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Abstract

This paper concerns the reflection of high–frequency, monochromatic linear waves

of wavenumber k (� 1) from smooth boundaries which are O
(
k−1/2

)
perturbations

away from either a specified near–planar boundary or else from a given smooth, two–
dimensional curve of general O(1) curvature. For each class of perturbed boundary, we
will consider separately plane and cylindrical wave incidence, with general amplitude
profiles of each type of incident field.
This interfacial perturbation scaling is canonical in the sense that a ray approach
requires a modification to the standard WKBJ ‘ray ansatz’ which, in turn, leads to a
leading–order amplitude (or ‘transport’) equation which includes an extra term absent
in a standard application of the geometrical theory of diffraction (‘GTD’). This extra
term is unique to this scaling, and the afore–mentioned modification that is required
is an application of a generalised type of ray expansion first posed by F G Friedlander
and J B Keller [1].

1 Introduction and Motivation

The interaction between monochromatic, propagating, linear waves (such as acoustic, elastic
or electromagnetic waves) with obstructing boundaries is key to many topical scattering
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problems arising in modern applications of wave physics. Indeed, entire theories such as the
geometrical theory of diffraction (GTD), relevant in the high–frequency domain, have been
developed and applied very successfully for exactly such reasons.
One aim of this paper is to analyse examples from a relatively new class of time–harmonic,
high–frequency scattering problems, in which standard methodologies have to be modified
to account for reflection from obstructing boundaries having smooth perturbations (on a
specified length scale) away from either a perfectly flat boundary or else one with a general
O(1) curvature profile. These modifications are to the WKBJ–type expansion applied in
order to use ray methods, necessitating a modified ‘ray’ expansion of the type first considered
by Friedlander and Keller [1].

This application of Friedlander and Keller’s theory is a second aim of this paper, and
might even be the first such application for any specific value of a key parameter α that
they introduce, apart from two other applicable values (α = 0 and α = 1/3) which those
authors identified as having already arisen in examples pre–existing their generalised work.
Indeed, Keller and Lewis [2] make this point explicitly following equation (1.225) of their
paper, and so our current work will add α = 1/2 to the list of these only other known cases
of practical relevance (α = 0 amounts to the standard ray expansion and α = 1/3 is relevant
to, for example, creeping and whispering gallery wave propagation). We mention the case
α = 1 later, commenting that this case is not really special since it can be encapsulated
within complex ray theory without any further modifications being necessary.

The first problem that we consider concerns reflection at near–planar interfaces, an
example of which is the problem analysed by Engineer et al [3]. There, scattering by
exterior plane wave incidence upon a two–dimensional ‘canonically slender’ obstruction was
analysed in the high–frequency (i.e. k → ∞) limit. In that context, ‘canonically slender’
referred to a body of finite length whose transverse profile away from its ‘tips’ was of a
width commensurate with the requirements that the inner diffraction problem within a
length scale O (k−1) of either tip region was the full Helmholtz equation

(
∇̂2 + 1

)
φ̂ = 0 (in

terms of scaled inner coordinates x = k−1x̂, y = k−1ŷ and with φ(x, y) = φ̂ (x̂, ŷ)), rather
than some ‘parabolic wave equation’ reduction of it, subject to data prescribed on a locally
parabolic boundary, rather than an exactly flat half–plane, so that the full effects of the
‘inner’ boundary curvature were accounted for.

That argument supposes that the left–hand tip (for example) has a locally parabolic
profile given by the equation

ŷ2 = 2β2x̂ (1)

in which |x̂|, |ŷ| and the constant β are all O(1) quantities. This inner form of the boundary
must match smoothly with its equation y = F (x; k) valid elsewhere for |x| = O(1), and
supposing F (x; k) = kγf(x) for some γ to be determined, this leads to the ‘asymptotic
matching conditions’

ŷ = βk1/2
√

2k−1x̂ ∼ kγ+1f
(
k−1x̂

)
, (2)

from which γ = −1/2 and the condition f(x) ∼ β
√

2x as x→ 0, a condition which supplies
the value of β since f(x) is assumed known, both follow.

2



From this, we therefore take y = k−1/2f(x) to be the generic profile of the upper surface
away from the tip region of what we now term a ‘canonically near–planar’ interface and we
now consider reflection phenomena associated with both plane and cylindrical wave inci-
dence upon it. In both cases, we consider incident waves with arbitrary amplitude profiles
represented by amplitude pre–factors carried straightforwardly through the ray calculations
to follow, though we do emphasise that our analysis pertains to perturbations from general,
fully–infinite interfaces and not just from a semi–infinite half–plane as arises in the limiting
case studied in [3].
Hence, the first part of this paper concerns the reflection of plane and cylindrical waves
incident upon a Cartesian boundary profile y = k−1/2f(x), and we retain this notation here
so that direct comparison can be made to the work of Engineer et al [3].
Generalising this, we then pose similar problems when the reflecting interface is a pertur-
bation of the same length scale but from an underlying boundary with general curvature
(rather than simply y = 0). If x = x0(s) = ((x0(s), y0(s))) is the original, unperturbed
boundary ∂D, parametrised by arc–length s, then we consider reflection from a generalised
profile given by ∂D̂ : x = x0(s) + k−1/2x̂0(s) and in which the hatted coordinate vari-
ables are prescribed but general; notice that s is no longer arc–length along the perturbed
boundary ∂D̂, and we note the following relationship between s and ŝ, arc–length along the
perturbed boundary, correct to O

(
k−1

)
:

s ∼ ŝ− k−1/2
∫ ŝ

0
x′
0(u) · x̂′

0(u)du− 1

2
k−1

∫ ŝ

0

(
x̂′
0(u) · x̂′

0(u)− 3
(
x′
0(u) · x̂′

0(u)
)2)

du. (3)

Restricting attention temporarily to plane wave incidence upon the first class
(
y = k−1/2f(x)

)
of reflecting boundaries (an exactly similar argument applies to cylindrical waves, and then
to generally–curved boundaries for both types of incident wave), for which we will see that
the incident field is of the general form AIP (x, y)eik(x cos θ−y sin θ) in the high–frequency limit,

then exponentials of the general form AIP (x, y)eikx cos θ±ik
1/2f(x) sin θ are clearly inevitable when

satisfying the imposed Neumann boundary condition. This guides us naturally towards seek-

ing reflected fields with corresponding exponential factors eiku(x,y)+ik
1/2v(x,y) and straightaway

we see the onset of a Friedlander–Keller – type ray expansion (here with α = 1/2), which
we describe further in the next section.

