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Abstract—With the increasing accessibility of remote sensing1

videos, remote sensing tracking is gradually becoming a hot issue.2

However, accurately detecting and tracking in complex remote3

sensing scenes is still a challenge. In this paper, we propose4

a collaborative learning tracking network for remote sensing5

videos, including a consistent receptive field parallel fusion mod-6

ule (CRFPF), dual-branch spatial-channel co-attention (DSCA)7

module, and geometric constraint re-track strategy (GCRT).8

Considering the small-size objects of remote sensing scenes9

are difficult for general forward networks to extract effective10

features, we propose a CRFPF-module to establish parallel11

branches with consistent receptive fields to separately extract12

from shallow to deep features and then fuse hierarchical features13

adaptively. Since the objects and their background are difficult to14

distinguish, the proposed DSCA-module uses the spatial-channel15

co-attention mechanism to collaboratively learn the relevant16

information, which enhances the saliency of the objects and17

regresses to precise bounding boxes. Considering the interference18

of similar objects, we designed a GCRT-strategy to judge whether19

there is a false detection through the estimated motion trajectory20

and then recover the correct object by weakening the feature21

response of interference. The experimental results and theoretical22

analysis on multiple data sets demonstrate our proposed method’s23

feasibility and effectiveness. Code and net are available at24

https://github.com/Dawn5786/CoCRF-TrackNet.25

Index Terms—Remote sensing video, object tracking, deep26

learning, collaborative learning, attention mechanism.27

I. INTRODUCTION28

IN recent years, with the diversification of remote sensing29

application scenarios, single-frame static remote sensing30

images can no longer meet the demand for dynamic detection31

of ground objects. While video satellites can obtain time-32

series dynamic images of observation areas, which can provide33

rich information for many applications like traffic condition34

monitoring, the rapid response of natural disaster, and military35

security [1]. Object tracking is one of the key technologies36

in video analysis and understanding applications [2]. Many37

advanced trackers for natural videos have been proposed [3–38

5].39
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Fig. 1: The overall process framework, including a consistent
receptive field parallel fusion module (CRFPF), a dual-branch
spatial-channel co-attention module (DSCA), and geometric
constraint re-track strategy (GCRT).

The emergence of very high-resolution (VHR) video satel- 40

lites provides the possibility for remote sensing video tracking. 41

Since remote sensing videos are taken from high altitudes 42

with wide angles, complex scenes and the feature distribution 43

of ground objects are vastly different from those in natural 44

videos. Therefore, accurate real-time remote sensing video 45

tracking remains a particular challenge. 46

Object tracking usually establishes an appearance model 47

with objects marked in the first frame, then detecting and 48

positioning a designated object in subsequent frames. A gen- 49

eral tracking framework usually consists of a search strategy, 50

feature extraction, and observation model. According to the 51

different feature extraction methods, trackers can be mainly 52

divided into traditional methods and deep learning methods 53

[6]. 54

In traditional methods, based on different ways of obser- 55

vation, it can be divided into generative and discriminant 56

models [7]. Generative models usually extract object features 57

to construct an appearance model, such as optical flow [8], 58

Kanade Lucas Tomasi (KLT) [9], Meanshift [10] etc. However, 59

the generative model does not make full use of background 60

information and appearance changes. While discriminant mod- 61

els, like tracking learning detection (TLD) [11] and struck 62

[12], usually compare the difference of object and background 63

through a discriminant function. Later, MOSSE [13] first 64

introduces the correlation filtering method to object tracking. 65

On this basis, kernel correlation filter (KCF) [14] introduces 66

cyclic matrix, and fast Fourier transform for real-time online 67

training. These models can take advantage of the relationship 68

between the object and the background simultaneously, but the 69

trained filters limit the universality of the models. 70
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In deep learning methods, trackers use deep features with71

