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Abstract A biosustainable production route for 3-hydroxypropionic acid (3HP), an
important platform chemical, would allow 3HP to be produced without using fossil
fuels. We are interested in investigating a potential biochemical route to 3HP from
pyruvate through β-alanine and, in this paper, we develop and solve a mathematical
model for the reaction kinetics of themetabolites involved in this pathway.We consider
two limiting cases, one where the levels of pyruvate are never replenished, the other
where the levels of pyruvate are continuously replenished and thus kept constant. We
exploit the natural separation of both the time scales and the metabolite concentrations
to make significant asymptotic progress in understanding the systemwithout resorting
to computationally expensive parameter sweeps. Using our asymptotic results, we are
able to predict the most important reactions to maximize the production of 3HP in
this system while reducing the maximum amount of the toxic intermediate compound
malonic semi-aldehyde present at any one time, and thus we are able to recommend
which enzymes experimentalists should focus on manipulating.
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1 Introduction

3-hydroxypropionic acid (3HP) can be used to producemany other valuable chemicals,
such as acrylic acid, 1,3-propanediol, and biodegradable polyesters (Werpy et al. 2004;
Jiang et al. 2009). 3HP can be derived from biological sources and, as current industrial
methods to produce acrylic acid involve fossil fuels, a production route through 3HP
provides a biosustainable alternative. Although an in vivo production line in a bacterial
or fungal host is the eventual industrial target for 3HP, performing in vitro experiments
is an important prior step. The controlled nature of in vitro experiments allows for
more systematic deductions to be made, and hence in vitro experiments can highlight
potential roadblocks that may be more difficult to analyse in a complex in vivo system.
Mathematical modelling allows for further systematic progress to be made, and can
reduce the experimental parameter space that needs to be searched.

In Kumar et al. (2013), three thermodynamically feasible pathways from pyruvate
to 3HP are suggested. We are interested here in mathematically modelling the route
through aspartate and β-alanine; this is the synthetic pathway successfully introduced
to Saccharomyces cerevisiae in Borodina et al. (2015). Thus, we consider the reactions

Pyruvate
k1−→ Oxaloacetate, (1a)

Oxaloacetate + GLU
k2−→ AKG + Aspartate, (1b)

Aspartate + PAND
k3−−⇀↽−−
k−3

PANDc
k4−→ β-alanine + PAND, (1c)

β-alanine + Pyruvate + BAPAT
k5−−⇀↽−−
k−5

BAPATc
k6−→ L-alanine + BAPAT

+ Malonic semialdehyde, (1d)

L-alanine + AKG + ALT
k7−−⇀↽−−
k−7

ALTc
k8−−⇀↽−−
k−8

Pyruvate + GLU + ALT,

(1e)

Malonic semialdehyde + HPDH
k9−−⇀↽−−
k−9

HPDHc
k10−→ 3HP + HPDH, (1f)

and we show a schematic representation of this pathway in Fig. 1.
Here, we do not consider enzyme mechanics for the first two reactions in (1). This

is because pyruvate and oxaloacetate are required for the citric acid cycle, and we are
not interested in altering any enzymatic processes that may significantly change this
important metabolic cycle. Thus, the enzyme kinetics for the latter four reactions are
the most appropriate targets for enhancement, and we therefore include these.

We note that (1e), the reaction between l-alanine and pyruvate, is not necessary
for a connected pathway between pyruvate and 3HP. However, as (1e) recycles l-
alanine and α-ketoglutarate (AKG) back into pyruvate and glutamic acid (GLU), used
in (1a) and (1b), respectively, the inclusion of (1e) may enhance the efficiency of the
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Pyruvate ([S1])

Oxaloacetate ([S2]) Aspartate ([S3])

β-alanine ([S4])

L-alanine ([S5]) Malonic semialdehyde ([S6])

3HP ([P ])

PAND ([E1])

BAPAT ([E2])

HPDH ([E3])

ALT ([E4])

Fig. 1 A schematic network diagram for the pathway we consider in this paper, where arrows denote the
direction of the reactions. The dashed lines denote reactions which additionally require GLU ([R1]) and
produce AKG ([R2]), and the dotted lines denote reactions which additionally require AKG and produce
GLU. If we consider the enzyme mechanics for a reaction, we include the name of that enzyme next to the
reaction arrow

pathway. In Borodina et al. (2015), it was hypothesized that (1e) may have an effect on
the overall 3HP production, and we investigate this hypothesis here. More generally,
we are interested in determining which of the reactions are the most important for
3HP production. Additionally, malonic semialdehyde is a toxic compound, and so
we will also look for ways to reduce the amount of malonic semialdehyde present
in the system. To summarize, the general goal of this system, so far as possible, is
to maximize the 3HP produced whilst minimizing the maximum level of malonic
semialdehyde present in the system.

We will assume that there are enough molecules of each metabolite to use the law
of mass action and that the entire system is well-mixed and thus spatially independent.
Moreover, in any given reaction, we neglect any inhibitory effects from metabolites
not involved in the reaction and from any products of the reaction.We do so to limit the
number of parameters in the model, and to enable us to make analytic progress, thus
allowing us to develop physical insight into the system. Additionally, the production
levels of pyruvate within the system will vary in time. We consider two limiting cases,
pyruvate being a finite resource which is never replenished in the first, but an infinite
resource held at a constant concentration in the second. Whilst the actual levels of
pyruvate will, in practice, fall somewhere between these two cases, it is useful to
analyse both in detail: exploring and comparing these two extreme cases will provide
insight into the general pathway kinetics in intermediate cases.

As there are many parameters involved in this problem, a fully experimental
approach would be very time consuming. For the same reason, investigating its math-
ematical model using a purely numerical approach would also be a protracted process,
albeit shorter than the fully experimental one.We perform an asymptotic analysis (see,
for example, Kevorkian and Cole 2013; Hinch 1991; O’Malley Jr (2012)) to investi-
gate our model, thus enhancing our physical insight into the underlying system and
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enabling us to determine how the concentrations vary as functions of the experimental
parameters. Due to this approach, exact knowledge of each kinetic parameter is not
required, just an estimate of the order of magnitude of each parameter.

We introduce a mathematical model to describe the nonlinear reaction kinetics in
§2.We solve this for non-replenished and continuously replenished pyruvate in §3 and
§4, respectively, where we give both numerical and asymptotic solutions to describe
the system behaviour. We also consider the problem of general pyruvate production
in “Appendix C”, where we derive asymptotic solutions in one time regime for the
metabolite concentrations at leading order in terms of the pyruvate in the system. We
finish by discussing our results and comparing the two regimes in §5, where we also
suggest future avenues of inquiry that follow from this work.

2 Model description

We assume that the reaction kinetics are governed by the law of mass action, yielding
the system

d[S1]
dτ

= −k1[S1] − k5[S1][S4][E2] + k−5[C2] + k8[C4] − k−8[S1][R1][E4], (2a)

d[S2]
dτ

= k1[S1] − k2[S2][R1], (2b)

d[S3]
dτ

= k2[S2][R1] − k3[S3][E1] + k−3[C1], (2c)

d[S4]
dτ

= k4[C1] − k5[S4][S1][E2] + k−5[C2], (2d)

d[S5]
dτ

= k6[C2] − k7[S5][R2][E4] + k−7[C4], (2e)

d[S6]
dτ

= k6[C2] − k9[S6][E3] + k−9[C3], (2f)

d[R1]
dτ

= −k2[S2][R1] + k8[C4] − k−8[S1][R1][E4], (2g)

d[R2]
dτ

= k2[S2][R1] − k7[S5][R2][E4] + k−7[C4], (2h)

d[E1]
dτ

= −k3[S3][E1] + k−3[C1] + k4[C1], (2i)

d[E2]
dτ

= −k5[S4][S1][E2] + k−5[C2] + k6[C2], (2j)

d[E3]
dτ

= −k9[S6][E3] + k−9[C3] + k10[C3], (2k)

d[E4]
dτ

= −k7[S5][R2][E4] + k−7[C4] + k8[C4] − k−8[S1][R1][E4], (2l)

d[C1]
dτ

= k3[S3][E1] − k−3[C1] − k4[C1], (2m)

d[C2]
dτ

= k5[S4][S1][E2] − k−5[C2] − k6[C2], (2n)
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Table 1 Dimensional and dimensionless variable definitions

Original variable Description Nondimensionalisation

[S1] Pyruvate [S1] = S0S1
[S2] Oxaloacetate [S2] = S0S2
[S3] Aspartate [S3] = εS0S3
[S4] β-Alanine [S4] = εS0S4
[S5] L-Alanine [S5] = εS0S5

[S6] Malonic semialdehyde [S6] = ε4S0S6
[R1] Glutamic acid (GLU) [R1] = S0R1
[R2] α-Ketoglutarate (AKG) [R2] = εS0R2
[E1] Aspartate decarboxylase (PAND) [E1] = εa1S0E1
[E2] β-Alanine-pyruvate aminotransferase (BAPAT) [E2] = εa2S0E2
[E3] 3-Hydroxypropionate dehydrogenase (HPDH) [E3] = εa3S0E3
[E4] Alanine aminotransferase (ALT) [E4] = εa4S0E4

[C1] Aspartate decarboxylase complex (PANDc) [C1] = ε2a1S0C1

[C2] β-Alanine-pyruvate aminotransferase complex (BAPATc) [C2] = ε4a2S0C2

[C3] 3-Hydroxypropionate dehydrogenase complex (HPDHc) [C3] = ε5a3S0C3

[C4] Alanine aminotransferase complex (ALTc) [C4] = ε3a4S0C4

[P] 3-Hydroxypropionic acid (3HP) [P] = ε3S0P

τ Time τ = t/k1

The dimensional metabolite concentrations are denoted with square brackets and have units of moles per
volume, as does S0

d[C3]
dτ

= k9[S6][E3] − k−9[C3] − k10[C3], (2o)

d[C4]
dτ

= k7[S5][R2][E4] − k−7[C4] − k8[C4] + k−8[S1][R1][E4], (2p)

d[P]
dτ

= k10[C3]. (2q)

All the variables introduced here are defined in Table 1, and the units and typical values
for each kinetic parameter are given in Table 2. We model a scenario where each of
the enzymes are introduced to a solution containing only pyruvate and glutamic acid,
and this resulting mixture is instantaneously well-mixed. We assume that the initial
concentration of pyruvate is [S1](0) = S0, where S0 is around 1mM. We will state
the remaining initial conditions after discussing how we deal with uncertainty in the
kinetic parameters.