2 The Friedlander–Keller Ray Expansion

The underlying field equation throughout our discussion is the two–dimensional Helmholtz
equation (

∂2

∂x2
+

∂2

∂y2
+ k2

)
φ = 0, (4)

in which k is the large wavenumber and φ(x, y) is the field variable, which might be the
potential function for a linear acoustic or elastic wave, or a component of an electromagnetic
disturbance, for example. The constant k is given by ω/c, where we assume but suppress
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a multiplicative harmonic time dependence e−iωt throughout; c is the wavespeed of the
medium.

We solve (4) in the domain D̂ adjacent to some given boundary ∂D̂, an O
(
k−1/2

)
perturbation away from another prescribed curve ∂D, on which a Neumann boundary con-
dition for the total field is imposed (although we comment on the adjustments needed to
account for Dirichlet data at appropriate points in the paper). Presented here are situa-
tions in which D̂ is the two–dimensional region given by (i) y > k−1/2f(x) with ∂D̂ being
the boundary profile y = k−1/2f(x) and ∂D being the x–axis, y = 0, and (ii) n > 0 with
∂D̂ : x = x0(s) + k−1/2x̂0(s), y = y0(s) + k−1/2ŷ0(s), where (s, n) are the standard curvi-
linear coordinates associated with the unperturbed boundary ∂D : x = x0(s), y = y0(s), s
being arc–length and n the normal distance along and from ∂D, respectively. The hatted
perturbation coordinates are all taken as given, as is f(x).

In the presence of the unperturbed boundary ∂D, we would ordinarily seek solutions to
(4) in the singularly–perturbed, high–frequency limit k →∞ in the WKBJ–form

φ(x, y) ∼ eiku(x,y)
∞∑
n=0

An(x, y)

(ik)n
; (5)

substitution into (4) and systematic comparison of terms at the various orders in k that
arise then quickly yield the eikonal equation

∇u · ∇u = 1 (6)

for u and the recursive family of transport equations

An∇2u+ 2∇An · ∇u+∇2An−1 = 0 (7)

for the amplitude functions An (n = 0, 1, 2, . . . ;A−1(x, y) ≡ 0). Such an expansion (5) is the
basis of Keller’s geometrical theory of diffraction as described in [4], applied in (for example)
[5], [6], [7] and reviewed in [2].

Notice that the eikonal equation (6) for the phase decouples entirely from the amplitude
equations (7), and is typically solved first (subject to appropriate boundary data) using
Charpit’s method (see, for example, [8] or [9]) by first introducing new dependent variables

p =
∂u

∂x
, q =

∂u

∂y
and showing that these quantities are conserved (i.e. p = p0(s), q = q0(s),

where the subscript zero once more denotes evaluation on ∂D) along the rays Γ(s) given
parametrically in terms of arc–length τ along them by

Γ(s) :
dx

dτ
= p0(s),

dy

dτ
= q0(s). (8)

The eikonal equation (6) now becomes

p20(s) + q20(s) = 1, (9)

whilst differentiation of the boundary data u = u0(s) on ∂D gives

u′0(s) = x′0(s)p0(s) + y′0(s)q0(s). (10)
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With u0(s) given, or calculable, equations (9) and (10), together with a radiation condition

at infinity to fix the sign (or choice of branch) of q0(s) =
(
1− p20(s)

)1/2
, now provide p0(s)

and q0(s), and hence the ray equations

Γ(s) : x = x0(s) + τp0(s), y = y0(s) + τq0(s) (11)

emanating from the boundary curve τ = 0 : x = x0(s), y = y0(s) and along which
du

dτ
= 1

also now follow, implying
u(s, τ) = u0(s) + τ (12)

along them.
The leading–order transport equation, corresponding to n = 0 in (7), reduces to a homoge-
neous first–order ordinary differential equation along each ray, with general solution

A0(s, τ) = A0(s, 0)

[
a(s)

τ + a(s)

]1/2
, (13)

in which

a(s) =
q0(s)x

′
0(s)− p0(s)y′0(s)

q0(s)p′0(s)− p0(s)q′0(s)
, (14)

and this fully determines the leading–order solution; in principle, higher–order amplitude
terms A1,, A2, ... can then be calculated from (7) in a recursive fashion.

Modifications to this ansatz are required whenever, for example, the rays associated
with the incoming field are tangent to an obstructing boundary or else form a caustic; in
the former case, for example, the exponent and denominator occurring in (5) are replaced by
iku(x, y) + ik1/3v(x, y) and a factor proportional to kn/3, respectively (see [10], [11], [12] and
[13] and references cited therein for reviews of this and other related work.) The one–third
power law in the exponent and amplitude expansion arises in that analysis because of the
variable coefficients of the Helmholtz equation when written in local curvilinear coordinates
near the point of tangential ray incidence.
This motivated Friedlander and Keller [1] to consider a generalised asymptotic ansatz for
solutions φ of the Helmholtz equation in the modified WKBJ format

φ(x, y, z) ∼ eiku(x,y,z)+ik
αv(x,y,z)

∞∑
n=0

An(x, y, z)

kλn
, (15)

in which we have changed their original notation to one consistent with ours in the work
presented here; in order to reproduce Friedlander and Keller’s original ansatz, we simply
replace φ, u, v and An in (15) by u, φ, χ and vn, respectively. Also, their term proportional
to kα in the exponent of their exponential pre–factor had a real and negative co–efficient
whereas we have replaced by one that is pure imaginary in order to make this ansatz directly
relevant to the wave scattering applications we consider later in the paper.

In [1], the field equations satisfied by u, v and the An’s are listed for all possible ranges
of α and for appropriate corresponding values of λn, together with a commentary on special
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cases having important applications elsewhere in wave physics. For example, they observe
that α can be restricted to the range 0 < α ≤ 1/2, with the case α = 0 coinciding with
standard ray theory for the Helmholtz equation, and those cases for α > 1/2 essentially
result in v being constant so that this exponent can be absorbed into the multiplicative
amplitude coefficients. It is important to remark that the constancy of v in those situations
is a direct consequence of there only being one extra term (additional to the standard term
u) within the exponent of the ansatz (15). Had we included more such terms, which would
amount to a generalisation of (15), then we would not be able to draw this conclusion and
we return to this point in the discussion at the end of the paper.