powerful representation ability instead of manual features [15–72

17]. Some early works, such as efficient convolution operators73

(ECO) [18] and hedged deep tracking (HDT) [19], directly use74

existing pre-trained models to extract deep features. However,75

due to the non-universality of the pre-trained models, end-76

to-end learning trackers are proposed which can be trained77

off-line, such as SiamATL [20], ATOM [21] and Dimp [22],78

etc.79

In recent three years, some tracking methods peculiar to80

remote sensing videos have come into being. Du et.al. [23]81

combine KCF [14] and three-frame difference algorithm to82

build a strong tracker. Guo et.al. [24] design a correlation83

filter incorporated with a Kalman filter (CFKF) to correct84

the tracking trajectory of moving targets. Wang et.al. [25]85

design a Gabor filter on CSK [26] to enhance object features.86

Later, Hu et.al. [27] extract deep features with pre-trained87

deep neural networks. PASIAM [28] uses a shallow siamese88

network to match object features and predict attention to deal89

with occlusion. Although the above studies have achieved90

good performance, the research remote sensing video tracking91

is still in its infancy. There are still some significant challenges92

as follows:93

1) Since satellite videos are taken from high altitudes, the94

interesting objects are usually small-size with little sufficient95

information. However, the present trackers do not sufficiently96

extract series of hierarchical features for these small objects97

in particular.98

2) Due to the complex atmospheric medium in remote99

sensing videos (e.g. clouds, fog), objects are usually similar100

to those of the surrounding background. It makes accurate101

tracking difficult. However, as far as we know, existing trackers102

cannot adaptively enhance objects in dynamic backgrounds.103

3) When the object to be tracked moves around those similar104

objects, the tracker is easily disturbed and drifts to the wrong105

objects. It dramatically affects the success rate of trackers.106

Based on the analysis above, we propose a deep collabora-107

tive learning tracking network for remote sensing videos. The108

main contributions can be summarized as follows:109

1) For small objects to be detected, we design some parallel110

multi-resolution branches so that they can have the consistent111

receiving field on the same level layer, thus extracting the hier-112

archical features of small objects from shallow to deep layers,113

and finally, use adaptive weights to fuse them effectively.114

2) To strengthen the objects, we use the cross-correlation of115

objects between the current frame and the template frame to116

perform collaborative attention learning in spatial and channel117

, respectively, which can expand the difference between the118

objects and the background. And an additional attention-loss119

is designed to enhance the saliency of the objects further.120

3) For the tracked results, we design a re-track strategy to121

judge whether the objects are false tracked through geomet-122

ric constraint, and then weaken the feature response of the123

interference objects and finally re-track the actual objects.124

The remainder of this paper is organized as follows: in125

Section II, we introduce three modules of the proposed frame-126

work in detail; in Section III, contains the analysis of the127

experimental results and the effect of each module; finally, 128

Section IV concludes this paper. 129

II. METHODOLOGY 130

A. Consistent Receptive Field Parallel Fusion Module 131

In remote sensing videos, the objects are usually small-size, 132

which causes the bottleneck of tracking accuracy. In recent 133

works [29, 30], feature pyramid structures are constructed to 134

meet the challenge of small objects. However, they are usually 135

applied in global recognition on multiple categories of objects 136

at any scale widely. So it lacks specificity in detecting small 137

objects. Based on this, we construct a consistent receptive field 138

parallel fusion module (CRFPF). 139

The input of this module is an RGB image patch I01 ∈ 140

RM0
1×M

0
1×3, which is intercepted by the center of the object. 141

1) Construction of Parallel Image Pyramid Input. 142

Single resolution input is difficult to balance the extrac- 143

tion of deep features and shallow features for extremely 144

small objects. In order to further extract rich hierarchical 145

effective semantic representation information, we construct 146

parallel image pyramid by a multi-resolution sampling way 147

on original image patch I01 and obtain a series of image 148

patches {I00 , · · · , I0k , · · · , I0K} with corresponding sample rate 149

{α0, · · · , αk, · · · , αK}, where I0k ∈ RM0
k× M0

k×3 and M0
k 150

represents the side length of I0k . 151

M0
k = αk ×M0

1 {k ∈ N|0 ≤ k ≤ K} (1)

These image patches correspond to the inputs of K+1 paral- 152

lel convolution branches {BI0 , · · · ,BIk , · · · ,BIK}. According 153

to the principle of deep neural network, the higher resolution 154

branch tends to extract deep semantic features, while the lower 155

resolution branch tends to extract shallow detailed features. 156

Among them, BI0 is a down-sampling branch with α0 < 1 157

to capture global location feature information from a lower 158

resolution image patch. 159

So the steps to construct the input process are: 160

(a) The original image patch I01 , enhanced by the red border, 161

is the input of the module. 162

(b) Then calculate sampling rates {α0, · · · , αk, · · · , αK}. 163

(c) Finally perform multi-resolution sampling on I01 , and 164

obtain {I00 , · · · , I0k , · · · , I0K} as inputs for parallel branches. 165

2) Feature Extraction with Consistent Receptive Field. 166

For image pyramid as input, after passing through different 167

parallel general convolutional network branches, the actual 168

scene regions corresponding to the receptive fields of the 169

obtained features are not necessarily consistent. So it is not 170

conducive to subsequent feature fusion. In order to resist 171

the misalignment phenomenon during the fusion of non-same 172

branch features, we aim to keep the consistent receptive field 173

on the same level layer for all branches (See the yellow dotted 174

lines in Fig. 2). Note that in a branch, a series of consecutive 175

convolutions form a level layer, their size is fixed. And one 176

branch has L level layers in Fig. 2. In this regard, we think 177

of using dilation convolution [31] which can change receptive 178

field with the same size convolution kernel to align features. 179

Dilation rates of the level layers in branch BIk is recorded as 180

{r1k, · · · , rlk, · · · , rLk }. 181
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Fig. 2: Flowchart of CRFPF-Module. The input is I01 and the output is fused feature Ffuse. 1) Construction of Parallel Multi-
Resolution Input is in the grey dashed circle. 2) Feature Extraction with Consistent Receptive Field is in the blue dashed circle.
3) Adaptive Feature Fusion are in the purple dashed circle.

Starting from the branch BI1 , its original RGB image patch182

I01 ∈ RM0
1×M

0
1×3 passes through dilation convolution opera-183

tions to generate the first level layer feature F 1
1 ∈ RM1

1× M1
1×3

184

as follows.185

M1
1 = bM

0
1 + 2× padding − r11 × (Ker − 1)− 1

stride11
+ 1c (2)

where Ker is the convolution kernel size and r11 is the dilation186

rate of the first level layer in BI1 .187

Among parallel branches, given sampling rate αk, (k =188

{0, 1, · · · ,K}) and dilation rate r11 of branch BI1 , dilation189

rates r1k of each branch in the first level layer can be calculated190

as follows.191

r1k × (Ker − 1) + 1

r11 × (Ker − 1) + 1
= αk =

M0
k

M0
1

(3)

Therefore, the obtained {r11, · · · , r1K} are substituted into192

Eq. (2) and {F 1
0 , · · · , F 1

K} are determined. We design the193

above rules to ensure the features of the same level layer have194

a consistent receptive field among different branches. That is195

they respond to the same real scene range of the original image196

patches.197

For the branch BIk , with r1k of each branch obtained198

from the above, the receptive field Fik of the i-th layer199

(i = {1, · · · , L}) is shown in following recurrence formula as200

Eq. (4), where the dot represent dot multiplication operations201

in maths.202

Fik =


rik × (Ker − 1) + 1 , i = 1

Fi−1
k + [rik × (Ker − 1) + 1] ·

i−1∏
p=1

stridepk , i ≥ 2

(4)
In this process, the current level layer features of the lower203

resolution branch have the same dimension as the next level 204

layer feature of its adjacent higher resolution branch (e.g. F l−1
k−1 205

and F lk in Fig. 2). So far, features of all branches can be 206

determined. The specific steps are: 207

(a) First build a standard convolutional network branch BI1 208

as the feature extraction branch of the initial image I01 . 209

(b) Then obtain parallel branches BIk , (k = {0, 1, · · · ,K}) 210

with given sampling rate αk, (k = {0, 1, · · · ,K}) and dilation 211

rate r11 of branch BI1 as Eq. (2-4). 212

(c) Finally, {I00 , · · · , I0k , · · · , I0K} are sent to respective 213

branches hierarchical and features {FL0 , · · · , FLk , · · · , FLK} 214

are extracted. 215

Based on the above description, the output features 216

{FL0 , · · · , FLk , · · · , FLK} extracted from parallel branches are 217

consistent in dimension. 218

3) Adaptive Feature Fusion. 219

According to the principle of deep learning, objects of 220

various sizes have different degrees of preference on different 221

level features. So the feature fusion way with equal weights 222

is not particularly suitable. Therefore, we propose an adaptive 223

feature fusion way to obtain the final fused feature Ffuse as 224

follows. 225

Ffuse =
K∑
k=0

λk · FLk

s.t. λk =
βk∑
β

(5)

where λk represents the fusion weight of feature FLk , which 226

is normalized by βk to interval [0, 1]. And the dot represent 227

dot multiplication operations. 228

The proportion βk is determined by the object size
√
w × h, 229
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the image patch size M1 and the sample rate αk as follows.230

βk =
[

ln(
M1√
w × h

)
]−αk

(6)

