metabolite data (panels b,g-l) show mean 
concentrations calculated from mean values from data on metabolite levels (Fig S5), dry weight 
(Fig S3c) and leaf cross-sectional area (Fig S3b). Transcript data (panels c-f) show mean values 
for n=3. Panel j also show the mean position of the boundary between the DZ and EZ for wild 
type (dashed blue line) and UBI::GA20OX-1 (dashed red line), n=3. 

 

Figure 5 | Influence of drought and cold on GA pathway. (a) B73 maize plants subjected to 
cold conditions. (b) B73 maize plants subjected to drought conditions. (c) Measured DZ lengths 
in control (blue), drought (green) and cold (red) condition (mean ± s.e. with n=3 replicates).  (d) 
Relative elongation rates in control (blue), drought (green) and cold conditions (red). (e) Measured 
bioactive GA1 levels (in ng/gDW) in control (blue), cold (red) and drought (green) conditions (mean 



± s.e. with n=3 replicates). (f) Measured leaf cross-sectional areas in control, cold and drought 
conditions (mean ± s.e. with n=10 for drought, and n=12 for cold). (g) Mean GA concentrations 
(in nM) calculated using data in panels d and e and Fig S3. (h-q) Metabolite and enzyme 
distributions in control (blue), cold (red) and drought (green) conditions. Data shown with stars 
and fitted model predictions with solid lines. Panels (d,e,h,o) show bars at the x-axis marking the 
mean DZ region for control (blue), drought (green) and cold (red) conditions (n=3). Predictions in 
panels h-q are using the reduced model and assuming that the activity of the GA20oxidase is 
changed under drought whereas the activity of the GA2oxidase is changed under cold conditions. 
Metabolite data (panels h, l-q) show mean concentrations calculated from mean values from data 
on metabolite levels (Fig S4), dry weight (Fig S3c) and leaf cross-sectional area (Fig S3a). 
Transcript data (panels i-k) show mean values for n=3-7 (positions 0-30 and 95 mm) and n=1-3 
(positions 35-85 mm). 
 
 
Figure 6 | Reaction rates calculated from measurements of enzyme activity for control 
(blue) drought (green) and cold (red) conditions. (a-c) Reactions mediated by GA20oxidase: 
GA53 to GA44 (a); GA44 to GA19 (b); and GA19 to GA20 (c). (d-f) Reactions mediated by 
GA2oxidase: GA1 to GA8 (d); GA29 to GA29 catabolite (e); and GA8 to GA8 catabolite (f). Data 
show mean ± s.e. calculated from degradation rate data (Fig S19, n=3) and enzyme transcript 
levels (Fig 5h-j, n=1-7). 
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