We see in Table 2 that estimates for the kinetic parameters can vary over three orders
of magnitude between different organisms. To investigate how the system behaves as
these parameters vary we first form dimensionless variables, scaling each dimensional
metabolite concentration with S0 and time with 1/k1 (the characteristic time of the
first reaction between pyruvate and oxaloacetate). Moreover, we form dimensionless
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parameters by scaling the kinetic parameters with k1 and the appropriate power of
S0. We then introduce the artificial small dimensionless parameter ε = 10−2, and
allow each dimensionless system parameter to be written as cε j where c is an O(1)
parameter (between 0.1 and 10), and j is an integer. The dimensionless parameters in
our system are given in the lower half of Table 2. This approach allows us to interrogate
the system using an asymptotic analysis. Although (as always) there may theoretically
be an issue with this method in equating terms with the same powers of ε when large
(or small) O(1) parameters are multiplied together, we will show that our asymptotic

Table 2 Kinetic reaction rate parameters

Dimensional parameter Organism Parameter range

k1 = 10−2 s−1 Saccharomyces cerevisiaea 8 × 10−3 – 2 × 10−1 s−1 a,g

k2 = 7 × 10−5 mM−1s−1 Thermus thermophilusb 7 × 10−5 – 1 × 10−3 mM−1s−1 b,h

k3 = 102 mM−1s−1 Escherichia colic 1 × 101 – 1.6 × 103 mM−1s−1 c,i,j

k−3 = 2 × 101 s−1 Escherichia colic 1 × 100 – 2 × 102 s−1 c,i,j

k4 = 1 s−1 Escherichia colic 2 × 10−1 – 2 × 101 s−1 c,i,j

k5 = 4 × 10−2 mM−2s−1 Bacillus cereusd 7 × 10−3 – 2 × 10−1 mM−2s−1 d,k

k−5 = 80 s−1 Bacillus cereusd 1 × 101 – 5 × 102 s−1 d,k

k6 = 1.5 s−1 Bacillus cereusd 1 × 100 – 4 × 100 s−1 d,k

k7 = 3 × 10−2 mM−2s−1 Pyrococcus furiosuse 1 × 10−2 – 2 × 100 mM−2s−1 e,l

k−7 = 102 s−1 Pyrococcus furiosuse 5 × 100 – 6 × 102 s−1 e,l

k8 = 102 s−1 Pyrococcus furiosuse 5 × 100 – 6 × 102 s−1 e,l

k−8 = 4 × 10−2 mM−2s−1 Pyrococcus furiosuse 1 × 10−2 – 1 × 100 mM−2s−1 e,l

k9 = 102 mM−1s−1 Metallosphaera sedulaf 5 × 101 – 2 × 102 mM−1s−1 f

k−9 = 5 s−1 Metallosphaera sedulaf 1 × 100 – 1 × 101 s−1 f

k10 = 30 s−1 Metallosphaera sedulaf 1 × 100 – 1 × 102 s−1 f,m

Dimensionless parameter

k̄2 = k2S0/(εk1) = 0.7

k̄3 = k3a1S0ε
2/k1 = a1

k̄−3 = k−3a1ε
2/k1 = 0.2a1

k̄4 = k4a1ε/k1 = a1

k̄5 = k5a2S
2
0/k1 = 4a2

k̄−5 = k−5a2ε
2/k1 = 0.8a2

k̄6 = k6a2ε/k1 = 1.5a2

k̄7 = k7a4S
2
0/k1 = 3a4

k̄−7 = k−7a4ε
2/k1 = a4

k̄8 = k8a4ε
2/k1 = a4

k̄−8 = k−8a4S
2
0/k1 = 4a4

k̄9 = k9a3S0ε
2/k1 = a3
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Table 2 continued

Dimensionless parameter

k̄−9 = k−9a3ε/k1 = 5a3

k̄10 = k10a3ε
2/k1 = 0.3a3

In general, it is only ratios of kinetic parameters that are known for a given reaction, as substrate binding
to an enzyme is too quick to accurately measure the reaction rate. We therefore choose parameter values
(using the ratios given in the references) that lead to the enzyme complexes being formed over a time
period that is much shorter than the time period over which the metabolite concentrations change. This,
experimental uncertainty, and differences in enzymes in different organisms lead to a large possible range
for the parameter values. In scaling the kinetic parameters with S0 and powers of ε, we have used the values
S0 = 1mM, ε = 10−2. The values of k1 and k2 are chosen to be effective reaction rates as we are not
interested in modifying native enzymes. Thus, k1 is the ratio of the PYC turnover number to the Michaelis
constant for pyruvate multiplied by an estimated concentration of PYC, chosen to be around 1µM. k2
is the ratio of the AAT turnover number to the product of the Michaelis constants for oxaloacetate and
GLU, multiplied by an estimated concentration of AAT, chosen to be around 0.1µM. The references are:
a Branson et al. (2002), b Nobe et al. (1998), c Ramjee et al. (1997), d Nakano et al. (1977), e Ward et al.
(2000), f Kockelkorn and Fuchs (2009), g Jitrapakdee et al. (2007), h Yagi et al. (1982), i Chopra et al.
(2002), j Williamson and Brown (1979), k Hayaishi et al. (1961), l Umemura et al. (1994), m Berg et al.
(2007)

and numerical results show excellent agreement, and thus the approach is reliable for
this system.

For the initial conditions, we assume that the initial levels of pyruvate and of glu-
tamic acid are of comparable size and, to mimic the environment within a cell, that
these concentrations are much larger than the initial concentrations of each enzyme.
Additionally, we assume that the initial concentrations of each enzyme are of com-
parable size. Although enzyme-to-substrate levels will vary, a reasonable assumption
is that this ratio is around 1:100 and thus of O(ε) for our problem (Albe et al. 1990).
Thus, recalling that [S1](0) = S0, we also have [R1](0) = αS0, [E1](0) = εa1S0,
[E2](0) = εa2S0, [E3](0) = εa3S0, and [E4](0) = εa4S0, noting that the remain-
ing metabolite concentrations start at zero. The dimensionless parameters α, a1, a2,
a3, and a4 are of O(1). These conditions will allow us to investigate how the system
changes as the initial conditions of the system vary when we perform our asymptotic
analysis. From the initial conditions and (2i–2p), we can immediately deduce that

[Ei ] + [Ci ] = [Ei ](0), (3)

where i = 1, 2, 3, 4.
As we now have our dimensionless variables in terms of powers of ε, we can

scale each concentration variable with the appropriate power of ε to obtain the correct
leading-order system for t = O(1). This will allow us to immediately perform an
asymptotic analysis for small ε. We give the correct scalings for these variables in
Table 1, obtained by considering a dominant balance for each equation in the system
and the non-zero initial conditions discussed above. We will perform a similar proce-
dure to determine the correct asymptotic scalings over longer timescales, for which
we will use effective ‘initial’ conditions obtained by asymptotic matching between
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timescales. The dimensionless form of (3) yields the relationships E1 = 1 − εC1,
E2 = 1 − ε3C2, E3 = 1 − ε4C3, and E4 = 1 − ε2C4. Replacing each instance of
Ei (for i ∈ {1, 2, 3, 4}) with the appropriate function of Ci allows us to reduce the
dimension of the system of ODEs, accounting for (2i–2l). The remaining dimension-
less system is

Ṡ1=−S1−ε2k̄5S1S4
(
1−ε3C2

)
+ ε2k̄−5C2+εk̄8C4− εk̄−8S1R1

(
1 − ε2C4

)
,

(4a)

Ṡ2 = S1 − εk̄2S2R1, (4b)

ε Ṡ3 = εk̄2S2R1 − k̄3S3 (1 − εC1) + k̄−3C1, (4c)

Ṡ4 = k̄4C1 − εk̄5S1S4
(
1 − ε3C2

)
+ εk̄−5C2, (4d)

Ṡ5 = ε2k̄6C2 − ε2k̄7S5R2

(
1 − ε2C4

)
+ k̄−7C4, (4e)

ε Ṡ6 = k̄6C2 − k̄9S6
(
1 − ε4C3

)
+ εk̄−9C3, (4f)

Ṙ1 = −εk̄2S2R1 + εk̄8C4 − εk̄−8S1R1

(
1 − ε2C4

)
, (4g)

Ṙ2 = k̄2S2R1 − ε2k̄7S5R2

(
1 − ε2C4

)
+ k̄−7C4, (4h)

ε2Ċ1 = k̄3S3 (1 − εC1) − k̄−3C1 − εk̄4C1, (4i)

ε2a2Ċ2 = k̄5S1S4
(
1 − ε3C2

)
− k̄−5C2 − εk̄6C2, (4j)

ε2a3Ċ3 = k̄9S6
(
1 − ε4C3

)
− εk̄−9C3 − k̄10C3, (4k)

ε2a4Ċ4 = ε2k̄7S5R2

(
1 − ε2C4

)
− k̄−7C4 − k̄8C4 + k̄−8S1R1

(
1 − ε2C4

)
, (4l)

Ṗ = k̄10C3, (4m)

where the dimensionless parameters are defined in Table 2 and an overdot denotes
d/dt . In the following two sections, we solve the system presented in (4) for non-
replenished and constantly replenished pyruvate, respectively. The non-replenished
case is governed by (4), and the replenished case by (4b–m), with (4a) replaced by
S1 ≡ 1. For future reference, we note the immediate consequence of (4c) and (4i),
that

Ṡ3 + εĊ1 = k̄2S2R1 − k̄4C1, (5)

which is a statement about the evolution of aspartate from oxaloacetate and towards
PANDc—(5) follows on dividing the sum of (4c) and (4i) by ε, and will furnish an
additional leading-order equation in the limit ε → 0, in which (4c) and (4i) as they
stand lead to a duplication of information.
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Fig. 2 Numerical solutions in the non-replenished pyruvate case for the dynamic concentrations of a
malonic semialdehyde and b 3HP.Weuse the parameter values given in Table 2 for all simulations, and initial
dimensionless enzyme concentrations of 1 unless specified in the legend. The solid black line corresponds
to the reference simulation where ai = 1 for i = 1, 2, 3, 4

3 Non-replenished pyruvate

3.1 Numerical results

We solve the system (4) numerically, using ode15s in MATLAB. Our asymptotic
solutions will reveal that the system is stiff, and our choice of numerical approach
reflects this. We use the parameter values given in Table 2, and see that there are
two important timescales, where t = O(1) and t = O(1/ε) (recalling that ε = 10−2),
respectively (Fig. 2). Over each of these timescales, the levels ofmalonic semialdehyde
rise then fall, and the levels of 3HP rise to a plateau. Additionally, the levels of malonic
semialdehyde and 3HPcan vary significantlywhen the initial concentration of different
enzymes is increased (over-expression). We model the effect of over-expressing a
particular enzyme by starting the simulation with twice the levels of that enzyme
compared to the black reference line in Fig. 2. We emphasize that the parameter
values we give are not likely to be exact but, as we will later derive solutions to our
system as functions of these parameters, we will be able to determine which reactions
are the most important to the system by analyzing the form of these solutions without
knowledge of the exact values that these parameters take.