Given a certain object size, βk decreases with the increase231

of αk, that is, a branch with a larger sample rate has a smaller232

fusion weight. Besides, given the sample rate of each branch,233

as the object size increases, the weight gap among the branches234

decreases and tends to be even. In this way, the smaller the235

object, the proportion of shallow detail features is larger,236

conducive to the precise detection of small objects. Function237

ln(·) is used to prevent violently jitter of fusion weight caused238

by object size changes.239

In general, for CRFPF-module, multi-resolution parallel240

branches fully extract the low-level detailed information and241

high-level semantic information of small objects from shallow242

to deep layers, consistent receptive fields allow features of243

different branches in the same level layer corresponding to244

the same real scene range. And the adaptive fusion way not245

only contains multiple layers information, but also reduces the246

deviation caused by feature misalignment.247

B. Dual-branch Spatial-Channel Co-Attention Module248

To increase the saliency of objects, we propose a DSCA-249

module composed of a target classifier and an intersection over250

union (IoU) regression based on collaborative attention (co-251

attention) mechanism.252

1) Spatial Co-Attention Module.253

To highlight the object region saliency from the spatial254

structure, we construct a spatial co-attention module on the255

target classifier. The structure is shown in Fig. 3 (a).256

1. Feature Initialization. The inputs, Z ∈ RW×H×C and257

X ∈ RW×H×C , are the fused features extracted from CRFPF-258

module of the template frame and the current frame. They259

go through several convolution operations and generate initial260

features Z0
S ∈ RW×H×C and X0

S ∈ RW×H×C .261

2. Generate Spatial Co-Attention Map. We calculate the262

spatial co-attention map Sr describing the cross-correlation263

information between two initial features, Z0
S and X0

S .264

Specifically, flatten Z0
S and X0

S to Z1
S ∈ RN×C and X1

S ∈ 265

RN×C , where N = W×H . We obtain the spatial co-attention 266

map Sr ∈ RN×N as follows. 267

Sr = softmax(X1
S · (Z1

S)T ) (7)

We design the spatial co-attention map Sr to measure the 268

similarity of Z1
S and X1

S in the corresponding spatial position. 269

The larger value in Sr indicates the higher similarity of 270

corresponding positions, vice versa. 271

3. Feature Modulation. We modulate spatial co-attention 272

map Sr to initial current frame feature X1
s based on the 273

current frame feature X , and the cross-correlation feature 274

Xco
S ∈ RW×H×C is calculated as follows. 275

Xco
S = X + Φ(Sr ·X1

s ) (8)

where Φ(·) represents an operation to reshape input back to the 276

initial dimension as X . Therefore, according to the degree of 277

cross-correlation between the template frame and the current 278

frame, we enhance the object region signal and enlarge the 279

difference in the feature distribution between the object and 280

its background. 281

4. Saliency Attention-Loss. Considering that the feature 282

information of small objects is very minimal, if they are 283

directly sent to the classifier, the feedback loss will not be 284

enough to improve the saliency of the object. Therefore, we 285

design an additional attention-loss to further focus on the 286

neighborhood of objects, thereby further expanding the gap 287

between the object and the background. 288

For this attention-loss, the saliency mask Sp ∈ RW×H×1 is 289

generated as follows. 290

Sp = softmax(conv(Xco
S )) (9)

where conv(·) represents several 1×1 convolution operations. 291

The additional attention-loss function is as follows. 292

Ls(S
p, G) = −

∑
(1−η)glog(sp)+η(1−g)log(1−sp) (10)

where G is a binary label obtained according to the ground 293

truth boxes. For G, the value of the object location is set to 294
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1, while the background is set to 0. η presents the percentage295

of positive values in the binary label template to prevent an296

imbalance between positive and negative samples. g ∈ G and297

sp ∈ Sp. In the tracking process, we multiply the modulation298

feature Xco
S with salient mask Sp, getting final attention299

feature XC
S for the target classifier.300

Subsequent target classifier consists of several fully convo-301

lutional layers. The loss for the classifier is the least square302

function, as shown in Eq. (11).303

Lcls(X
C
S , Y ) =

∑
(f(xcs;ω)− y)2 + µ‖ω‖2 (11)

here, Y is the Gaussian sampling label centered at the object,304

y ∈ Y and xcs ∈ XC
S . µ is the amount of regularization on ω.305

The overall loss is as follows,306

Lspatial = ξLs + (1− ξ)Lcls (12)

where ξ is in [0, 1] to balance the two losses.307

2) Channel Co-attention Module.308

In IoU predictor, each channel of feature has a different con-309

tribution to the accurate prediction. To increase the proportion310

of beneficial channels under the guidance of precise ground311

truth, we propose a channel co-attention module as Fig. 3 (b).312

1. Feature Initialization. The inputs are ground truth region313

Bg within the template frame feature Z, and the proposal314

region Be within the current frame feature X , denoted as315

Z(Bg) and X(Be). Both them are fed through convolution316

operations, and then do precise region of interest pooling317

operations(PrPool) [32] as Eq. (13) to get continuous down-318

sampling of the same dimension, getting initial features Z0
C ∈319

RJ×J×C and X0
C ∈ RJ×J×C .320

PrPool(B(x1, y1, x2, y2)) =

∫ y2
y1

∫ x2
x1
f(x, y)dxdy

(x2 − x1)× (y2 − y1)
(13)

where B represents the above Bg or Be, (x1, y1) and (x2, y2)321

represent the coordinates of the upper left and lower right322

corners of B. f(x, y) represents the element value of the323

feature map at coordinates (x, y).324

2. Generate Channel Co-Attention Map. We flatten Z0
C and325

X0
C to Z1

C ∈ RJ2×C and X1
C ∈ RJ2×C along the channel axis326

and obtain channel co-attention map Sc ∈ RC×C as follows.327

Sc = softmax((Z1
C)T ·X1

C) (14)

The Sc obtained in this way reflects the degree of cross-328

correlation between channels from Z0
C and X0

C , respectively.329

We design Sc to measure the degree of similarity between330

channels. Larger values indicate higher similarity, vice versa.331

According to the cross-correlation score, the channel that is332

highly similar to the channel of the ground truth object is333

enhanced.334

3. Channel Modulation. We generate channel modulated335

features Xco
C ∈ RJ×J×C with Sc as follows.336

Xco
C = X0

C + Φ(X1
C · Sc) (15)

where operation Φ(·) reshape input back to dimension as X0
C .337

This not only adaptively adjusts the channel weight, but also338

completely ensures the original feature information.339

4. IoU Estimate. Given Xco
C , the IoU value is predicted340
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Fig. 4: Flowchart of GCRT strategy of the t-th frame. I0 is the
original input of the template frame, It−T ∼ It is the original
input of T frames.