Another special case in this range deserving special attention is α = 1 but this coincides
with a Luneberg–Kline expansion, also cited in [1]. In this case the functions u and v
can be combined to form a single exponent (whereby u is replaced by u + iv), and then a
theory of complex rays applied [14]. Friedlander and Keller also cite the particular case of
α = 1/3 which, as we have already noted, is relevant for creeping and whispering gallery
mode propagation around convex bodies of O(1) curvature.

The results presented here complement this work of Friedlander and Keller in that it
provides a concrete example of an application of their expansions for the case α = 1/2
(which they do not consider), and also we go on and solve the resulting equations for the
two exponent functions and the leading–order amplitude; Friedlander and Keller list the
equations they satisfy but never actually solve them, either in general terms or via specific
application.

We have already presented arguments which motivate an ansatz for the reflected fields
φR for either of the two classes of problems we consider of the form

φR(x, y) = A (x, y; k) eiku(x,y)+ik
1/2v(x,y). (16)

Substitution into the Helmholtz equation (4) shows that u still satisfies the eikonal equation
(6), and subsequently that v is coupled to u via the equation

∇u · ∇v = 0, (17)

in agreement with Friedlander and Keller [1]. The amplitude A (x, y; k), which still carries
k as a parameter, now satisfies

∇2A+ ik1/2
(
A∇2v + 2∇v · ∇A

)
+ ik

(
2∇u · ∇A+ A∇2u+ iA∇v · ∇v

)
= 0 (18)

which, in turn, prompts a modified ‘ray’, or Friedlander–Keller type, expansion

A(x, y; k) =
∞∑
n=0

An(x, y)

kn/2
. (19)

Substitution of (19) into (18) and extracting like powers of k, we obtain the recursive system
of transport equations

−i∇2An +An+1∇2v + 2∇v · ∇An+1 + 2∇u · ∇An+2 +An+2∇2u+ iAn+2∇v · ∇v = 0, (20)

6



which is valid for n = −2,−1, 0, 1, . . . provided we take A−2(x, y) ≡ 0, A−1(x, y) ≡ 0; the
case n = −2 yields the leading-order amplitude equation for A0 in the form

2∇u · ∇A0 + A0

(
∇2u+ i∇v · ∇v

)
= 0. (21)

(At this point, we respectfully note a typographical error in the paper of Friedlander and
Keller ([1]) at the corresponding point in their more general analysis. In their equation (10),
the term ∇2χ should, in fact, be (∇χ)2. This is an isolated error and all subsequent formu-
lae arising from this result are correct). Notice that this transport equation differs from the
standard form ((7) with n = 0 and A−1(x, y) ≡ 0) because of the inclusion of the final term

involving ∇v · ∇v; this is solely due to the O
(
k1/2

)
term in the exponent in (16); only for

precisely this power does this happen – any other power will leave the original leading–order
transport equation unaffected, further strengthening the claim that the O

(
k−1/2

)
scale of

the boundary perturbations considered here are indeed canonical.

We end this section by noting that since ∇u = (p0(s), q0(s)) =

(
dx

dτ
,
dy

dτ

)
along a ray

(along which s is constant and τ is arc–length measured from the boundary) we see that

∇u · ∇v = 0 implies
dv

dτ
= 0, so that v is invariant along the rays i.e. v = v0(s) where v0(s)

is the value of v on ∂D. Also, a straightforward calculation using the ray equations yields
the useful derivative relationships

∂F

∂x
=

q0
∂F
∂s
− (y′0 + τq′0)

∂F
∂τ

q0x′0 − p0y′0 + τ (p′0q0 − q′0p0)
,

∂F

∂y
= −

p0
∂F
∂s
− (x′0 + τp′0)

∂F
∂τ

q0x′0 − p0y′0 + τ (p′0q0 − q′0p0)
(22)

for general F , allowing ∇2u =
∂p0(s)

∂x
+
∂q0(s)

∂y
and ∇v = v′0(s)∇s to be evaluated. The

leading–order transport equation (21) for A0(s, τ) along each ray then follows as

2
dA0

dτ
+ A0

{
1

τ + a(s)
+

ib(s)

(τ + a(s))2

}
= 0, (23)

where a(s) is given by (14) and

b(s) =
(v′0(s))

2

(q0(s)p′0(s)− p0(s)q′0(s))
2 . (24)

This can be solved to give the general formula for the leading–order amplitude in our
interpretation of a Friedlander–Keller ray expansion with α = 1/2 in the form

A0(s, τ) = A0(s, 0)

(
a(s)

τ + a(s)

)1/2

exp

(
− ib(s)τ

2a(s) (τ + a(s))

)
. (25)

This generic theory plays a role when considering reflection at perturbed boundaries of
arbitrary underlying curvature; for those which are near–planar we nonetheless deliberately
adopt a partial differential equation approach to illustrate an additional, alternative means
of solution available in that case.
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3 Formulation of the Boundary Value Problems

Writing the total potential φTW as the superposition of an incident field φIW and reflected
field φRW (W = P,C for plane and cylindrical wave incidence, respectively)

φTW (x, y) = φIW (x, y) + φRW (x, y), (26)

the reflected field φRW satisfies the Helmholtz equation (4) subject to Neumann data

∂φRW
∂n

= −∂φ
I
W

∂n
on ∂D̂ (27)

(with
φRW = −φIW on ∂D̂ (28)

being the analogous relation for Dirichlet data) on ∂D̂ and a ‘radiation condition’

φRW ‘outgoing’ in D̂, (29)

where
∂

∂n
denotes the normal derivative at the rigid boundary ∂D̂. The condition (29) will

be dealt with in each of the two cases (P and C) separately; it essentially means that the
field represented by φRW must propagate away from, and not towards, the boundary ∂D̂.

Regarding the functional forms of φIW (α = P,C), we have already noted that the general
form of an incoming plane wave propagating towards the x–axis of a Cartesian coordinate
system has a phase which gives a leading–order form

φIP (x, y) ∼ AIP (x, y)eik(x cos θ−y sin θ), (30)

where θ is the angle of incidence measured from the x–axis. Of course, the incident phase
uIP (x, y) = x cos θ − y sin θ satisfies the eikonal equation (6) and this, together with (7) set-
ting n = 0, yields

cos θ
∂AIP
∂x
− sin θ

∂AIP
∂y

= 0, (31)

so that AIP (x, y) = F I
P (x+ y cot θ) for some function F I

P of a single variable. We assume
that F I

P is given, so that the incident plane wave has the general, variable–amplitude form

φIP (x, y) ∼ F I
P (x+ y cot θ) eik(x cos θ−y sin θ) (32)

at leading order.
For the case of an incident cylindrical wave φIC , we suppose that its source is located at

the remote point (0, h), and so has an associated phase function

uIC(x, y) =
[
x2 + (y − h)2

]1/2
, (33)

which of course also satisfies (6). Writing the incident field in this case as

φIC(x, y) ∼ AIC(x, y)eik[x
2+(y−h)2]

1/2

, (34)
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(7) now implies the leading–order transport equation

x
∂AIC
∂x

+ (y − h)
∂AIC
∂y

+
1

2
AIC = 0, (35)

which has general solution

AIC(x, y) = F I
C

(
y − h
x

) [
x2 + (y − h)2

]−1/4
(36)

for any arbitrary function F I
C of the single variable

y − h
x

.