We now discuss how the over-expression of a given enzyme affects the system. A
schematic for the metabolic network is given in Fig. 1. Increasing the levels of PAND
has a positive but small effect on the levels of both malonic semialdehyde and 3HP.
Over-expressing BAPAT has a much larger effect, significantly increasing the levels of
both malonic semialdehyde and 3HP. In contrast, we see that over-expressing HPDH
does not appear to have any effect on the levels of 3HP and, in fact, significantly
decreases the maximum amount of malonic semialdehyde in the system. Finally, we
see that over-expressing ALT has a very small negative effect on the levels of malonic
semialdehyde, and a significant positive effect on the levels of 3HP.
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In the next section,we explore the system (4) using an asymptotic analysis. Thiswill
allow us to determine how the system depends on the dimensionless parameters, and
thus to explore the experimental parameter space without resorting to computationally
expensive parameter sweeps.

3.2 Asymptotic structure

We now investigate the system (4) by exploiting the small parameter, ε, using an
asymptotic analysis. There are two main asymptotic regions of interest in time, where
t = O(1) and t = O(1/ε), which we refer to as medium and long time, respectively
(Fig. 2).

When t = O(1), the system is governed by the release of pyruvate and GLU
through the main pathway to 3HP and towards the production of l-alanine. When
t = O(1/ε), the levels of pyruvate have diminished, and the system is governed
by the degradation of oxaloacetate with GLU into aspartate and AKG. Additionally,
the l-alanine produced when t = O(1) is now converted back into pyruvate which,
although only a small amount, is enough to have a leading-order effect on the reaction
with β-alanine, and thus a leading-order effect on the amount of 3HP produced. Thus,
the l-alanine acts as a store of pyruvate over t = O(1), and this is released over
t = O(1/ε). In the next section, we solve the leading-order versions of the system (4)
in each of these asymptotic regions.

3.3 Asymptotic solutions

The early-time behaviour of the system is given in “Appendix A”, obtained by Tay-
lor expanding the initial conditions as t → 0+. The more interesting behaviour for
malonic semialdehyde and 3HP production occurs for medium and long time, and we
now consider the system dynamics over these timescales in turn.

3.3.1 Medium time: t = O(1)

As ε → 0, the full system (4) becomes the differential-algebraic system

Ṡ1 = −S1, Ṡ2 = S1, Ṡ3 = k̄2S2R1 − k̄4C1, Ṡ4 = k̄4C1, Ṡ5 = k̄−7C4,

Ṙ1 = 0, Ṙ2 = k̄2S2R1 + k̄−7C4, Ṗ = k̄10C3, (6a)

k̄9S6 = k̄6C2, k̄−3C1 = k̄3S3, k̄−5C2 = k̄5S1S4, k̄10C3 = k̄9S6,(
k̄−7 + k̄8

)
C4 = k̄−8S1R1, (6b)

on using (5).
We solve the leading-order system (6) explicitly as ε → 0, and the solutions are

given by

S1 = e−t , (7a)
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S2 = 1 − e−t , (7b)

S3 = β3

(
1 − ωe−t − e−ωt

ω − 1

)
, (7c)

S4 = β4

(
t + ω2e−t − e−ωt + 1 − ω2

ω(ω − 1)

)
, (7d)

S5 = β5
(
1 − e−t) , (7e)

S6 = β6

(
t + ω2e−t − e−ωt + 1 − ω2

ω(ω − 1)

)
e−t , (7f)

R1 = α, (7g)

R2 = β4
(
t + e−t − 1

) + β5
(
1 − e−t) , (7h)

C1 = γ1

(
1 − ωe−t − e−ωt

ω − 1

)
, (7i)

C2 = γ2

(
t + ω2e−t − e−ωt + 1 − ω2

ω(ω − 1)

)
e−t , (7j)

C3 = γ3

(
t + ω2e−t − e−ωt + 1 − ω2

ω(ω − 1)

)
e−t , (7k)

C4 = γ4e
−t , (7l)

P = λ

((
e−ωt

ω
(
ω2 − 1

) − t + 1

ω
− ωe−t

2 (ω − 1)

)
e−t + ω

2 (ω + 1)

)
, (7m)

where we define the parameters

β3 = αk̄2/ω, β4 = αk̄2, β5 = αk̄−7k̄−8/(k̄−7 + k̄8), β6 = αk̄2k̄5k̄6/(k̄−5k̄9),

γ1 = αk̄2/k̄4, γ2 = αk̄2k̄5/k̄−5, γ3 = αk̄2k̄5k̄6/(k̄−5k̄10),

γ4 = αk̄−8/(k̄−7 + k̄8), λ = αk̄2k̄5k̄6/k̄−5, ω = k̄3k̄4/k̄−3. (8)

From Table 2, we see that the parameter ω = k̄3k̄4/k̄−3 is associated with (1c), the
reaction from aspartate to β-alanine. That is, ω is proportional to both the ratio of the
forward to backward reaction rate constants in (1c) and to the initial concentration of
PAND, the enzyme that controls (1c). Thus, from the prevalence of ω in the solution
(7), we see that (1c) affects the timing of the system when t = O(1), and the other
reactions control the concentration levels of the metabolites. For later analysis, we
additionally note that the parameter grouping k̄5k̄6/k̄−5 is associated with (1d), the
reaction from β-alanine and pyruvate to l-alanine and malonic semialdehyde.

We note there is an implicit assumption that ω �= 1 in writing (7), but the apparent
singularities are removable in this limit and, as such, they do not change the nature of
the solutions.We see that these solutions are excellent approximations to the numerical
solutions (dashed lines in Fig. 3).

Whilst the solutions (7) do satisfy the given initial conditions, several were not
formally imposed in the solution derivation. This is because the system (4) is singular
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Fig. 3 The numerical and asymptotic solutions for the metabolite concentrations in the non-replenished
pyruvate case. The solid light lines denote the numerical solutions, and the broken darker lines denote the
asymptotic solutions. Dashed lines represent the t = O(1) solutions given in (7), dash-dotted lines represent
the early-time solutions given in “Appendix A”, and dotted lines represent the late time solutions given in
(11, B2), and (B4). We use parameter values α = 0.5, a1 = 1, a2 = 1, a3 = 1, and a4 = 1. We have split
the metabolite concentrations into a the substrates that tend to a non-zero constant value for large time,
b the substrates which tend to zero for large time, c the enzyme complexes, and d the product. We plot
([Si ], [Ri ], [Ci ], [P])/S0

as ε → 0. Although we could formally match the solution (7) with an early-time
solution, it is not useful for our eventual goal of determining 3HP production. Instead,
we show that there are further early-time regions by Taylor expanding the initial
conditions as t → 0+ in “Appendix A”. We see that these early-time solutions are
excellent approximations to the numerical solutions (dash-dotted lines in Fig. 3).

3.3.2 Late time: t = O(1/ε)

The more interesting behaviour occurs for longer time. The solutions for S4 and R2,
given in (7d) and (7h), respectively, appear to be unbounded. As we start with a
finite level of nonreplenishable pyruvate, this is unphysical and suggests that there are
further dynamics at play. We can obtain the correct scaling by looking for a change in
leading-order terms in the system (4), which occurs when t = O(1/ε). To investigate
this, we introduce t = T/ε, where T = O(1), and we make the asymptotic scalings
(S4, R2) = ε−1(S4, R2), (S6,C2,C3,C4) = ε(S6,C2,C3,C4), and S1 = ε2S1. The
long-term version of the system (4) is
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ε
dS1
dT

=−S1 − εk̄5S1S4
(
1−ε4C2

)
+εk̄−5C2+k̄8C4+εk̄−8S1R1

(
1 − ε3C4

)
,

(9a)

dS2
dT

= εS1 − k̄2S2R1, (9b)

ε2
dS3
dT

= εk̄2S2R1 − k̄3S3
(
1 − ε2C1

)
+ k̄−3C1, (9c)

dS4
dT

= k̄4C1 − ε2k̄5S1S4
(
1 − ε4C2

)
+ ε2k̄−5C2, (9d)

dS5
dT

= ε2k̄6C2 − k̄7S5R2

(
1 − ε3C4

)
+ k̄−7C4, (9e)

ε2
dS6
dT

= k̄6C2 − k̄9S6
(
1 − ε5C3

)
+ εk̄−9C3, (9f)

dR1

dT
= −k̄2S2R1 + εk̄8C4 − ε2k̄−8S1R1

(
1 − ε3C4

)
, (9g)

dR2

dT
= k̄2S2R1 − εk̄7S5R2

(
1 − ε3C4

)
+ εk̄−7C4, (9h)

ε3
dC1

dT
= k̄3S3

(
1 − ε2C1

)
− k̄−3C1 − εk̄4C1, (9i)

ε3a2
dC2

dT
= k̄5S1S4

(
1 − ε4C2

)
− k̄−5C2 − εk̄6C2, (9j)

ε3a3
dC3

dT
= k̄9S6

(
1 − ε5C3

)
− εk̄−9C3 − k̄10C3, (9k)