by several fully connected layers. The IoU regression loss 341

computed is as follows: 342

LIoU = −ln(
Bg ∩Be
Bg ∪Be

) (16)

Finally, the overall DSCA-model is complete. In this mod- 343

ule, we introduce the cross-correlation characteristics between 344

the template frame and the current frame, and make use of 345

the cross-correlation information. In this way, we respectively 346

enhance the saliency of the object region in the spatial domain 347

and prefer high-quality features intelligently in the channel 348

domain. Note that the target classification branch and the IoU 349

regression branch focus on different domains and cannot be 350

interchanged. Primarily, we also design a saliency attention- 351

loss to further enlarge the difference in feature distribution 352

between objects and similar backgrounds. 353

C. Geometric Constraint Re-Track Strategy 354

In remote sensing videos, objects are small-size and have 355

little texture information, so the indiscernible appearance of 356

objects leads to the difficulty of retrieving objects once lost. 357

Therefore, we propose a re-track strategy based on geometric 358

constraints to reduce false detections, as shown in Fig. 4. 359

Given the previous T frames results {Bt−1, · · · , Bt−T } , 360

we judge whether the estimate result Btorg(x
t
c, y

t
c, w

t, ht) of 361

the current t-th frame needs to be re-track, where (xtc, y
t
c) is the 362

center of the box and wt, ht represent the width and height. 363

For the box of the t-th frame, we update its corresponding 364

mask Sp response by a attenuation factor ϕ as follows. 365

Sp(Bt) = Sp(Btorg) · ϕ (17)

We discuss ϕ for re-track in three situations as: 366

ϕ =


e−R/L , R > L

e−R/A , A < R ≤ L & 4θ > θo

1 , else

(18)

where R means the Euclidean distance between (xtc, y
t
c) and 367

(xt−1
c , yt−1

c ). L and A are the diagonal length and the shorter 368

side length of the box, respectively. 369

L =
√

(wt)2 + (ht)2 (19)
370

A = min (wt, ht) (20)

1) R > L. 371
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Fig. 5: Display for several possible situations. (a) R1 > L.
(b) A < R2 ≤ L, θt− θtT . It shows the situation when similar
targets are moving towards each other in close distance; (c)
A < R3 ≤ L, θtT − θt. It shows the situation when similar
targets are moving in the same direction. (d) It shows the
normal situation that R4 < A.

In remote sensing videos, since the tracked object is usually372

a low-speed moving one, the Euclidean distance the object373

moves between two adjacent frames is usually less than the374

length of the object itself, i.e., L in Eq. (19).375

Therefore, when R > L, we consider the estimated result of376

the t-th frame to be unreliable. So we take ϕ = e−R/L for re-377

track. It attenuates the unreliable detection object according to378

the distance. As R is larger, ϕ is closer to 0, and more severe379

attenuation. In this way, the unreliable detection objects are380

weakened so that the real objects can be re-tracked.381

2) A < R ≤ L.382

In this situation, we consider that objects may appear in383

two positional relationships as shown in Fig. 5 (b)(c). So we384

further use the angle relationship to make the determination.385

We take the average angle change θtT of the previous T386

frames as a benchmark to predict the current angle change:387

θtT =
1

T

T∑
i=1

arctan
xt−ic − xt−(i+1)

c

yt−ic − yt−(i+1)
c

(21)

where xt−ic , yt−ic are corresponding center of previous boxes.388

And the current movement direction is:389

θt = arctan
xtc − xt−1

c

ytc − yt−1
c

(22)

Then we calculate the angle change4θ of the current frame:390

4θ =| θt − θtT | (23)

We use the angle θo between the diagonal and the long side391

of the object bounding box Bt as the threshold of the angle392

change range, as follows:393

θo = arctan
min(wt, ht)

max(wt, ht)
(24)

Since small objects in our remote sensing scenes are moving394

at a low speed, 4θ should be an acute less than θo.395

If A < R ≤ L and 4θ > θo are satisfied at the same time,396

we start the re-track procedure with the attenuation factor as397

ϕ = e−R/A. Compared with e−R/L in the the case of R >398

L, ϕ = e−R/A also exponentially decreases as R increases.399

The difference is that ϕ = e−R/A decays faster, which can400

0

1

2

3

4

5

6

φ

R

Attenuation Function Comparison Gragh

( / )R Le −=

( / )R Ae −=

M
N

O
P

Fig. 6: Attenuation function curve comparison. When R > 0,
the value range of the function is in the interval [0, 1]. As
R increases, the smaller the attenuation factor ϕ is, the more
severe the signal attenuation is. In order to avoid ineffective
suppression of interferers at different distances, e−R/L is used
when R > L, and e−R/A is used when A < R ≤ L.

effectively suppress interference even near the object. If the 401

above two situations do not occur, it is considered that there is 402

no false detection, and ϕ is unchanged as 1. The reason we use 403

two exponential functions with different coefficients is to strike 404

a balance between sensitively capturing false tracking results 405

and avoiding allergy alarms. As shown in Fig. 6, suppose we 406

use a uniform decay function e−R/L indiscriminately, then 407

when R ≤ L, the value of the ϕ is relatively high (e.g. ϕM > 408

ϕO = ϕN ). Therefore, we replace the attenuation function 409

in the interval A < R ≤ L with e−R/A, so that the nearby 410

interferers can also be effectively attenuated without affecting 411

the magnitude of the long-distance attenuation. In this way, 412

the interference signals at different distances can be effectively 413

attenuated during re-tracking, and the allergy alarm caused by 414

the jitter of bounding boxes can be avoided. 415

With the above GCRT strategy, we use geometric constraints 416

to weaken the response of the mask Sp in unreliable detection 417

object region, thereby bringing out the correct real object 418

during re-tracking. 419

III. EXPERIMENTAL RESULTS AND DISCUSSION 420

A. Data Description 421

1) IPIU Date Set. 422

The data set is acquired over the San Diego Military Port, 423

USA, 2017 by Jilin-1 HD Dynamic Video Satellite with 10 424

fps. The actual ground resolution is 0.91 m/pixel. The various 425

vehicle objects in the scene are to be tracked. 95% of object 426

sizes are from 5 × 8 pixels to 10 × 15 pixels. The scene 427

contains bridges, roads, trees, buildings, and many similar 428

vehicle objects. Less effective target information and complex 429

scenes cause great difficulties in object tracking. 430

2) RSSRAI Data Set. 431

This data set comes from the remote sensing video target 432

tracking track competition in 2019 Remote Sensing Image 433

Sparse Representation and Intelligent Analysis Competition 434

[33]. The total size of a frame is from 220 × 223 pixels to 435

1348 × 1348 pixels. These video sequences are shot with a 436

resolution of 1.13 m/pixel. The object sizes are from 4 × 9 437

pixels to 18 × 19 pixels. The object signal strength is weak, 438

so it is difficult to distinguish it from the background. 439
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3) UAV123∗ Data Set.440