As with F I
P previously, we take F I

C to be given and so we maintain as general as pos-
sible leading–order amplitude variation in both cases. Notice that, in this second case,
y − h
x

= tan θ, where now θ is defined to be the polar angle measured from the source

location and is not related to the angle of incidence defined in φIP . This allows us to write

F I
C

(
y − h
x

)
= DI

C (θ) , (37)

where the (known) function DI
C (θ) is the leading–order directivity of φIC which, in turn, can

now be expressed in the more recognisable form

φIC ∼
DI
C (θ)

R1/2
eikR, (38)

where R =
[
x2 + (y − h)2

]1/2
is radial distance measured from the source.

Our final comments on the problem formulation concern the satisfaction of the Neumann
boundary condition (27).

First, in doing so we must simultaneously balance (i) the O (k) and (ii) the O
(
k1/2

)
terms within the various exponents that arise, as well as (iii) the O(1) terms within the
multiplicative amplitude, and this contains some subtle features. For example, if we consider
the near–planar boundary y = k−1/2f(x), then a typical exponent (whether in φIW or φRW )
evaluated on this perturbed boundary is of the form

iku
(
x, k−1/2f(x)

)
+ ik1/2v

(
x, k−1/2f(x)

)
∼

iku(x, 0) + ik1/2
(
f(x)

∂u

∂y
(x, 0) + v(x, 0)

)
+ i

1

2
f 2(x)

∂2u

∂y2
(x, 0) + if(x)

∂v

∂y
(x, 0) (39)

(with an exactly similar argument available for the other more general class of boundaries
considered). The point is that we ‘linearise’ the exponent onto the unperturbed boundary
(y = 0 in this case) before proceeding with the ray treatment, and we see that derivatives

of u alone appear within the O
(
k1/2

)
terms whilst derivatives of both u and v arise in the
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final O(1) terms. That is to say, the solution for u, which is found independently of that for
either v or the leading–order amplitude, feeds into that for v via the boundary condition,
whilst the solutions for both u and v play a role in providing part of the boundary data
(via the final two O(1) terms, or their analogues, on the right–hand–side of (39)) for the
leading–order amplitude.

Our second point regarding (27) concerns its mathematical implementation. Of course,
∂

∂n
= n · ∇ where n is the outward–pointing unit normal to the interface, and in the

two–dimensional problems that we consider here we have either n ∝
(
−k−1/2f ′(x), 1

)
for

the near–planar case or n ∝
(
−
(
y′0(s) + k−1/2ŷ′0(s)

)
, x′0(s) + k−1/2x̂′0(s)

)
for the generally–

curved examples, allowing us to replace (27) by either

∂φTW
∂y

= k−1/2f ′(x)
∂φTW
∂x

(40)

on ∂D̂, or else (
y′0(s) + k−1/2ŷ′0(s)

) ∂φTW
∂x

=
(
x′0(s) + k−1/2x̂′0(s)

) ∂φTW
∂y

(41)

on ∂D̂, respectively. The analogue of both (40) and (41) for Dirichlet data is encapsulated
in the single condition (28). Notice also that (41) appears to mix the Cartesian (x, y) and
curvilinear (s, n) coordinate systems; this is justified since x and y derivatives of φTW neces-

sarily involve
∂uW
∂x

,
∂uW
∂y

and
∂vW
∂x

,
∂vW
∂y

when we consider Friedlander–Keller exponentials

eikuW (x,y)+ik1/2vW (x,y), and these derivatives arise naturally (via ∇u,∇v) in the subsequent
ray analysis.

Strictly speaking, both sides of (41) should be multiplied by
ds

dŝ
, where ŝ is arc–length along

the perturbed boundary ∂D̂; the equation relating s to ŝ is (3).
We now have all of the mathematical machinery that we need, and the solution strategy

is clear: having specified the incident field, we pose an ansatz and then use the boundary
condition (27) to establish boundary data for the various u, v and A0 that arise, and then use
it to solve (6), (17) and (21), in that order, for these quantities to be determined explicitly.
When all three of these quantities have been found, we will say that the leading–order
solution for the reflected field has been constructed.

4 Near–Planar Boundaries

4.1 Plane Wave Incidence

Guided by the previous discussions leading to (32), we write down the leading–order ex-
pression for the total field in the form

φTP (x, y) ∼ F I
P (x+ y cot θ) eik(x cos θ−y sin θ) + ARP (x, y)eikuP (x,y)+ik

1/2vP (x,y), (42)
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in which ARP (x.y) is the amplitude of the reflected field to leading order. Of course, the
overall potential φTP must satisfy (40), and we have already noted that this will require that
the exponents arising in each of the two terms on the right–hand–side of (42) must agree
on ∂D̂ : y = k−1/2f(x); this in turn gives two further equations (one at O(k), the other

at O
(
k1/2

)
) providing boundary data for uP and, subsequently, vP , respectively.

Hence, the problem for uP (x, y) is to solve the eikonal equation (6) subject to data

uP (x, 0) = x cos θ, (43)

together with the ‘radiation condition’ that these reflected rays propagate away from the
boundary and into the region y > 0. Equation (12) and the ray analysis around it then give

uP (x, y) = x cos θ + y sin θ, (44)

so that (17) now in turn gives

cos θ
∂vP
∂x

+ sin θ
∂vP
∂y

= 0, (45)

so that vP (x, y) = vP (ξ) is a function of the single variable ξ = x− y cot θ. The argument
surrounding (39) now provides the data for vP in the form

−f(x) sin θ = f(x)
∂uP
∂y

+ vP (x, 0), (46)

from all of which we conclude that

vP (x, y) = −2 sin θf (x− y cot θ) . (47)

Hence, the solutions for uP and vP are now both fully determined, with only the latter
depending explicitly upon the boundary profile f(x) and the former essentially seeing no
difference from the totally rigid flat boundary case.