ε3a4
dC4

dT
= k̄7S5R2

(
1 − ε3C4

)
− k̄−7C4 − k̄8C4 + εk̄−8S1R1

(
1 − ε3C4

)
, (9l)

dP

dT
= k̄10C3, (9m)

and (5) becomes

ε
dS3
dT

+ ε2
dC1

dT
= k̄2S2R1 − k̄4C1. (9n)

The leading-order version of (9) is the differential-algebraic system

dS2
dT

= −k̄2S2R1,
dS4
dT

= k̄4C1,
dS5
dT

= −k̄7S5R2 + k̄−7C4,
dR1

dT
= −k̄2S2R1,

dR2

dT
= k̄2S2R1,

dP

dT
= k̄10C3, (10a)

S1 = k̄8C4, k̄3S3 = k̄−3C1, k̄9S6 = k̄6C2, k̄4C1 = k̄2S2R1, k̄−5C2 = k̄5S1S4,

k̄10C3 = k̄9S6,
(
k̄−7 + k̄8

)
C4 = k̄7S5R2. (10b)
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Now the system is controlled by the nonlinear dynamics of S2 and R1, and the
solutions to the leading-order system (10) are

S1 = β4β5Ω
ek̄2(α−1)T − 1

αek̄2(α−1)T − 1

(
e−αk̄2T − αe−k̄2T

1 − α

)Ω

, (11a)

S2 = α − 1

αek̄2(α−1)T − 1
, (11b)

S3 = β3(α − 1)2
ek̄2(α−1)T

(αek̄2(α−1)T − 1)2
, (11c)

S4 = α
ek̄2(α−1)T − 1

αek̄2(α−1)T − 1
, (11d)

S5 = β5

(
e−αk̄2T − αe−k̄2T

1 − α

)Ω

, (11e)

S6 = αβ5β6Ω

(
ek̄2(α−1)T − 1

αek̄2(α−1)T − 1

)2 (
e−αk̄2T − αe−k̄2T

1 − α

)Ω

, (11f)

R1 = α(α − 1)
ek̄2(α−1)T

αek̄2(α−1)T − 1
, (11g)

R2 = α
ek̄2(α−1)T − 1

αek̄2(α−1)T − 1
, (11h)

C1 = γ1(α − 1)2
ek̄2(α−1)T

(αek̄2(α−1)T − 1)2
, (11i)

C2 = αβ5β6γ2Ω

(
ek̄2(α−1)T − 1

αek̄2(α−1)T − 1

)2 (
e−αk̄2T − αe−k̄2T

1 − α

)Ω

, (11j)

C3 = αβ5γ3Ω

(
ek̄2(α−1)T − 1

αek̄2(α−1)T − 1

)2 (
e−αk̄2T − αe−k̄2T

1 − α

)Ω

, (11k)

C4 = β4β5Ω
ek̄2(α−1)T − 1

αek̄2(α−1)T − 1

(
e−αk̄2T − αe−k̄2T

1 − α

)Ω

, (11l)

P = λω

2 (ω + 1)
+ αβ5λΩ

k̄2 (1 − α)Ω

∫ k̄2T

0

(
e−αs − e−s)2 (

e−αs − αe−s)Ω−2
ds,

(11m)

where Ω = k̄7k̄8/(k̄2(k̄−7 + k̄8)), which is proportional to the initial concentration of
ALT, the enzyme controlling (1e). Thus, Ω is associated with the reversible reaction
between l-alanine and pyruvate, and terms that are raised to the power of Ω arise due
to this reaction. In contrast, the terms not raised to the power of Ω in the integrand of
(11m) arise due to the conversion of pyruvate into β-alanine.
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To match the long-term solutions (11) with the t = O(1) solutions (7), we would
have to consider intermediate matching regions where exponentially decreasing terms
balance algebraically growing terms. These regions occur between t = O(1) and
t = O(1/ε), and thus generally involve a translation in time of some multiple of
log(1/ε). As these regions are uninteresting—the decreasing and increasing terms
pass by each other without interacting—we omit further discussion of these regions.

The long-time dynamics described by (11) are sensitive to the sign of α − 1, with
the singularities as α → 1 being removable. Moreover, the steady states in (11) as
T → ∞ depend on the sign of α − 1, and thus are sensitive to the initial ratio of
pyruvate to GLU. The exponential decay to these steady states slows down as α → 1,
and becomes algebraic decay in the limit.

There is further long-time behaviour that can occur in this system, though only for
certain parameter regimes. We discuss this behaviour in “Appendix B.1”.

3.4 Discussion

Of the reactions given in (1), (1c–f) are heterologous in Saccharomyces cerevisiae
(that is, they are not native to the microorganism), and are the most appropriate targets
for enhancement. Thus, identifying and enabling the correct enzymes within cells for
these reactions is paramount. To this end, we discuss our results in the context of being
able to vary parameters from reactions (1c–f).

The general goal of the metabolic system we have considered is to maximise the
total 3HP produced, whilst minimizing the malonic semialdehyde (S6) produced, as
the latter is toxic. The total 3HP produced at leading order, Ptot, can be obtained by
taking the limit as t → ∞ in (7m), and is given by

Ptot = λ

(
ω

2 (ω + 1)
+ β5

k̄2
I (α,Ω)

)
, (12a)

I (α,Ω) = αΩ

(1 − α)Ω

∫ ∞

0

(
e−αs − e−s)2 (

e−αs − αe−s)Ω−2
ds. (12b)

The integral (12b) has asymptotic behaviour I ∼ 1 as α → 0, I ∼ 1/α as α → ∞,
I ∼ 1 as Ω → 0 for α < 1, I ∼ 1/α as Ω → 0 for α > 1, and I ∼ √

π/(2αΩ)

as Ω → ∞, which agree well with the numerical solutions of (12b) (Fig. 4). To
numerically evaluate (12b), we make the substitution u = e−s to switch to a finite
domain and use an asymptotic approximation to evaluate the integral near u = 0,
where the integrand has an integrable singularity.

The amount of S6 present in the system is at its maximum when t = O(1), and we
give an analytic expression for this in (7f), from which we see that

max
t>0

S6(t) = β6 f (ω; u(ω)), (13a)

f (ω; u(ω)) =
(
u + ω2e−u − e−ωu + 1 − ω2

ω(ω − 1)

)
e−u, (13b)
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Fig. 4 The function I (α, Ω) defined in (12b). a Constant Ω and varying α. b Constant α and varying Ω .
The solid curves are the numerically derived values, and the dashed and dotted curves are the asymptotic
approximations for the small and large varying parameter, respectively. These approximations are defined
in the text immediately below (12)
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Fig. 5 The function f (ω; u(ω)) defined in (13) is given by the grey curve. The dashed and dotted black
curves are the small and large ω approximations, respectively. These approximations are defined in the text
immediately below (13)

where u(ω) > 0 satisfies

1 + 2ω

ω
+ 1 + ω

ω(ω − 1)
e−ωu = u + 2ω

ω − 1
e−u . (13c)

The function f is monotonically increasing in ω, and bounded above (Fig. 5). For
small ω, we find that f ∼ ωu2e−u/4 ≈ 0.127ω where u satisfies e−u = 1−u+u2/4
(thus, u ≈ 2.56). For large ω, we find that f ∼ ue−u/2 ≈ 0.162 where u satisfies
e−u = 1 − u/2 (thus, u ≈ 1.59). The numerical approximations we give are all to
three significant figures.

From the solutions for the total 3HP produced, (12a), and the maximum value of
malonic semialdehyde, (13), we see that increasing ω will increase both metabolites,
but there is a limiting effect. Increasing ω corresponds to increasing the reaction rate
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through (1c), from aspartate to β-alanine, and thus we can deduce that this reaction
step is important to our goals, but there are diminishing returns.

There is a greater effect on the system from the pre-factor constantsλ andβ6 = λ/k̄9
for 3HP and malonic semialdehyde, respectively. λ is a measure of the reaction rate
through (1d), from β-alanine to malonic semialdehyde and l-alanine, and we can
deduce that increasing the flux through this reaction will result in higher levels of
3HP and malonic semialdehyde. Moreover, a larger value of k̄9 will result in a lower
maximum value of malonic semialdehyde, without affecting the levels of 3HP at
leading order. This physically corresponds to choosing or designing an enzyme to
which malonic semialdehyde will bind very quickly in the reaction (1f) from malonic
semialdehyde to 3HP. Moreover, we see that increasing λ, and hence increasing the
reaction rate through (1d), increases the levels of both 3HP and malonic semialdehyde
without diminishing returns. Thus, (1d) is an important reaction in the system with
regards to our goal, and the extra malonic semialdehyde produced by higher reaction
rates through this system could be balanced by increasing k̄9.

The reaction (1e), where l-alanine reacts with AKG to produce pyruvate and GLU,
and vice versa, is important for the long-time production of 3HP. The reversibility
of this reaction means that the initial pyruvate is stored as l-alanine, then is able to
be converted back into pyruvate due to the excess AKG produced by the reaction
(1b), from oxaloacetate and GLU to aspartate and AKG. This process provides more
pyruvate for the important reaction (1d), allowing it to proceed for a longer time.
Bypassing the long route to β-alanine from pyruvate is important for this system,
as the pyruvate runs out whilst the levels of β-alanine tend to a finite value. Thus,
diverting pyruvate from producing to reacting with β-alanine will result in a more
efficient system and thus increase the total 3HP produced. This effect manifests in the
second term in (12a), where we find that increasing β5, a measure of the backwards
reaction in (1e), from pyruvate to l-alanine, increases the total 3HP produced for the
reasons stated above. However, as the enzyme ALT used in this reaction also affects
the value ofΩ , care must be taken in interpreting this result. In particular, a large value
of Ω will reduce the amount of 3HP produced (Fig. 4).