The public UAV123 data set [34] contains a series of video441

sequences from an aerial drone viewpoint. In all 123 se-442

quences, we take vehicles as objects and select sequences with443

BC (Background Clutter) and LR (Low Resolution) attributes,444

forming the UAV123∗ data set to conduct experiments. This445

data set sequence is characterized by a wide range of viewing446

angles, which leads to an unstable direction of objects.447

B. Experimental setup448

The overall experiments are conducted on a workstation449

with Intel Xeon(R) CPU E5-2650 v4 @ 2.20GHz and 4 N-450

VIDIA TITAN Xp GPU. The proposed tracker is implemented451

on PyTorch deep learning platform.452

1) Backbone Network Learning.453

We use CRFPF-module proposed in Section II-A as our454

backbone network to fusion and extract features. Considering455

the balance between computing power and time cost, we take456

K = 3 in Eq. (1) in practice, that means a total of four457

parallel branches {BI0 ,BI1 ,BI2 ,BI3}. We add a classifier458

head consisting of a 1 × 1 convolution layer and a 4 × 4459

convolution layer after the backbone network [21]. We take460

µ = e−4 in Eq. (11). In order to adapt the backbone network461

to the remote sensing data set, we use GOT-10K [35] natural462

data set and 25% IPIU (denoted as IPIUT ) as the training data463

set. For the pair of selected frames, we crop out the image464

patches that with several times (5 times in our experiments)465

the size of the object and centered on the bounding box. Then466

we resize them to 72 × 72 as inputs into the backbone with467

sharing weight. In each epoch, 60% samples are randomly468

selected from GOT-10K and the remaining 40% from IPIU469

train set. In order to avoid the situation that it is difficult to470

converge for multi-branch training at the same time, we adopt471

an alternate training strategy. When training a specific branch,472

we set the loss weight of the rest branches to 0. Each branch473

trains 80 epochs with 2× 10−4 learning rate.474

2) Target Classifier Learning.475

The Spatial Co-attention Module is trained online to adapt476

to the foreground and background discrimination of the current477

test sequence. During training this process, we keep the above478

backbone weight frozen and only update the weight of the479

dual-branch Spatial Co-attention Module. For each test se-480

quence, we use the first template frame of the object’s ground481

truth to generate a series of similar but slightly different482

enhanced frames. In experiments, we generate 15 enhanced483

samples, then choose any two enhanced samples to form a484

pair as the input. The weights of attention loss in Eq. (10) and485

classifier loss in Eq. (11) are ξ and 1−ξ respectively, see C(2)486

in this section for details.487

3) IoU Regression Learning.488

We use image pairs with bounding box annotations to train489

the entire IoU prediction network. During training this process,490

we keep the above backbone weight frozen and only update491

the weight of the dual-branch Channel Co-attention Module.492

We only use the above IPIUT as the source of image pairs.493

We sample image pairs from each sequence with a maximum494

interval of 30 frames. Then we set displacement similar to [21]495

（a） （b）

Fig. 7: Comparison of different dilation rate settings. (a) Train
total loss of different dilation rate. (b) Convergence loss of
series receptive field.

TABLE I: Comparison of average convergence loss with
different dilation rates.

Level1 Level2 Level3
Absolute

Receptive Field
Convergrnce

Loss
G1 1 1 1 67 4.201
G2 2 1 1 73 4.212
G3 3 1 1 79 4.181
G4 3 2 1 87 4.122
G5 4 2 1 83 4.174
G6 5 4 3 131 4.197
G7 5 5 5 155 4.201

to achieve the purpose of expanding the training data. During 496

the training process, each batch includes 26 image pairs, the 497

learning rate is 1×10−3, and a total of 60 epochs are trained. 498

C. Hyperparameter Analysis 499

1) Dilation rate rk. 500

In Section II-A, the dilation rate rk is used to adjust 501

consistent receptive field among parallel branches. Different 502

dilation rate settings correspond to different receptive fields, 503

which has a great impact on the distinguish ability of features 504

for small objects. According to Eq. (3), given the dilation rate 505

rk of certain branch Ik, the dilation rate of rest branches 506

can be derived according to the consistent receptive field 507

principle. Therefore, we select a single I2 branch with a 508

moderate number of network layers for experiments. In the 509

experiments, we record the group form of dilation rates as 510

TABLE II: The structure of each branch in CRFPF-Module.
Branch Input Shape Output Shape Layer r∗∗ stride padding

BI0

(36,36,3) (18,18,64) Conv[7×7,64] 1 2 1

(18,18,64) (18,18,64) Conv
[ 3×3,64

3×3,64

]
× 1 1 1 1

BI1

(72,72,3) (36,36,64) Conv[7×7,64] 2 2 3
(36,36,64) (18,18,64) Pool[3×3] – 2 1

(18,18,64) (18,18,64) Conv
[ 3×3,64

3×3,64

]
× 2 1 1 1

BI2

(144,144,3) (72,72,64) Conv[7×7,64] 3 2 3
(72,72,64) (36,36,64) Pool[3×3] – 2 1

(36,36,64) (36,36,128) Conv
[ 3×3,128

3×3,128

]
× 2 2 1 1

(36,36,128) (18,18,64) Conv
[ 3×3,64

3×3,64

]
× 1 1 2 1

BI3

(288,288,3) (144,144,64) Conv[7×7,64] 7 2 3
(144,144,64) (72,72,64) Pool[3×3] – 2 1

(72,72,64) (72,72,64) Conv
[ 3×3,64

3×3,64

]
× 2 4 1 1

(72,72,64) (36,36,128) Conv
[ 3×3,128

3×3,128

]
× 1 2 2 1

(36,36,128) (18,18,64) Conv
[ 3×3,64

3×3,64

]
× 1 1 2 1
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TABLE III: Performance comparison with different K.
Values
of K

Target
Classier Loss IoU Loss Total Loss Time

K=1 0.656 0.183 4.121 1h 27min
K=2 0.648 0.172 4.059 2h 13min
K=3 0.639 0.172 3.997 3h 3min
K=4 0.669 0.182 4.119 5h 51min
K=5 0.679 0.192 4.275 8h 32min

TABLE IV: Comparison of multiple spatial loss weight ξ.