In order to calculate the leading–order amplitude ARP (x, y), we substitute the results so
far into (21), to obtain the boundary value problem

cos θ
∂ARP
∂x

(x, y) + sin θ
∂ARP
∂y

(x, y) = −2i [f ′ (x− y cot θ)]
2
ARP (x, y), (48)

ARP (x, 0) = F I
P (x)e−2i cos θf(x)f

′(x), (49)

where the boundary condition (49) follows from the leading–order contribution to (40).
Introducing a second independent variable ζ = x+ y tan θ, the partial differential equation
for ARP becomes

∂ARP
∂ζ

= −2i cos θ [f ′ (ξ)]
2
ARP . (50)
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This equation is easily solved by separating variables and doing so, applying the boundary
condition and then reverting back to the original Cartesian coordinates yields the solution
for ARP in the final form

ARP (x, y) = F I
P (x− y cot θ)

× exp
[
− 2iy

sin θ
(f ′ (x− y cot θ))

2 − 2i cos θf (x− y cot θ) f ′ (x− y cot θ)
]
(51)

and this completes the solution for the reflected field for the case of variable–amplitude
plane wave incidence subject to Neumann data. Dirichlet data is accommodated instead by
simply negating the expressions on the right–hand–sides of (49) and (51).

4.2 Cylindrical Wave Incidence

With the total field

φTC(x, y) ∼ F I
C

(
y − h
x

) [
x2 + (y − h)2

]−1/4
eik[x

2+(y−h)2]
1/2

+ ARC(x, y)eikuC(x,y)+ik
1/2vC(x,y), (52)

the methodology is as before and as far as the ‘phase functions’ uC , vC (in an obvious
notation) are concerned it is straightforward to obtain the two boundary relations arising
at orders k and k1/2, respectively, within the exponents as

uC(x, 0) =
(
x2 + h2

)1/2
(53)

and

f(x)
∂uC
∂y

(x, 0) + vC(x, 0) = − h

(x2 + h2)1/2
f(x). (54)

The eikonal problem for uC is straightforward to solve, the ‘outgoing’ solution being

uC(x, y) =
[
x2 + (y + h)2

]1/2
, (55)

corresponding to an outgoing (in y > 0) cylindrical wave emanating from the image source
(0,−h). One way of seeing this from a partial differential equations perspective and without

the need to recourse to ray methods is to observe that uC(x, 0) =
(
x2 + h2

)1/2
= R(x, 0),

where R(x, y) = [x2 + (y − h)2]1/2 is planar distance measured from the source point (0, h).
Since R(x,±y) both satisfy the eikonal equation and the boundary condition, uC must be
one or the other. Taking the positive sign yields a field incoming towards the boundary and
is therefore rejected since it violates the radiation condition. Hence, uC(x, y) = R(x,−y)
and (55) emerges. Given this solution, we find from (17) that vC satisfies

x
∂vC
∂x

+ (y + h)
∂vC
∂y

= 0, (56)
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so that vC has the self–similar form vC(x, y) = g (η), η =
y + h

x
= tan Θ, for some function

to be determined g. Notice that vC depends only upon the polar angle Θ measured from
the image source and so this term within the exponent can be regarded as a k–dependent
modification to the final directivity associated with the reflected field.

Combining (54) and (55) provides the refined boundary condition

vC(x, 0) = − 2h

(x2 + h2)1/2
f(x), (57)

from which

g (η) = − 2η

(1 + η2)1/2
f

(
h

η

)
(58)

is immediate, and vC(x, y) = g

(
y + h

x

)
is determined; all that remains to be done is to

compute the leading–order amplitude ARC . We begin by substituting our solutions for uC
and vC into (21), which reveals that

x
∂ARC
∂x

+ (y + h)
∂ARC
∂y

+
1

2
ARC = −iA

R
C

2x

1 +

(
y + h

x

)2
3/2 (g′ (y + h

x

))2

(59)

and, guided by our construction of the incident field (which is the main reason for including
that discussion), we now set

ARC(x, y) =
[
x2 + (y + h)2

]−1/4
ÂRC(x, y) (60)

so that

x
∂ÂRC
∂x

+ (y + h)
∂ÂRC
∂y

=
ÂRC
x

Λ

(
y + h

x

)
(61)

where

Λ (η) = − i
2

(
1 + η2

)3/2
[g′ (η)]

2
(62)

is a known function of the single variable η.
Equation (61) admits an exact solution

ÂRC(x, y) = FR
C

(
y + h

x

)
exp

[
−1

x
Λ

(
y + h

x

)]
(63)

for a function FR
C (η) to be determined, and piecing all of this information together we

deduce that

ARC(x, y) = FR
C

(
y + h

x

) [
x2 + (y + h)2

]−1/4
exp

[
−1

x
Λ

(
y + h

x

)]
(64)
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and we can identify FR
C as another function dependent solely on the polar angle Θ measured

from the image source, and therefore (like vC) closely allied to the directivity of the reflected
field. We shall be more precise about this shortly, linking it directly to the prescribed
incoming directivity F I

C as prescribed in the given incident field. We also note that Λ is
pure imaginary, of O(1) modulus and vanishes if g, and hence f , does. It therefore describes
an O(1) shift in the phase due to the presence of the boundary undulations described by
f(x).

The determination of the reflected field in this case is complete once the ‘directivity’ FR
C

has been found, and this is done by appealing to the one remaining condition to be satisfied,
namely (40). Feeding into that condition all that has been found so far then gives, after
considerable algebra, the closed–form expression

FR
C (η) = F I

C (−η) exp

[
2i

η (1 + η2)1/2
f ′
(
h

η

)(
ηf

(
h

η

)
− h

(
1 + η2

)
f ′
(
h

η

))]
; (65)

this now determines the leading–order amplitude ARC of the reflected field explicitly and
the reflection problem is solved, noting that the equivalent relation to (65) appropriate to
Dirichlet data is obtained by negating this result.

5 Perturbed Boundaries of General Curvature

In this section we replace uW and vW (W = P,C) by µC and νC , respectively, to avoid
possible confusion with the near–planar boundary analysis just considered. This is purely
notational; all underlying field equations and boundary conditions remain unchanged.