With regards to over- or under-expressing enzymes in the system,we can useTable 2
to determine that ω ∼ a1, λ ∼ a2, β5 ∼ a4, β6 ∼ a2/a3, and Ω ∼ a4, where a1, a2,
a3, and a4 relate to the initial concentrations of the enzymes PAND, BAPAT, HPDH,
and ALT, respectively, in the system. Hence, using the arguments presented above, we
may also deduce the following results for enzyme expression (a schematic of these
results is given in Fig. 6). Over-expressing PAND will monotonically increase the
levels of both 3HP and the maximum malonic semialdehyde present, but the effect of
this over-expression has diminishing returns and is bounded above. Similarly, over-
expressing BAPAT will also result in higher levels of both 3HP and the maximum
malonic semialdehyde present, but now without diminishing returns, as both scale
linearly with a2. Over-expressing HPDH decreases the maximum level of malonic
semialdehyde present (scaling with 1/a3), but has no leading-order effect on the levels
on 3HP. Finally, over-expressing ALT will increase the amount of 3HP produced
(scaling with

√
a4 for large a4), without affecting the maximum (leading-order) level

of malonic semialdehyde present. Thus, the effect of over-expressing ALT does have
diminishing returns, but is not bounded above.
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Fig. 6 A schematic to highlight the effect of over-expressing a given enzyme in the no replenishment
case on a malonic semialdehyde and b 3HP. The underlying network and the arrows between the nodes
are explained in Fig. 1. An enzyme that is boxed and red/green means that over-expressing this enzyme
causes a/an decrease/increase in the metabolite of interest. Our goal is to reduce the levels of malonic
semialdehyde whilst increasing the levels of 3HP, where possible. A dashed box denotes that the over-
expression has diminishing returns with no upper bound, and a dotted box denotes that the over-expression
has diminishing returns with an upper bound (colour figure online)

4 Continuously replenished pyruvate

4.1 Numerical results

We now investigate the system (4b–m), setting S1 ≡ 1. Thus, the concentration of
pyruvate is no longer governed by (4a). This models a system where pyruvate is
being constantly replenished and maintained at a given value. Solving this system
numerically, we see that there are two main timescales for 3HP production, where
t = O(1) and t = O(101), respectively (Fig. 7). In the t = O(1) timescale, the
levels of both malonic semialdehyde and 3HP are increasing, before the t = O(101)
timescale, where the levels of malonic semialdehyde increases at a much slower rate,
and the levels of 3HP tends to a constant production rate. There is a further timescale
when t = O(102), and the levels of malonic semialdehyde slightly increase to a steady
state in this timescale.

As with the never-replenished pyruvate case, the levels of malonic semialdehyde
and 3HP can vary significantly when different enzymes are over-expressed.We show a
schematic for the metabolic network in Fig. 1. Increasing the initial amount of PAND
has no discernible effect on the levels of both malonic semialdehyde and 3HP. In
contrast, over-expressing BAPAT significantly increases the levels of both malonic
semialdehyde and 3HP. We see that over-expressing HPDH does not appear to have
any effect on the levels of 3HP and, in fact, significantly decreases the maximum
amount of malonic semialdehyde in the system. Finally, we see that over-expressing
ALT has a small positive effect on the levels of malonic semialdehyde overall (though
a small negative effect over t = O(101)), and a small negative effect on the levels of
3HP.

We proceed in the same manner as §3, using an asymptotic analysis to explore the
system (4b–m), setting S1 ≡ 1. Thiswill allowus to determine how the systemdepends
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Fig. 7 Numerical solutions in the continuously replenished pyruvate case for the dynamic concentrations
of a malonic semialdehyde and b 3HP. We use the parameter values given in Table 2 for all simulations,
and initial dimensionless enzyme concentrations of 1 unless specified in the legend. The solid black line
corresponds to the reference simulation where ai = 1 for i = 1, 2, 3, 4

on the dimensionless parameters, and thus to explore the experimental parameter space
without resorting to computationally expensive parameter sweeps.

4.2 Asymptotic structure

As we did with §3, we now consider this system by exploiting the small parameter, ε,
and using an asymptotic analysis. There are two main asymptotic regions of interest
in time, where t = O(1) and t = O(1/ε1/2), and we refer to these as medium and
intermediate time, respectively (Fig. 7).

When t = O(1), the system is governed by the release of pyruvate through the main
pathway to 3HP and towards the production of l-alanine. There is a significant increase
in the levels of all metabolites apart from pyruvate and GLU, the only metabolites that
are initially present. When t = O(1/ε1/2), the initial rate of metabolite production is
slowed and most metabolites approach their steady state. There is a further asymptotic
region when t = O(1/ε), and the system responds to the overproduction of l-alanine
due to the continuous replenishment of pyruvate.We consider this region in “Appendix
B.2 ”, as 3HP production is not affected by this redistribution. In the next section, we
solve the leading-order versions of the system (4b–m), with S1 ≡ 1 in these asymptotic
regions.

4.3 Asymptotic solutions

The early-time behaviour of the system is the same as for the never-replenished case,
and this is given in “Appendix A”. The more interesting behaviour for malonic semi-
aldehyde and 3HP production occurs over longer timescales, which we now discuss
in turn.
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4.3.1 Medium time: t = O(1)

The leading-order system (4b–m), with S1 ≡ 1, as ε → 0 is given by the differential-
algebraic system

Ṡ2 = 1, Ṡ3 = k̄2S2R1 − k̄4C1, Ṡ4 = k̄4C1, Ṡ5 = k̄−7C4, Ṙ1 = 0,

Ṙ2 = k̄2S2R1 + k̄−7C4, Ṗ = k̄10C3, (14a)

k̄9S6 = k̄6C2, k̄−3C1 = k̄3S3, k̄−5C2 = k̄5S1S4, k̄10C3 = k̄9S6,(
k̄−7 + k̄8

)
C4 = k̄−8S1R1, (14b)

on using (5). The solution to (14) is

S2 = t, (15a)

S3 = β3

ω

(
e−ωt − 1 + ωt

)
, (15b)

S4 = β4

ω2

(
1 − ωt + ω2t2

2
− e−ωt

)
, (15c)

S5 = β5t, (15d)

S6 = β6

ω2

(
1 − ωt + ω2t2

2
− e−ωt

)
, (15e)

R1 = α, (15f)

R2 = β4
t2

2
+ β5t, (15g)

C1 = γ1

ω

(
e−ωt − 1 + ωt

)
, (15h)

C2 = γ2

ω2

(
1 − ωt + ω2t2

2
− e−ωt

)
, (15i)

C3 = γ3

ω2

(
1 − ωt + ω2t2

2
− e−ωt

)
, (15j)

C4 = γ4, (15k)

P = λ

ω3

(
e−ωt − 1 + ωt − ω2t2

2
+ ω3t3

6

)
, (15l)

where the parameters are defined in (8). The solutions (15) show excellent agreement
with the numerical results (dashed lines in Fig. 8). As with the case considered in
§3, we did not have to impose all of the initial conditions to determine (15). That is,
there is an early-time solution as t → 0+. For early time, the diminishing pyruvate
case considered in the previous section is equivalent to the constant pyruvate case we
consider here. Thus, the early-time behaviour for this case is also given in “Appendix
A” and shows excellent agreement with the numerical results (dashed-dotted lines for
early time in Fig. 8).
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Fig. 8 The numerical and asymptotic solutions for the metabolite concentrations in the continuously-
replenished pyruvate case. The solid light lines denote the numerical solutions, and the broken darker
lines denote the asymptotic solutions. Dash-dotted lines for t < 10−3 represent the early-time solutions
given in “Appendix A” (not shown in a), dashed lines represent the t = O(1) solutions given in (15),
dotted lines represent the intermediate-time solutions given in (18), and dash-dotted lines for t > 101

represent the late-time solutions given in (B7) (not shown for c, d). We use parameter values α = 0.5,
a1 = 1, a2 = 1, a3 = 1, and a4 = 1. We have split the metabolite concentrations into a metabolites whose
early-time behaviour is described by the t = O(1) behaviour, b metabolites whose late-time behaviour is
described by the intermediate-time behaviour, cmetabolites whose behaviour is distinct in each asymptotic
region we have discussed, and d the product. We plot ([Si ], [Ri ], [Ci ], [P])/S0

4.3.2 Intermediate time: t = O(1/ε1/2)

We can see that several terms in the system are promoted to leading order
when t = O(ε−1/2). Using t = τ/ε1/2 with the scalings (S2, S3, S5,C1) =
(Ŝ2, Ŝ3, Ŝ5, Ĉ1)/ε

1/2, (S4, S6, R2,C2,C3) = (Ŝ4, Ŝ6, R̂2, Ĉ2, Ĉ3)/ε, and P =
P̂/ε3/2, where all the new variables are O(1), the medium-time system (4) becomes

dŜ2
dτ

= 1 − ε1/2k̄2 Ŝ2R1, (16a)

ε3/2
dŜ3
dτ

= εk̄2 Ŝ2R1 − k̄3 Ŝ3
(
1 − ε1/2Ĉ1

)
+ k̄−3Ĉ1, (16b)

dŜ4
dτ

= k̄4Ĉ1 − ε1/2k̄5 Ŝ4
(
1 − ε2Ĉ2

)
+ ε1/2k̄−5Ĉ2, (16c)
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dŜ5
dτ

= εk̄6Ĉ2 − ε1/2k̄7 Ŝ5 R̂2

(
1 − ε2C4

)
+ k̄−7C4, (16d)

ε3/2
dŜ6
dτ

= k̄6Ĉ2 − k̄9 Ŝ6
(
1 − ε3Ĉ3

)
+ εk̄−9Ĉ3, (16e)

dR1

dτ
= −k̄2 Ŝ2R1 + ε1/2k̄8C4 − ε1/2k̄−8R1

(
1 − ε2C4

)
, (16f)

d R̂2

dτ
= k̄2 Ŝ2R1 − εk̄7 Ŝ5 R̂2

(
1 − ε2C4

)
+ ε1/2k̄−7C4, (16g)

ε5/2
dĈ1

dτ
= k̄3 Ŝ3

(
1 − ε1/2Ĉ1

)
− k̄−3Ĉ1 − εk̄4Ĉ1, (16h)

ε5/2a2
dĈ2

dτ
= k̄5 Ŝ4

(
1 − ε2Ĉ2

)
− k̄−5Ĉ2 − εk̄6Ĉ2, (16i)

ε5/2a3
dĈ3

dτ
= k̄9 Ŝ6

(
1 − ε3Ĉ3

)
− εk̄−9Ĉ3 − k̄10Ĉ3, (16j)