ξ Convergence
Loss

Convergence
Epoch

0.001 4.248 48/50
0.01 4.085 46/50
0.1 3.987 45/50
0.3 3.990 45/50
0.5 3.992 46/50
0.7 4.273 45/50
0.9 4.281 45/50

0.99 4.288 42/50
0.999 4.366 41/50

Gi = {r1i , r2i , r3i , i = 1 ∼ 7}, where r1i , r2i , r3i represent511

the dilation rate of Level1, Level2, and Level3 in branch B2.512

We use the 1 × 1 area of the last features corresponding513

to the real area of the original input (denoted as Absolute514

Receptive Field) as a unified comparison index. From G1 to515

G7, the Absolute Receptive Field gradually increases as shown516

in Table I. The rest parameters are kept consistent for fair.517

The results are shown in Fig. 7. As the receptive field518

increases, convergence loss first increased slightly, then de-519

creased rapidly to valley at 87, and finally slowly recovered.520

So we select G4 with minimum convergence loss. The specific521

structure of each branch is shown in Table II.522

2) Number of branches K.523

In Section II-A, K is an important value worth choosing in524

feature extraction.525

Considering the objects in our datasets are uniformly from526

5×8 pixels to 10×15 pixels in size, we design each branch as527

Table II and conduct an overall test. The experimental results528

are shown in Table III.529

At the beginning, the accuracy of the network increase with530

increasing K value. When K = 3, the accuracy of the network531

has risen to a stable level. We consider that the network at this532

time has been able to sufficiently extract the deep features of533

small objects. When K > 3, the accuracy of the network is534

no longer improved, but the computational complexity is still535

multiplying. Considering the balance between the parameter536

amount and accuracy, we take K = 3. In fact, the value of K537

can be adjusted according to the size of the object itself, the538

magnitude of the training dataset, and timeliness requirements539

in specific practical application.540

3) Spatial loss weight ξ.541

In Section II-B, ξ in Eq. (12) is the weight of losses in the542

total spatial loss Lspatial. Its value affects the convergence of543

the network. Therefore, in order to make the value of ξ cover544

a range as wide as possible, we set ξ exponentially in a wide545

range of intervals [0.001, 0.999]. During the experiment, the546

rest of the parameter settings are the same. The experimental547

results are shown in Table IV.548

（a） （b）

Fig. 8: Comparison of different combinations in CRFPF-
module. (a) Target classifier loss of different branch combina-
tions. (b) IoU regression loss of different branch combinations.

TABLE V: Performance comparison of different combinations
in CRFPF-module.

Branches
Combination

Target
Classier Loss

IoU Loss Total Loss Time

Sin-B (K=1) 0.656 0.183 4.121 1h 27min
Up-B (Con) 0.651 0.179 4.088 7h 58min
Up-B (Add) 0.642 0.169 4.019 3h 3min

Wh-B (Con)(K=3) 0.646 0.171 4.047 8h 25min
Wh-B (Add)(K=3) 0.639 0.172 3.997 3h 27min

As we can see, the overall loss first decreases and then 549

increases with the increases of ξ from 0.001 and is lowest 550

when ξ = 0.1. The convergence speed increases slowly as 551

ξ increases while of the same magnitude. When the loss 552

percentage (on the same magnitude) is dominated by Lcls 553

and assisted by Ls, the model has a more vital ability to 554

distinguish between target and background. It also confirms 555

the effectiveness of the introduced attention loss. Therefore, 556

we set ξ to 0.1 finally. 557

D. Module Comparison 558

We conduct comparative experiments individually on each 559

module proposed in Section III. To ensure the experiments’ 560

fairness, only the settings of the module to be compared are 561

different while the rest keep consistent. 562

1) CRFPF-Module. 563

In the experiment, Sin-B, Up-B, and Wh-B are backbone 564

networks with different branch combinations. Sin-B represents 565

a single branch, Up-B represents non-downsampling branch 566

fusion, Wh-B represents whole branches (upsampling and 567

downsampling) fusion. The letters in brackets indicate differ- 568

ent fusion methods: Add stands for additive fusion, Con stands 569

for concatenate fusion. The specific structure of each branch 570

is shown in Table II. The experimental results are shown in 571

the Table V and Fig. 8. 572

Sin-B Vs. Up-B: 573

As shown in Fig. 8, in both the target classifier and the 574

IoU regression training, the training loss of Up-B converges 575

to a lower value than that of Sin-B. (Note that, Sin-B uses 576

a single best-performing branch BI2 ). As a result, the fea- 577

tures of different levels of non-downsampling branches are 578

fused, which is more comprehensive than a single branch’s 579

features. For small objects, single-resolution feature expression 580
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Fig. 9: Qualitative comparison of response maps on spatial co-
attention module. (a) Response maps of the original algorithm
without co-attention. (b) Our response maps.

is usually insufficient, while the hierarchical features of multi-581

resolution can be used to supplement, which improves the582

overall performance. However, the training time of the network583

increased at the same time.584

Up-B Vs. Wh-B:585

Wh-B adds down-sampling branch BI0 based on Up-B.586

It can be seen from the experimental results, for the target587

classifier, whether the fusion way is an additive or concatenate588

operation, the training convergence loss of Wh-B is lower than589

that of Up-B. It is verified that the introduced shallow global590

features have positively affect the target classifier. However,591

since the IoU regression uses the precise position feature with592

PrPool, the addition of global information in BI0 does not593

show apparent advantages.594

Add Fusion Vs. Con Fusion:595

For the target classifier, since the features are consistent596

in the spatial structure, additive fusion can strengthen the597

target information and performs better than concatenate fusion.598

Moreover, in terms of training time, the training efficiency of599

additive fusion is doubled higher than that of concatenating600

fusion.601

In summary, we choose the optimal structure of Wh-B Add.602

2) DSCA-Module.603

We conduct comparative experiments on the spatial co-604

attention target classifier and the channel co-attention IoU605

regression to verify the effect of our DSCA-module.606

Spatial Co-Attention:607

Fig. 9 shows the changes in the feature map’s response608

before and after adding the spatial co-attention module. By609

learning the correlation of the object between the current610

frame and the template frame, we strengthen the regions that611

are strongly correlated with the template object. Moreover612

Channel 

Co-attention 

Module=

+

Frame: 12

Fig. 10: Visualization of channel features and corresponding
weight by our channel co-attention module. Take the 12-th
frame as an example to show the comparison of the results
before and after adding the Channel Co-attention Module.