5.1 Plane Wave Incidence

As before, the phase of the incoming plane wave provides the eikonal boundary data for µP ,
this time in the form

µP (s, 0) = x0(s) cos θ − y0(s) sin θ, (66)

so that
µP (s, τ) = x0(s) cos θ − y0(s) sin θ + τ (67)

follows along the as yet unknown rays from (12). Also, in this case (10) yields

x′0(s)p0(s) + y′0(s)q0(s) = x′0(s) cos θ − y′0(s) sin θ, (68)

so that eliminating q0 between (9) and (10) in this case now gives a quadratic equation for
p0(s) in the form

p20(s)+2x′0(s)p0(s) (y′0(s) sin θ − x′0(s) cos θ)+(y′0(s) sin θ − x′0(s) cos θ)
2−(y′0(s))

2
= 0; (69)

in deriving (69) the relation (x′0(s))
2

+ (y′0(s))
2

= 1, a result which crucially requires the
parameter s to be specifically arc–length, has been used repeatedly.
We note from (68) that there is always a trivial solution

p0(s) = cos θ, q0(s) = − sin θ (70)
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satisfying both (68) and (69), but this reproduces the incident field and is rejected in favour
of the other solution; once found, (68) then provides an unambiguous solution for q0(s).
Knowing that p0(s)− cos θ divides the left–hand–side of (69) allows us to find its second
factor, leading us to the desired solution

p0(s) =
(
(x′0(s))

2 − (y′0(s))
2
)

cos θ − 2x′0(s)y
′
0(s) sin θ; (71)

the corresponding solution for q0(s) follows from (68) as

q0(s) = 2x′0(s)y
′
0(s) cos θ +

(
(x′0(s))

2 − (y′0(s))
2
)

sin θ, (72)

with p20(s) + q20(s) = 1 being an easy check. This now completely fixes the ray directions
along which the solutions for µP and νP (to be determined) are valid, but equally importantly
supply the boundary data (and therefore simultaneously the full solution) for νP . This is
because

νp(s) = x̂0(s) cos θ − ŷ0(s) sin θ −∇µP · x̂0 (s) (73)

where ∇µP = (p0(s), q0(s)) and, after considerable labour, this eventually leads to the final
expression

νP (s) = 2 (x̂0(s)y
′
0(s)− ŷ0(s)x′0(s)) (x′0(s) sin θ + y′0(s) cos θ) . (74)

leaving just the leading–order amplitude to be determined.
Making use of the facts that, in this case,

q0(s)x
′
0(s)− p0(s)y′0(s) = x′0(s) sin θ + y′0(s) cos θ, (75)

and

q0(s)p
′
0(s)− p0(s)q′0(s) =

p′0(s)

q0(s)
= −2κ0(s), (76)

where κ0(s) is the curvature of the unperturbed boundary, detailed and laborious algebra
reveals that the reflected field boundary amplitude ÃRP (s, 0) arising in (25) is given by

ÃRP (s, 0) = F I
P (x0(s) + y0(s) cot θ) exp

[
− iκ0(s) (q0(s)x̂0(s)− p0(s)ŷ0(s))2

(x′0(s) sin θ + y′0(s) cos θ)

− 2i (q0(s)x̂0(s)− p0(s)ŷ0(s)) (x̂′0(s)y
′
0(s)− ŷ′0(s)x′0(s))

]
, (77)

and the Dirichlet data case is covered by negating this result. Tilde’s have been put on
the reflected leading–order amplitudes solely to avoid confusion with those arising in the
previous section. The leading–order amplitude of the reflected field is now given by (77)
and (25), with

a(s) = −1

2
ρ0(s) (x′0(s) sin θ + y′0(s) cos θ) (78)

and

b(s) = ρ20(s)[ (x̂′0(s)y
′
0(s)− ŷ′0(s)x′0(s)) (x′0(s) sin θ + y′0(s) cos θ)

+ κ0(s) (q0(s)x̂0(s)− p0(s)ŷ0(s)) ]2, (79)

where ρ0(s) = κ−10 (s) is the radius of curvature of the unperturbed boundary, and the re-
flected field is now fully determined correct to leading order.
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5.2 Cylindrical Wave Incidence

With cylindrically–spreading wavefronts emanating from the source location (0, h), the
eikonal boundary data for µC is now

µC(s, 0) = R0(s) =
[
(x0(s))

2 + (y0(s)− h)2
]1/2

, (80)

and if we define c0(s), s0(s) and ψ0(s) through the relations

c0(s) = cosψ0(s) =
x0(s)

R0(s)
, s0(s) = sinψ0(s) =

y0(s)− h
R0(s)

, (81)

so that (c0(s))
2 + (s0(s))

2 = 1, then (10) becomes

p0(s)x
′
0(s) + q0(s)y

′
0(s) = c0(s)x

′
0(s) + s0(s)y

′
0(s) (82)

and p0(s) then satisfies the quadratic equation

p20(s)−2p0(s)x
′
0(s) (c0(s)x

′
0(s) + s0(s)y

′
0(s))+(c0(s)x

′
0(s) + s0(s)y

′
0(s))

2−(y′0(s))
2

= 0. (83)

The relevant solutions for po and q0 are found to be

p0(s) = c0(s)
[
(x′0(s))

2 − (y′0(s))
2
]

+ 2s0(s)x
′
0(s)y

′
0(s) (84)

q0(s) = −s0(s)
[
(x′0(s))

2 − (y′0(s))
2
]

+ 2c0(s)x
′
0(s)y

′
0(s). (85)

It is useful to note that in this case, (76) must be replaced by

p′0(s)

q0(s)
= ψ′0(s)− 2κ0(s). (86)

With these, we of course now have the ray solution

µC (s, τ) = R0(s) + τ (87)

valid along the rays given by (11). The same general method as before is used to compute
νC and the upshot is the compactly factorised expression

νC(s) =
2

R0(s)
[x0(s)y

′
0(s)− (y0(s)− h)x′0(s)] [y′0(s)x̂0(s)− x′0(s)ŷ0(s)] . (88)

This now determines completely the k–dependent terms within the exponent of the reflected
field, and we are also able to write down expressions for a(s) and b(s) relevant to this case
in the forms

a(s) =
R0(s)ψ

′
0(s)

ψ′0(s)− 2κ0(s)
(89)
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and

b(s) =
4

(ψ′0(s)− 2κ0(s))
2

[
−R′0(s)ψ′0(s) (y′0(s)x̂0(s)− x′0(s)ŷ0(s))

+ κ0(s) (q0(s)x̂0(s)− p0(s)ŷ0(s)) +R0(s)ψ
′
0(s) (y′0(s)x̂

′
0(s)− x′0(s)ŷ′0(s))

]2
(90)

where, for completeness, we also note that ψ0(s) defined through (81) satisfies

ψ′0(s) =
1

R2
0(s)