ε5/2a4
dC4

dτ
= ε1/2k̄7 Ŝ5 R̂2

(
1 − ε2C4

)
− k̄−7C4 − k̄8C4 + k̄−8R1

(
1 − ε2C4

)
,

(16k)

d P̂

dτ
= k̄10Ĉ3, (16l)

and (5) becomes

ε1/2
dŜ3
dτ

+ ε3/2
dĈ1

dτ
= k̄2 Ŝ2R1 − k̄4Ĉ1. (16m)

The leading-order version of (16) is given by the differential-algebraic system

dŜ2
dτ

= 1,
dŜ4
dτ

= k̄4Ĉ1,
dŜ5
dτ

= k̄−7C4,
dR1

dτ
= −k̄2 Ŝ2R1,

d R̂2

dτ
= k̄2 Ŝ2R1,

d P̂

dτ
= k̄10Ĉ3, (17a)

k̄3 Ŝ3 = k̄−3Ĉ1, k̄9 Ŝ6 = k̄6Ĉ2, k̄4Ĉ1 = k̄2 Ŝ2R1, k̄−5Ĉ2 = k̄5 Ŝ4,(
k̄−7 + k̄8

)
C4 = k̄−8R1, (17b)

and is solved by

Ŝ2 = τ, (18a)

Ŝ3 = β3τe
−k̄2τ 2/2, (18b)

Ŝ4 = α
(
1 − e−k̄2τ 2/2

)
, (18c)

Ŝ5 = β5

√
π

2k̄2
erf

⎛
⎝τ

√
k̄2
2

⎞
⎠ , (18d)
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Ŝ6 = β6

k̄2

(
1 − e−k̄2τ 2/2

)
, (18e)

R1 = αe−k̄2τ 2/2, (18f)

R̂2 = α
(
1 − e−k̄2τ 2/2

)
, (18g)

Ĉ1 = γ1τe
−k̄2τ 2/2, (18h)

Ĉ2 = γ2

k̄2

(
1 − e−k̄2τ 2/2

)
, (18i)

Ĉ3 = γ3

k̄2

(
1 − e−k̄2τ 2/2

)
, (18j)

C4 = γ4e
−k̄2τ 2/2, (18k)

P̂ = λ

k̄2

⎛
⎝τ −

√
π

2k̄2
erf

⎛
⎝τ

√
k̄2
2

⎞
⎠

⎞
⎠ , (18l)

where the error function erf(z) is defined as

erf(z) = 2√
π

∫ z

0
e−s2 ds. (19)

These solutions show excellent agreement with the numerical results (dotted lines in
Fig. 8).

Similarly to the analysis in §3, there is further long-time behaviour arising from
higher-order terms becoming important as lower-order terms exponentially decrease.
These can be obtained by proceeding to higher orders in the above analysis, but it
is simpler to investigate the asymptotic balances in (16) using the solutions (18). As
this does not affect the 3HP production at leading order, we discuss this in “Appendix
B.2”.

4.4 Discussion

We discuss our results in the same context as for the previous section. That is, we
consider the effect of varying parameters from the heterologous reactions (1c–f), and
with the goal of maximizing 3HP production whilst minimizing the maximum level
of malonic semialdehyde, S6.

We see from the long-time solution (18l) that 3HP ends up being produced at a con-
stant rate λ/k̄2, and hence the concentration of 3HP ends up linearly increasing with
time. Additionally, from (18e), the concentration of malonic semialdehyde monoton-
ically increases and tends to a constant value of β6/k̄2 = λ/(k̄2k̄9). Hence, although
there are clear differences in the long-time behaviour of this system compared to the
never-replenished pyruvate case, there is a similar reaction dependence between sys-
tems. Specifically, whilst increasing the reaction rate through (1d), from β-alanine
to malonic semialdehyde and l-alanine, will result in greater levels of 3HP and mal-
onic semialdehyde, the levels of malonic semialdehyde produced can be reduced by
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Pyruvate ([S1])

Oxaloacetate ([S2]) Aspartate ([S3])

β-alanine ([S4])

L-alanine ([S5]) Malonic semialdehyde ([S6])

3HP ([P ])

PAND ([E1])

BAPAT ([E2])

HPDH ([E3])

ALT ([E4])

(a)

Pyruvate ([S1])

Oxaloacetate ([S2]) Aspartate ([S3])

β-alanine ([S4])

L-alanine ([S5]) Malonic semialdehyde ([S6])

3HP ([P ])

PAND ([E1])

BAPAT ([E2])

HPDH ([E3])

ALT ([E4])

(b)

Fig. 9 A schematic to highlight the effect of over-expressing a given enzyme in the continuous replenish-
ment case on amalonic semialdehyde and b 3HP. The underlying network and the arrows between the nodes
are explained in Fig. 1. An enzyme that is boxed and red/green means that over-expressing this enzyme
causes a/an decrease/increase in the metabolite of interest. Our goal is to reduce the levels of malonic
semialdehyde whilst increasing the levels of 3HP, where possible (colour figure online)

increasing k̄9. That is, by selecting an enzyme to which malonic semialdehyde has a
large binding affinity.

In contrast to the never-replenished pyruvate case, the continuously-replenished
pyruvate case has no leading-order dependence on (1c), the reaction from aspartate
to β-alanine, nor on (1e), the reaction where l-alanine reacts with AKG to produce
pyruvate and GLU, and vice versa. Increasing the flux through the former and the
reverse reaction of the latter had a positive effect on 3HP production, where the latter
allowed l-alanine to initially act as a pyruvate store, before releasing pyruvate to react
with β-alanine. Thus, for long-time, the rate of 3HP production and the levels of
malonic semialdehyde are only dependent on the reaction (1d), compared to §3 where
these quantities are dependent on (1c–e).

With regards to over- or under-expressing enzymes in the system,we can useTable 2
to determine that λ ∼ a2 and k̄9 ∼ a3, where a2 and a3 relate to the initial concen-
trations of the enzymes BAPAT and HPDH, respectively, in the system (a schematic
of these results is given in Fig. 9). Hence, using the arguments presented above, we
may also deduce that over-expressing BAPAT will result in higher levels of both 3HP
and the maximum malonic semialdehyde present, both scaling linearly with a2. How-
ever, over-expressing HPDH decreases the maximum level of malonic semialdehyde
present,which is inversely proportional toa3, but has no leading-order effect on the lev-
els on 3HP. Importantly, we also find that, in contrast to the non-replenished-pyruvate
case, there is no leading-order dependence on the initial concentrations of PAND or
ALT. Thus, our model suggests that the over-expression of PAND or ALT will not
result in significant differences in the maximum level of malonic semialdehyde or the
3HP production for continuous replenishment of pyruvate.

5 Conclusions

In this paper, we develop and solve amathematical model for 3-hydroxypropionic acid
(3HP) production from pyruvate via aspartate and β-alanine. We consider two limit-
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Fig. 10 a The maximum level of malonic semialdehyde in the system, b the total 3HP produced, both
in the no replenishment of pyruvate case. In both figures, the labels on the x-axis denote i Reference
value (using the initial enzyme concentrations a1 = a2 = a3 = a4 = 1). (ii) Over-expressing PAND
(a1 = 10, a2 = a3 = a4 = 1), (iii) Concurrently over-expressing BAPAT and HPDH (a1 = a4 = 1,
a2 = a3 = 10), (iv) Over-expressing ALT (a1 = a2 = a3 = 1, a4 = 10). The units of the y-axis are mM

ing cases, where the initial level of pyruvate is never and continuously replenished,
respectively. In both cases, we make substantial asymptotic progress to gain physical
insight into the system behaviour, successfully comparing these results with numerical
solutions to check their accuracy. Our asymptotic model (including relatively straight-
forward explicit expressions) allows us to predict and quantify ways to increase the
levels of 3HP produced without increasing the levels of malonic semialdehyde, a toxic
compound produced as an intermediate in the pathway.

In terms of over-expressing enzymes, we find that for both cases the strongest
positive effect comes from simultaneously over-expressing both BAPAT and HPDH.
This significantly increase the levels of 3HP produced, but provides no significant
increase in the maximum malonic semialdehyde present ((iii) in Figs. 10 and 11).
Our results also show that over-expressing just one of BAPAT or HPDH will not have
as strong an effect. We see a similar (though weaker) effect when over-expressing
ALT for a limited supply of pyruvate, and the maximum level of malonic semialde-
hyde is slightly reduced ((iv) in Fig. 10). However, when pyruvate is continuously
replenished, over-expressing ALT leads to a small increase in both the maximum level
of malonic semialdehyde and the rate of 3HP production ((iv) in Fig. 11). Finally,
over-expressing PAND only has a significant effect when there is a limited supply of
pyruvate, where the over-expression leads to a slight increase in the maximum level of
malonic semialdehyde present ((ii) in Fig. 10). This effect vanishes when the pyruvate
is continuously replenished ((ii) in Fig. 11).We provide schematics outlining the effect
of over-expressing a given enzyme on both malonic semialdehyde and 3HP in Figs. 6
and 9 for the never and continuous replenishment cases, respectively.

Another approach to optimizing metabolite pathways is to explore alternative
enzymes for a given reaction. Our results can also be used to expedite this process, as
we are able to determine how the system behaves as a function of the kinetic parame-
ters of the enzymes, which will differ for alternative enzymes. Thus, we may interpret
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Fig. 11 aThemaximum level ofmalonic semialdehyde in the system,b the eventual rate of 3HPproduction,
both in the continuous replenishment of pyruvate case. In b, we use P/t as the label for the y-axis as the
levels of 3HP linearly increase with time (this continuous production is due to the continuous replenishment
of pyruvate), and thus the appropriate measure here is the long-time production rate of 3HP. In both figures,
the labels on the x-axis denote (i) Reference value (using the initial enzyme concentrations a1 = a2 = a3 =
a4 = 1). (ii) Over-expressing PAND (a1 = 10, a2 = a3 = a4 = 1), (iii) Concurrently over-expressing
BAPAT and HPDH (a1 = a4 = 1, a2 = a3 = 10), (iv) Over-expressing ALT (a1 = a2 = a3 = 1, a4 =
10). The units of the y-axis are mM

our results to determine the optimal targets for enzyme replacement. We find that,
in both cases, the kinetic parameters involving the enzyme BAPAT (k̄5, k̄−5, and k̄6,
defined in Table 2) have the most significant effect on 3HP production, and our model
suggests that focusing attention on maximizing the parameter grouping k̄5k̄6/k̄−5 will
have the greatest effect on 3HP yield. Although increasing k̄5k̄6/k̄−5 also has the effect
of increasing the levels of malonic semialdehyde, we further show that choosing an
HPDH enzyme to which malonic semialdehyde will quickly bind can negate this issue
(that is, increasing k̄9, defined in Table 2), and we show in Figs. 10 and 11 that this
combined effect of increasing the 3HP production whilst maintaining the maximum
level of malonic semialdehyde can also be achieved by over-expressing BAPAT and
HPDH.