because the attention loss is specially trained, the object 613

region is further highlighted, while the response of the similar 614

surrounding background is weakened. As shown in Fig. 9, 615

compared with the original algorithm without co-attention, 616

the peak of our response maps are concentrated in the object 617

region, and its surrounding interference is suppressed. 618

Channel Co-Attention: 619

Fig. 10 shows the comparison of the tracking results before 620

and after adding the channel co-attention module. According 621

to the cross-correlation between the features of the current 622

frame and the template frame, for object features, the channels 623

that are highly similar to that of the ground truth object 624

are enhanced. In this way, channels containing more object 625

information help the IoU’s accurate prediction, and it also has 626

a better understanding of the object boundary. For example, 627

Fig. 10 shows all 64 channel features of the 12-th frame in a 628

particular sequence and also shows the corresponding weights 629

assigned by the channel co-attention. We can see that most 630

channels with more significant object information have higher 631

weights. The final results in Fig. 10 show that the tracking 632

result with the channel co-attention module is tighter and more 633

precise. 634

3) GCRT-Strategy. 635

Fig. 11 shows the effect of the GCRT-strategy with a 636

fragment of a sequence. Our strategy uses geometric relations 637

to determine whether the object is lost, and re-tracks to the 638

correct object by weakening the response of the interfering 639

obnect in the saliency mask. As shown in Fig. 11 . When 640

encountering an interfering object facing each other, our 641

strategy keeps the target from being lost. 642

E. Ablation Studies and Algorithm comparison 643

In this section, we conduct comparative experiments with 644

several state-of-art methods and self-ablation experiments. For 645

the sake of experimental fairness, we adopt standard indicators 646

Precision and Success in single object tracking area according 647

to literature [36] to evaluate the performance of trackers. 648
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TABLE VI: Ablation Study and Performance Comparison Results of Three Data Sets.

IPIU RSSRAI UAV123∗

Precision Success FPS Precision Success FPS Precision Success FPS
DCF [14] 0.516 0.156 428.782 0.261 0.084 338.482 0.407 0.334 455.448

SAMF [37] 0.546 0.179 20.995 0.360 0.133 16.963 0.403 0.263 24.813
DLSSVM [38] 0.750 0.414 100.319 0.536 0.340 83.592 0.206 0.039 104.636

LCT [39] 0.544 0.040 35.795 0.348 0.159 33.697 0.394 0.274 43.012
ECO [18] 0.856 0.484 15.167 0.781 0.431 13.136 0.529 0.282 16.760
HDT [19] 0.266 0.008 46.817 0.168 0.031 31.672 0.153 0.013 51.864
DIMP [22] 0.468 0.215 18.361 0.674 0.441 14.733 0.661 0.612 22.612
DIMP-A 0.521 0.241 22.541 0.691 0.511 17.495 0.698 0.648 25.280
DIMP-B 0.505 0.224 17.230 0.675 0.479 14.933 0.681 0.612 25.957
DIMP-C 0.517 0.238 15.282 0.670 0.500 13.476 0.696 0.639 20.072

ATOM [21] 0.794 0.395 20.731 0.729 0.437 16.954 0.440 0.285 23.696
base-A 0.828 0.419 25.060 0.783 0.449 19.827 0.653 0.511 27.293

base-AB 0.877 0.454 16.103 0.784 0.494 14.932 0.661 0.599 19.692
base-ABC (Ours) 0.954 0.554 14.051 0.816 0.566 12.516 0.729 0.621 15.671

Geometric Constraint Re-Track Strategy

+

=

+ + + +

= = = =

t t+1 t+2 t+3 t+4

(a)

(b)

Fig. 11: The response map is generated with the detected
bounding box as the center. (a) Tracking result and response
map of sample sequence without re-tracking strategy. (b)
Tracking result and response map of sample sequence with
re-tracking strategy.

We compare our tracker framework with some state-of-art649

trackers, including DCF [14], SAMF [37], DLSSVM [38],650

LCT [39], ECO [18], HDT [19], DIMP [22], and baseline651

ATOM [21]. DCF is a representative of the discriminant652

kernel correlation filtering method. SAMF use feature pyramid653

correlation filter to perform multi-scale tracking. DLSSVM654

and LCT are algorithms that combine detection and tracking.655

ECO and HDT algorithm combine the powerful deep learning656

presentation. For the above algorithms, we adapt their official657

codes without changing the network structure. DIMP and658

ATOM integrate deep network and filtering classification into659

an end-to-end trainable tracker. Their frameworks are similar660

to ours so we use the consistent initialization of the same661

settings.662

We carry out a quantitative ablation study taking ATOM663

GT OursDCF ATOMECO

 Frame 73  Frame 232

 Frame 124  Frame 160

Fig. 13: Display of tracking results of DCF, ECO, ATOM and
our algorithms

as a baseline algorithm to verify each proposal component of 664

our framework, including base-A, base-AB, and base-ABC. A 665

represents CRFPF-module, B represents DSCA-module, and C 666

represents GCRT-strategy. The quantitative results are shown 667

in Table VI. 668

1) Experiment Analysis on IPIU Data Set. 669

DCF is a correlation filtering algorithm that is known for 670

its speed advantage. As shown in Table VI, the number 671

of tracking frames per second is up to hundreds. However, 672

shallow manual design features, i.e. directional gradient his- 673

togram (HOG) and color names (CN), have low robustness to 674

complex remote sensing scenes. Therefore, it is susceptible to 675

interference from multiplicative background noise. 676

SAMF is a multi-scale method that focues on the situation 677

where the size of the object changes drastically. However, 678

the object sizes in our remote sensing videos are small and 679

the change is not apparent, so the tracking Success is not 680
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(a) Precision on IPIU data set

(b) Success on IPIU data set

(c) Precision on RSSRAI data set

(d) Success on RSSRAI data set (f) Success on UAV123* data set

(e) Precision on UAV123* data set

Fig. 12: Comparison of different algorithms on multiple algorithms.