[x0(s)y
′
0(s)− (y0(s)− h)x′0(s)] . (91)

Referring once more to (25), we now need to find ÃRC(s, 0) to finalise the solution and,
as before, this utilises (41) and so must take account of the O(1) contributions in all phase
terms in reflected and incident fields. After some particularly involved algebra, the final
result turns out to be

ÃRC(s, 0) = F I
C

(
y0(s)− h
x0(s)

)
(R0(s))

−1/2 exp

i ((y0(s)− h) x̂0(s)− x0(s)ŷ0(s))2

2
[
x20(s) + (y0(s)− h)2

]3/2 − iF1(s)


(92)

where

F1(s) =
1

2
(q0(s)x̂0(s)− p0(s)ŷ0(s))

[ (
1

R0(s)
+ 2κ0(s)

)
(q0(s)x̂0(s)− p0(s)ŷ0(s))

− 4 (x0(s)x
′
0(s) + (y0(s)− h) y′0(s))(

x20(s) + (y0(s)− h)2
) (y′0(s)x̂0(s)− x′0(s)ŷ0(s))

+ 4 (y′0(s)x̂
′
0(s)− x′0(s)ŷ′0(s))

]
(93)

and so the solution is now complete for the Neumann data case; simply negating the final
overall result covers Dirichlet data.

We end this section by commenting that for either type of incoming wave, the latter class
of perturbed boundaries of general curvature can, in principle at least, encapsulate the for-
mer, of a near–planar nature, by setting (x0(s), y0(s)) = (s, 0) and (x̂0(s), ŷ0(s)) = (0, f(s))
in the notation of the analysis presented.
If we do so then lengthy calculation does indeed reveal that the results of Section 4 are
reproduced in every detail from those in Section 5. We do not present the details, but
remark instead that this is to be interpreted in the current context as an independent check
on the accuracy of the results presented, rather than as an alternative means of arriving at
the ‘near–planar’ results without the need to perform that analysis separately.
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6 Scattering by Perturbed Circles

To illustrate the application of our results, we consider the case when the obstructing bound-
ary is a perturbed circle with plane polar representation

r = r0 + k−1/2r
1/2
0 f (θ) , (94)

where f (θ) specifies the undulations superimposed onto the circle r = r0.
It is easy to see from this that the Cartesian representation is encapsulated in terms of arc–
length s measured counter–clockwise from the Cartesian point (r0, 0) (based on a natural
origin located at the centre of the circle r = r0) by

x0(s) = r0 cos
(
s

r0

)
, y0(s) = r0 sin

(
s

r0

)
(95)

and

x̂0(s) = r
1/2
0 f

(
s

r0

)
cos

s

r0
, ŷ0(s) = r

1/2
0 f

(
s

r0

)
sin

(
s

r0

)
. (96)

Hence, in this case we also have

R0(s) =

[
r20 cos2

(
s

r0

)
+
(
r0 sin

(
s

r0

)
− h

)2
]1/2

(97)

and

ψ0(s) = cos−1

r0 cos
(
s
r0

)
R0(s)

 = sin−1

r0 sin
(
s
r0

)
− h

R0(s)

 . (98)

Owing to the high degree of symmetry in the unperturbed boundary, we are free to select
without any loss of generality an incoming (a) plane wave propagating parallel to the y–axis
in the sense of y–decreasing (corresponding to selecting θ = π/2 in the notation of Section
5.1) and (b) cylindrical wave emanating from the source point (0, h), where h� r0.
In both cases, there are ‘limiting’ incident rays which are tangent to the unperturbed bound-
ary, and which separates the region on the scatterer from which reflected rays radiate from
that in which they do not (i.e. the ‘illuminated or lit’ and ‘unilluminated or dark’ portions
of the boundary). These ‘lit’ regions correspond to

0 ≤ s

r0
≤ π, sin−1

(
r0
h

)
≤ s/a ≤ π − sin−1

(
r0
h

)
(99)

for our choices of plane, cylindrical wave incidence, respectively. We have seen already that
the geometry of the scattered field is largely dictated by the ray directions (p0(s), q0(s)),
and referring back to (70) and then (71), (72) for the plane wave case – an exactly similar
thing occurs for cylindrical waves – we note that there is choice in their selection. In that
instance, we rejected the former possibility since it generated a family of rays parallel to
the incoming ones and thereby violated standard laws of ray reflection (the ‘outgoing wave’
condition for one thing). However, this is precisely the solution we choose for the radiated
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rays leaving the unlit portion of the boundary since not only do they then exactly coincide
with the incoming rays but also can be shown, after calculation, to have an associated field
amplitude equal in magnitude but opposite in sign. Exact cancellation between the two
fields then occurs and the total field is therefore zero to leading–order in the region of space
that the obstructing scatterer ‘blocks’ the incoming field; in other words, the ‘geometrical
shadow’ is easily constructed in both cases, though we omit the technical details here in
this account to concentrate instead on the reflected fields present elsewhere.
Having gone through the general construction of the ray solution in the main body of the
paper, we summarise the results relevant to the reflected fields in these examples by simply
listing for completeness those functions arising in that analysis and which can be used to
substitute directly into the relevant expressions that arose. Since we itemise them in sepa-
rate sections for plane and cylindrical wave incidence, and therefore no confusion is likely,
we drop any subscripts (‘P’ for plane and ‘C’ for cylindrical) in those original formulae.
In all cases, the solution to the analogous problem involving Dirichlet data is obtained by
multiplying the final result presented here by -1.

6.1 Plane Wave Incidence: θ = π/2

p0(s) = sin
(

2s

r0

)
, q0(s) = − cos

(
2s

r0

)
(100)

τ(s, r) =

√
r2 − r20 cos2

(
s

r0

)
− r0 sin

(
s

r0

)
(101)

µ = −r0 sin
(
s

r0

)
+ τ (102)

ν(s) = −2r
1/2
0 sin

(
s

r0

)
f
(
s

r0

)
(103)

a(s) =
1

2
r0 sin

(
s

r0

)
(104)

b(s) = r30

[
d

ds

(
f
(
s

r0

)
sin

(
s

r0

))]2
(105)

A0(s, 0) = F I
P

(
r0 cos

(
s

r0

))

× exp

if 2
(
s

r0

) cos2
(
s
r0

)
sin

(
s
r0

) + 2if
(
s

r0

)
f ′
(
s

r0

)
cos

(
s

r0

) (106)
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6.2 Cylindrical Wave Incidence

p0(s) = − cos
(

2s

r0
− ψ0(s)