We additionally show that the kinetic parameters involving the enzyme ALT (k̄7,
k̄−7, k̄8, and k̄−8, defined in Table 2) have a leading-order effect on the 3HP levels
when the initial level of pyruvate is never replenished. This is because the reversibility
of the reaction effectively allows pyruvate to be stored and converted back when
required. This storage effect is negligible in the continuous replenishment case as the
pyruvate is plentiful (by definition) and thus there is no benefit to having additional
storage of pyruvate. The important parameter groupings here are k̄7k̄8/(k̄−7 + k̄8)
and k̄−7k̄−8/(k̄7k̄8), where increasing both of these dimensionless groupings leads to
more 3HP produced, with no effect on the maximum levels of malonic semialdehyde
present at leading order. We find that the combined effect of these parameters means
that k̄−7 and k̄−8 should be increased, whereas k̄7 and k̄8 should be decreased, and we
note that there are diminishing returns on increasing k̄−7. We show in Fig. 10 that this
effect can be weakly obtained by over-expressing ALT.
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The kinetic parameters of the remaining enzyme we consider, PAND, given by k̄3,
k̄−3, and k̄4 defined in Table 2, are only significant at leading order in the never-
replenished pyruvate case. In this case, we find that increasing the value of the
parameter grouping k̄3k̄4/k̄−3 increases both the amount of 3HP produced, and also the
maximum levels of malonic semialdehyde present. However, the effect of increasing
this parameter grouping is bounded above, and thus these diminishing returns suggest
that this parameter grouping is unlikely to be particularly useful to exploit for the
eventual goal of industrial production of 3HP.

We show that, although the full reaction dynamics are different between the never-
replenished and continuously-replenished pyruvate cases, there are general similarities
between predictions of the important reactions in both cases. Namely, our model
suggests that over-expressing BAPAT or using a version of BAPAT with different
kinetic parameters will increase levels of both 3HP and malonic semialdehyde, and
that over-expressing HPDH or using an alternate that can very quickly bind to malonic
semialdehyde will decrease the levels of malonic semialdehyde. The main differences
between the two cases are as follows. Firstly, the kinetic parameters involved in the
PANDandALT reactions have a leading-order effect in the never-replenished pyruvate
case, but not in the continuously-replenished case. Secondly, the time taken to reach
the ‘long-time’ stage of 3HP production is asymptotically larger in the continuously-
replenished pyruvate case, an effect relating to the continuous production of 3HP in
this case. Thirdly, the malonic semialdehyde reaches its maximum value at a finite
time in the never-replenished case, but tends to its maximum (constant) value in the
continuously-replenished case.

We have made significant use of asymptotic analysis in this paper. This method
has allowed us to determine the key parameter groupings involved in the production
of 3HP and malonic semialdehyde. Moreover, there are some interesting aspects of
the asymptotic analysis in its own right. For example, we have leading-order expo-
nentially decreasing terms that become subdominant to algebraically increasing terms.
Resolving this issue without going to higher asymptotic orders requires matching over
a timescale that involves logarithmic functions of the small parameter ε, as shown in
“Appendix B.1”. Another interesting facet of the asymptotic analysis we perform is
that, in the never-replenished pyruvate case, there are effects that occur over two
asymptotic timescales that contribute to the levels of 3HP at leading order, and the
system behaviour over the longer timescale highlights how l-alanine acts as a store
for pyruvate, yielding deeper physical insight into the system.

The two limiting cases of pyruvate replenishment that we have considered in this
paper are chosen as modelling assumptions. In reality, the levels of pyruvate will fall
somewhere between these two extremes, as some time-dependent level of pyruvatewill
be generated from glucose via glycolysis. Whilst our model does highlight the BAPAT
enzyme as the most important to 3HP production in both of the extreme cases we
consider, it may be interesting to investigate whether this is true for any given pyruvate
production. This could be examined by imposing a certain time-dependent form for the
pyruvate concentration (aswe did by imposing that pyruvatewas constant in the second
casewe considered) if it were known, or by including a known source of pyruvate in the
governing equations and solving the full system. From (4), the governing equations for
O(1) time, we can see that the leading-order metabolite concentrations can be written
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in terms of integrals of (time-dependent) imposed pyruvate concentrations or pyruvate
sources, and these are given in “Appendix C”. It may be instructive to analysis these
general results further.

Additionally, we chose somewhat arbitrary initial conditions which modelled the
instantaneous addition of pyruvate to a well-mixed solution of enzymes. In reality,
there is no clean starting point to such a set of reactions and there are likely to be small
initial levels of every metabolite. We have tested our results for small but non-zero
initial values of each metabolite and found that the early-time solutions we derived in
“AppendixA”were inaccurate, but that the system relaxed into the remaining solutions
we derived in this paper (results not shown).

Care must be taken with applying these results to in vivo experiments. Some of
the metabolite concentrations we have derived are very small and, whilst this is not
an issue for reactions occurring within a well-mixed beaker in vitro, it may pose a
problem if the situation being modelled is reactions occurring within cells. For one
molecule within a cell, the resulting macroscale concentration within a bacteria cell
would be roughly 10−9 M ≈ ε3S0 using the typical parameter values in this paper.
Hence, care needs to be taken when interpreting our results for reactions occurring
within bacterial cells. One option to accurately model a small number of molecules is
is to perform stochastic simulations of the molecule numbers, assigning a probability
of each reaction occurring. Additionally, for small numbers of molecules it may be
that spatial effects are important. It would be useful to include these extra features
in an extension of this work to check whether our conclusions still applied for in
vivo experiments, but we note that this would significantly increase the computational
expense of solving the model.

Finally, we note that this work highlights how mathematical models can be used
to understand a complicated system, even one exhibiting nonlinear behaviour. From
our model, we were able to highlight the strong positive effect of over-expressing
two enzymes, BAPAT and HPDH, at the same time to increase 3HP production while
maintaining the levels of malonic semialdehyde. Such theoretical results should allow
significant reductions in the time taken to explore the experimental parameter space,
and to aid in other ways the understanding of biological systems.
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Appendix A: Early-time solution

By Taylor expanding the system (4) around the initial conditions, we can deduce the
leading-order behaviour

S1 ∼ 1, S2 ∼ t, S3 ∼ αk̄2
t2

2! , S4 ∼ αk̄2k̄3k̄4
ε2

t4

4! ,

S5 ∼ αk̄−7k̄−8

a4ε2
t2

2! , S6 ∼ αk̄2k̄3k̄4k̄5k̄6
a2ε5

t6

6! ,

R1 ∼ α, R2 ∼ αk̄−7k̄−8

a4ε2
t2

2! ,

C1 ∼ αk̄2k̄3
ε2

t3

3! , C2 ∼ αk̄2k̄3k̄4k̄5
a2ε4

t5

5! , C3 ∼ αk̄2k̄3k̄4k̄5k̄6k̄9
a2a3ε7

t7

7! , C4 ∼ αk̄−8

a4ε2
t,

P ∼ αk̄2k̄3k̄4k̄5k̄6k̄9k̄10
a2a3ε7

t8

8! ,

as t → 0+. These results are expansions in which t , rather than ε, is the small
parameter, and yield the earliest behaviour of the system. In Figs. 3 and 8, we see
that these asymptotic solutions agree very well with the numerical solutions at early
time. We note that these early-time solutions will be sensitive to any change in initial
conditions.

Appendix B: Long-time behaviour

In the main text, we have given the long-time behaviour of the system for times up
to the asymptotic orders at which the levels of 3HP are affected. There is further
interesting transient behaviour for the rest of the system and, in this Appendix, we
discuss this behaviour.

B.1 Never-replenished pyruvate

There is further long-time behaviour that can occur for the never-replenished pyruvate
case which physically corresponds to a slower decay of metabolites than predicted in
the main text. We see from the long-time solutions (11) that the metabolites that decay
have decay rates of |1 − α| or min(Ω, αΩ). Thus, if higher order terms have slower
decay rates than lower order terms in the long-time system (9), the asymptotic order
of terms will eventually switch. We find that asymptotic switching occurs for α < 1
if and only if Ω < 1/α − 1, and for α > 1 if and only if Ω < α − 1 (Fig. 12a).

When α < 1 and Ω < 1/α − 1, we look into the region in (9) where

T − log(1/ε)

k̄2(1 − α − αΩ)
= O(1), (B1)
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Fig. 12 a The shaded areas denote the regions in which there is switching of asymptotic orders in the
long-time solution for limited initial pyruvate. In the region where Ω < 1/α − 1, solutions (B2) hold. In
the region where Ω < α − 1, solutions (B4) hold. b Results for S3, taking ki = a j = 1 for all i, j , and
α = 0.5, thus falling into the region where α < 1 and Ω < 1/α − 1. The solid grey curve shows the
numerical result, the dashed black curve shows the O(1) term in (B2a), and the dotted black curve shows
the full expression given in (B2a). The latter two asymptotic results show excellent agreement with the
numerical result until t ≈ 103, where asymptotic switching occurs, and the O(ε) term in (B2a) dominates

to determine the leading-order corrections

S3 ∼ β3(1 − α)2ek̄2(α−1)T + ε
β4β5Ω k̄8

ω(1 − α)Ω−1(1 − α − αΩ)
e−αk̄2ΩT , (B2a)

R1 ∼ α(1 − α)ek̄2(α−1)T + ε
β4β5Ω k̄8

k̄2(1 − α)Ω(1 − α − αΩ)
e−αk̄2ΩT , (B2b)

C1 ∼ γ1(1 − α)2ek̄2(α−1)T + ε
β4β5Ω k̄8

k̄4(1 − α)Ω−1(1 − α − αΩ)
e−αk̄2ΩT , (B2c)

as T → ∞. TheO(ε) terms in (B2) arise because theO(1) termhas a larger exponential
decay rate than the O(ε) term in (9g), and thus these terms will eventually balance.
When α > 1 and Ω < α − 1, we look into the region in (9) where

T − log(1/ε)

k̄2(α − 1 − Ω)
= O(1), (B3)

to determine the leading-order corrections

S2 ∼ α − 1

α
ek̄2(1−α)T + ε

(
α

α − 1

)Ω
β5Ω

(α − 1 − Ω)
e−k̄2ΩT , (B4a)

S3 ∼ β3

(
α − 1

α

)2

ek̄2(1−α)T + ε

(
α

α − 1

)Ω−1
β4β5Ω

ω(α − 1 − Ω)
e−k̄2ΩT , (B4b)

C1 ∼ γ1

(
α − 1

α

)2

ek̄2(1−α)T + ε

(
α

α − 1

)Ω−1
β4β5Ω

k̄4(α − 1 − Ω)
e−k̄2ΩT , (B4c)
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as T → ∞. TheO(ε) terms in (B4) arise because theO(1) termhas a larger exponential
decay rate than the O(ε) term in (9b), and thus these terms will eventually balance.
We see that these solutions are excellent approximations to the numerical solution.

This further long-time behaviour occurs when (1e), the reaction between l-alanine
and pyruvate, is slow. The physical interpretation of the solutions in this appendix
is that this slow reaction allows a slow replenishment of pyruvate which, in turn,
is converted through the metabolites in the pathway to β-alanine. This slow release
allows for a more gradual depletion of these intermediates.

B.2 Continuously-replenished pyruvate

There is further long-time behaviour that can occur for the continuously-replenished
pyruvate case which physically corresponds to some metabolites reaching a steady
state rather than vanishing as predicted in the main text. Using τ = T/ε1/2 (and
hence t = T/ε) with the scalings (Ŝ2, P̂) = ε−1/2(S̃2, P̃), Ĉ4 = ε1/2C̃4, (Ŝ3, Ĉ1) =
ε(S̃3, C̃1), and R1 = ε3/2 R̃1, where all the new variables are O(1), the long-time
system (16) becomes

dS̃2
dT

= 1 − ε3/2k̄2 S̃2 R̃1, (B5a)

ε2
dS̃3
dT

= εk̄2 S̃2 R̃1 − k̄3 S̃3
(
1 − ε3/2C̃1

)
+ k̄−3C̃1, (B5b)

dŜ4
dT

= ε1/2k̄4C̃1 − k̄5 Ŝ4
(
1 − ε2Ĉ2

)
+ k̄−5Ĉ2, (B5c)

dŜ5
dT

= ε1/2k̄6Ĉ2 − k̄7 S̃5 R̂2

(
1 − ε5/2C̃4

)
+ k̄−7C̃4, (B5d)

ε2
dŜ6
dT

= k̄6Ĉ2 − k̄9 Ŝ6
(
1 − ε3Ĉ3

)
+ εk̄−9Ĉ3, (B5e)

ε
d R̃1

dT
= −k̄2 S̃2 R̃1 + k̄8C̃4 − εk̄−8 R̃1

(
1 − ε5/2C̃4

)
, (B5f)

d R̂2

dT
= ε1/2k̄2 S̃2 R̃1 − ε1/2k̄7 S̃5 R̂2

(
1 − ε5/2C̃4

)
+ ε1/2k̄−7C̃4, (B5g)

ε3
dC̃1

dT
= k̄3 S̃3

(
1 − ε3/2C̃1

)
− k̄−3C̃1 − εk̄4C̃1, (B5h)

ε3a2
dĈ2

dT
= k̄5 Ŝ4

(
1 − ε2Ĉ2

)
− k̄−5Ĉ2 − εk̄6Ĉ2, (B5i)

ε3a3
dĈ3

dT
= k̄9 Ŝ6

(
1 − ε3Ĉ3

)
− εk̄−9Ĉ3 − k̄10Ĉ3, (B5j)

ε3a4
dC̃4

dT
= k̄7 Ŝ5 R̂2

(
1 − ε5/2C̃4

)
− k̄−7C̃4 − k̄8C̃4 + εk̄−8 R̃1

(
1 − ε5/2C̃4

)
,

(B5k)
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d P̃

dT
= k̄10Ĉ3. (B5l)

To fully explain the long-termbehaviour is it useful to consider someof the solutions up
to O(ε1/2). Hence, we give (B5) up to O(ε1/2), resulting in the following differential-
algebraic system

dS̃2
dT

=1,
dŜ4
dT

= ε1/2k̄4C̃1 − k̄5 Ŝ4+k̄−5Ĉ2,
dŜ5
dT

= ε1/2k̄6Ĉ2 − k̄7 S̃5 R̂2 + k̄−7C̃4,

d R̂2

dT
= ε1/2k̄2 S̃2 R̃1 − ε1/2k̄7 S̃5 R̂2 + ε1/2k̄−7C̃4,

d P̃

dT
= k̄10Ĉ3, (B6a)

k̄3 S̃3= k̄−3C̃1, k̄9 Ŝ6= k̄6Ĉ2, k̄2 S̃2 R̃1= k̄8C̃4, k̄4C̃1 = k̄2 S̃2 R̃1, k̄−5Ĉ2 = k̄5 Ŝ4,

k̄10Ĉ3 = k̄9 Ŝ6,
(
k̄−7 + k̄8

)
C̃4 = k̄7 Ŝ5 R̂2, (B6b)

on using (5) with the scalings introduced in this section.
The solution to (B6) is

S̃2 = T, (B7a)

S̃3 = 1

ω

((
β4λΩ

√
π

2k̄2
− ε1/2

λ

k̄2

)
e−β4ΩT + ε1/2

λ

k̄2

)
, (B7b)

Ŝ4 = α, (B7c)

S̃5 = 1

β4Ω

((
β4λΩ

√
π

2k̄2
− ε1/2

λ

k̄2

)
e−β4ΩT + ε1/2

λ

k̄2

)
, (B7d)

Ŝ6 = β6

k̄2
, (B7e)

R̃1 = 1

k̄2T

((
β4λΩ

√
π

2k̄2
− ε1/2

λ

k̄2

)
e−β4ΩT + ε1/2

λ

k̄2

)
, (B7f)

R̂2 = α, (B7g)

C̃1 = 1

k̄4

((
β4λΩ

√
π

2k̄2
− ε1/2

λ

k̄2

)
e−β4ΩT + ε1/2

λ

k̄2

)
, (B7h)

Ĉ2 = γ2

k̄2
, (B7i)

Ĉ3 = γ3

k̄2
, (B7j)

C̃4 = 1

k̄8

((
β4λΩ

√
π

2k̄2
− ε1/2

λ

k̄2

)
e−β4ΩT + ε1/2

λ

k̄2

)
, (B7k)

P̃ = λ

k̄2
T, (B7l)

where we give the solutions up to O(ε1/2) for the metabolites where the O(1) term is
exponentially decreasing. In these cases, there is a constantO(ε1/2) term, and we wish
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to avoid introducing a further boundary layer when T = (1/(2β4Ω)) log(1/ε)+O(1)
to switch the asymptotic order of terms. To give the O(ε1/2) terms for the remaining
metabolites, we would need to match with higher order terms from the t = O(ε−1/2)

region which, in turn, we would need to match with higher order terms from the
t = O(1) region. As we are satisfied with our current level of accuracy, we omit this
for brevity. The solutions (B7) show excellent agreement with the numerical results
(dash-dotted lines for late time in Fig. 8).

The long-time behaviour (B7) allows the levels of aspartate and l-alanine to attain
their correct steady state values which are limited by (1d), the BAPAT reaction. The
levels of aspartate sharply decrease when t = O(1/ε1/2) as aspartate is converted into
β-alanine which is free to react with all the excess pyruvate in the system. In (B7),
this sharp decrease is balanced by a slow but steady conversion of pyruvate (through
oxaloacetate) into aspartate, allowing for a finite steady state. The levels of l-alanine
are artificially high when t = O(1/ε1/2) due to the reaction of β-alanine with all the
excess pyruvate into l-alanine (and malonic semialdehyde). This large production of
l-alanine is balanced in (B7) by the conversion of l-alanine into pyruvate.

Appendix C: General solutions for t = O(1)

The general problem for t = O(1) is given by (6), ignoring the equation Ṡ1 = −S1.
Instead, S1 is either imposed to be a specific function of time, or governed by

Ṡ1 = f (t) − S1, (C1)

at leadingorder for small ε,where f (t) represents a time-dependent source of pyruvate.
In this paper, we have considered the cases f ≡ 0 and S1 ≡ 1 (equivalent to f ≡ 1
at leading order) in more detail, corresponding to no replenishment and continuous
replenishment of pyruvate, respectively. As (C1) is solved by

S1 = e−t +
∫ t

0
es−t f (s) ds, (C2)

we can determine S1(t) in either case. Hence, we give the solution to (6) in terms of
a general S1(t) (ignoring the equation Ṡ1 = −S1), as follows

S2 =
∫ t

0
S1(s) ds, (C3a)

S3 = β3

∫ t

0

(
1 − eω(s−t)

)
S1(s) ds, (C3b)

S4 = β4

∫ t

0

(
t − s + eω(s−t) − 1

ω

)
S1(s) ds, (C3c)

S5 = β5

∫ t

0
S1(s) ds, (C3d)
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S6 = β6S1(t)
∫ t

0

(
t − s + eω(s−t) − 1

ω

)
S1(s) ds, (C3e)

R1 = α, (C3f)

R2 =
∫ t

0
(β4 (t − s) + β5) S1(s) ds, (C3g)

C1 = γ1

∫ t

0

(
1 − eω(s−t)

)
S1(s) ds, (C3h)

C2 = γ2S1(t)
∫ t

0

(
t − s + eω(s−t) − 1

ω

)
S1(s) ds, (C3i)

C3 = γ3S1(t)
∫ t

0

(
t − s + eω(s−t) − 1

ω

)
S1(s) ds, (C3j)

C4 = γ4S1(t), (C3k)

P = λ

∫ t

0
S1(s)

∫ s

0

(
s − v + eω(v−s) − 1

ω

)
S1(v) dv ds. (C3l)
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