)
, q0(s) = − sin

(
2s

r0
− ψ0(s)

)
(107)

τ = r0 cos
(
s

r0
− ψ0(s)

)
−
√
r2 − r20 sin2

(
s

r0
− ψ0(s)

)
(108)

µ =

[
r20 cos2

(
s

r0

)
+
(
r0 sin

(
s

r0

)
− h

)2
]1/2

+ r0 cos
(
s

r0
− ψ0(s)

)
−
√
r2 − r20 sin2

(
s

r0
− ψ0(s)

)
(109)

ν = 2 cos
(
s

r0
− ψ0(s)

)
r
1/2
0 f

(
s

r0

)
(110)

a(s) =
R0(s)r0 cos

(
s
r0
− ψ0(s)

)
r0 cos

(
s
r0

)
− 2R0(s)

(111)

b(s) = 4r0 (112)

×

R0(s) cos
(
s
r0
− ψ0(s)

)
f ′
(
s
r0

)
−
(
R0(s)− r0 cos

(
s
r0
− ψ0(s)

)
sin

(
s
r0
− ψ0(s)

)
f
(
s
r0

))
r0 cos

(
s
r0
− ψ0(s)

)
− 2R0(s)

2

A0(s, 0) = F I
C

(
y0(s)− h
x0(s)

)
(R0(s))

−1/2 (113)

× exp

[(
2r0
R0(s)

− 1

)
f 2
(
s

r0

)
sin2

(
s

r0
− ψ0(s)

)
+ 2if

(
s

r0

)
f ′
(
s

r0

)
sin

(
s

r0
− ψ0(s)

)]
.

7 Discussion and Concluding Remarks

Our first observation is that the presence of the boundary perturbation does not in itself in-
duce amplifications in the amplitudes (by way of focusing or caustic formation, for example)
of the reflected fields for either type of wave incidence. Any amplification that is present is
primarily due to the geometry of the unperturbed boundary, and is located parametrically
at focal points or caustic curves in the physical domain satisfying the equation τ + a(s) = 0
(in the notation of, say, equation (25)). However, such instances are now singularities of
the phase distortion in the perturbed cases because of the corrections to the phase via the
exponential factor in (25) (noting that a(s) and b(s) are both real–valued) that the pertur-
bation undulations induce.
So although no new caustic curves (or focal points) are induced within the reflected field
because of these perturbing undulations – those that exist would have been present anyway
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even in their absence – it is the case that the field variation across those that do exist,
classically described by Airy functions in the case of caustics ([15], [16]), will now need some
adjustment to account for this modified singular phase variation across the caustic and this
is currently under investigation.

A special class of problems that can arise, not discussed at all here, pertains to incoming
plane waves for which the angle of incidence θ (as defined earlier within the main text of the
paper) is small i.e. the incoming plane wave is at, or is close to, grazing incidence and when

it would meet the boundary perturbation broadside on. More specifically, if θ = O
(
k−1/2

)
,

then the incoming plane wave φIP (x, y) can be approximated, having first set θ = k−1/2θ̂ for
|θ̂| = O(1) and fixed, by

φIP (x, y) ∝ eikx−ik
1/2θ̂y− 1

2
iθ2x (114)

where the error in the exponent, for O(1) values of x and y, is of O
(
k−1/2

)
and would

constitute a higher–order correction to the amplitude, and not the phase (e.g. the omitted

exponential is eik
−1/2θ̂3y/6 ∼ 1− 1

6
ik−1/2θ̂3y if |y| = O(1)). We see from (114) that once more

an ansatz of the form (16) is required, but for completely different reasons to before – these
originally being motivated strongly by the geometry of the boundary ∂D̂ : y = k−1/2f(x)
rather than the form of the incoming field itself. Indeed, to make matters even more
interesting, when the modified incident field (114) valid away from the boundary is actually

evaluated upon it, then propagating exponentials such as eikx−i(f(x)θ̂−
1
2
θ̂2x) emerge, and

rather than containing O
(
k1/2

)
terms within the exponent to justify (16), it does not

actually contain any. A completely separate analysis is required for this class of problems,
and this is also being pursued elsewhere.

Another extension currently under investigation include reflection of elastic waves at
both near–planar and perturbed but otherwise generally curved free surfaces. A new feature
within this class of problems is mode conversion, whereby an elastic wave of one type (such
as longitudinal ‘P’ or vertically–polarised shear ‘SV’) can, and generally will, give rise to a
reflected wave involving the other. This not only brings about the possibility of total internal
reflection but also that of exciting a Rayleigh surface wave. In either case propagation
along the perturbed boundary is a key characteristic, allowing these waves to accrue the
cumulative effects of the boundary undulations; this is in stark contrast to the reflection–
only problems considered here for which the interaction of rays – incoming or reflected –
occurs in a pointwise fashion.

Finally, we remark that the Friedlander–Keller expansions that we have considered all

involve exponentials of the form eiku+ik
1/2v; considering the exponent as a sequence of terms

with decreasing powers of k1/2 we see immediately that this is the most general possible,
it being impossible to ‘fit’ any more terms in between the ‘u’ and ‘v’ terms (and we note
that we can disregard any terms in k0, since these lead to terms that can be absorbed into
amplitude considerations if we choose to).
Suppose instead that the relevant power of k was one–third, rather than one–half, as occurs
in creeping and whispering gallery wave propagation (referred to earlier). In those examples,
it is well–known that full descriptions can be obtained using Friedlander–Keller expansions
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with exponents of the form iku+ ik1/3v. However, there appears to be no a priori reason
why there shouldn’t also be an intermediate term proportional to ik2/3, prompting a more
general Friedlander–Keller exponent of the form iku(x, y) + ik2/3v(x, y) + ik1/3w(x, y) ex-
hibiting all intermediate powers of k1/3 up to and including k.
This strongly motivates a completely separate study of a yet further generalised Friedlander–
Keller ray expansion of the form

φ(x, y) ∼ exp

[
i
m∑
r=1

kr/mur(x, y)

] ∞∑
n=0

An(x, y)

kn/m
(115)

for any integer m > 1. A specific example is wave scattering by a perturbed circle of
profile r = r0 + k−1/3F (θ), in terms of plane polar coordinates r and θ. In that case, a full
ansatz of the form (115) with m = 3 is required, with all three terms in the exponent being
needed. Similar issues arise in scattering by near–planar boundaries of the more general
form y = k−1/nfn(x), and all of these aspects are currently under investigation and review.
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