significantly improved.681

DLSSVM uses a traditional structured SVM kernel to682

determine the object and LCT algorithm also use a re-detector683

composed of SVM to re-detect hard negative samples. How-684

ever, it is difficult to achieve stable performance on complex685

scenes due to weak adaptive learning ability.686

ECO tracker that combines superficial appearance infor-687

mation and deep semantic information is significantly better688

than HDT tracker with only convolutional features, despite689

the speed price. However, they two directly use the pre-690

trained model on ImageNet data set, which limits the trackers’691

learning ability and scalability from remote sensing videos.692

DIMP and ATOM allow trainable learning of remote sensing693

data characteristics. However, too deep forward network re-694

duces the feature discrimination of small objects. When similar695

objects appear around, the tracker is challenging to distinguish.696

And it is almost difficult to retrieve the original object once697

a mistake occurs. Although DIMP has online update ability,698

low-quality features become a burden after the tracking fails.699

Compared with baseline ATOM, base-A merges deep and700

shallow features in parallel to represent small size objects.701

It can effectively extract the deep features of small objects702

and fuse them with the shallow features to improve the703

robustness of features while ensuring the integrity of spatial704

detail information. Experiment results in Table VI show 1.52705

and 1.42 increases in Precise and Success, respectively.706

Compared with base-A, base-AB improves the saliency707

of the object in the spatial domain, weakens the response708

of the similar surrounding background, and enhances the709

dominant feature in the channel domain. Therefore, its Precise710

outperforms ECO. However, due to its algorithm is not enough711

to distinguish the moving interference object effectively, the 712

result of Success does not reach the ideal level. 713

Our complete tracking framework, base-ABC, further takes 714

the geometric constraint re-detection strategy, achieves a gain 715

of 13.6 in precise score and 15.9 in success score in com- 716

parison with baseline. The GCRT-strategy uses time context 717

information to constrain accidental error. The hard-to-recover 718

plight in remote sensing scenarios is alleviated. 719

In addition, the three proposed modules can also be effec- 720

tively transferred to another baseline algorithm DIMP, denoted 721

as DIMP-A, DIMP-B, and DIMP-C, respectively. They all 722

bring about performance improvements in Success and Pre- 723

cision. This demonstrates the extensibility of the module. 724

For time complexity, as shown in Table VII, the baseline 725

ATOM is O(13.67E + 09), while the proposed network is 726

O(18.91E+09), which is 1.38 times that of ATOM. For space 727

complexity, the parameters of the baseline ATOM are about 728

T (11.16E+06), while the overall parameters of the proposed 729

network is about T (13.92E + 06). (i.e. CRFPF-module with 730

K = 3 is T (9.27E + 06)), so they are within an order of 731

magnitude. Compared with ATOM, our methods tracks about 732

6 fewer frames per second. The reduction of each part is as 733

follows: the CRFPF-module increases by 5 frames; in DSCA- 734

module, the cross-correlation calculation in the collaborative 735

attention mechanism reduces by about 9 frames; the GCRT- 736

strategy reduces by about 2 frames. Therfore, our proposed 737

methed keeps the overall speed within an order of magnitude 738

of ATOM while ensuring Success and Precision. 739

2) Experiment Analysis on RSSRAI Data Set. 740

The experimental results on RSSRAI data set are shown in 741

the Fig. 12 (c)(d). It can be seen that tracking methods fused 742
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TABLE VII: Model Complexity Analysis.

Time Complexity Space Complexity
Backbone Total Backbone Total

ATOM
Parameters O(9.95E+09) O(13.67E+09) T (5.57E+06) T (11.16E+06)
Memory 37.05GB 50.94GB 21.23MB 42.58MB

base-ABC (Ours)
Parameters O(15.16E+09) O(18.91E+09) T (9.27E+06) T (13.92E+06)
Memory 56.49GB 70.44GB 35.35MB 53.11MB

with deep learning like ATOM, DIMP is better than traditional743

correlation filter, SVM frameworks. This is mainly due to the744

background changes in some tracking sequences. For example,745

when a vehicle drives to the transition between a dark asphalt746

road and a bright bridge, the background suddenly changes. In747

this way, the DIMP tracker with online learning capabilities748

can learn the changes in time, and the tracking Success is749

higher than the offline training tracker ATOM.750

In addition, since the resolution of the RSSRAI data set751

is 1.13m/pixel, the object blur is more serious. When re-752

tracking strategy is used alone, the accuracy of bounding753

boxes obtained during regression is affected, although the754

target object can be recovered. So Precision (i.e. 0.670) slightly755

decreases by 0.004 compared with that of DIMP (i.e. 0.674)756

even if its Precision improves.757

According to the visualized results of tracking, it is found758

that when the vehicle turns at an intersection, the vehicle759

direction and shape are quite different from the initial state,760

especially who with a long body. Therefore, the performance761

of ECO in RSSRAI is not as good as that in IPIU. Moreover,762

base-AB tracker we proposed uses the object information of763

the template frame to strengthen the similar target area of the764

frame to be tested, shields the interference of drastic changes765

in the background to a certain extent, and improves the Success766

by 5 percentage points. This factor limits the increase in767

Precision.768

From the point of view of speed, although image size of769

RSSRAI is larger than that of IPIU and our tracking framework770

still has the same level on FPS compared with deep learning771

trackers, such as DIMP.772

3) Experiment Analysis on UAV123∗ Data Set.773

The experimental results are shown in the Fig. 12 (e)(f).774

Since it belongs to a short-distance shooting by drones, images775

contains more spatial detail information, and the shape and776

scale of the target change more diversely, the ATOM and777

DIMP trackers with IoU-Net branch perform pixel-level re-778

gression on the rough box during tracking process. In this case,779

the performance is better than the ECO algorithm estimated780

with multiple scales. Thereby, due to online updated classifier781

module, DIMP perform better than the baseline ATOM on782

UAV123∗ data set. So Success of DIMP and its extension783

algorithm are higher than these of ATOM. DCF captures784

object information through hand-designed features, so it has785

good rotation invariance and robustness to the change of786

view angle. While the object captured in UAV123∗ data set787

has angle variability, so the results of DCF in UAV123∗ is788

better than that of the previous two data sets. In the contrary,789

DLSSVM is sensitive to appearance and shooting angle, and790

its performance is not good enough as CF trackers.791

In the ablation experiment, the object scene captured by792

UAV123∗ is more complex, and it is more vulnerable to the 793

interference of the surrounding moving targets. Our base-A 794

can effectively extract the hierarchical robust features from the 795

shallow to the deep, and the overall base-ABC with GCRT- 796

strategy can also effectively eliminate the surrounding moving 797

targets. The Precision and Success are improved by about 0.28 798

and 0.33 respectively on UAV123∗. 799

IV. CONCLUSION 800

In this paper, we propose a collaborative learning network 801

applied to remote sensing video tracking. Experiments have 802

verified that CRFPF-module provides a idea to extract effective 803

hierarchical features especially from small objects; DSCA- 804

module collaboratively learns the object commonality between 805

the template frame and the current frame, and uses spatial 806

channel correlation to highlight the weak target signal; GCRT- 807

strategy provides a re-tracking strategy for remote sensing 808

of complex large scenes, reducing the interference of similar 809

moving objects. However, the training process of the DSCA- 810

module relies on a large number of annotated tracking frames, 811

which limits the flexibility of the strategy in practical ap- 812

plication; in addition, the efficiency of our algorithm is not 813

particularly high. In the future, we will further study on how 814

to lighten the structure of the backbone network, reduce the 815

dependence on the amount of training data, save computational 816

costs in the future. 817
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revise the manuscript thoroughly to address the issues raised by the reviewers/Associate Editor and
resubmit the revised version as a new submission when ready along with the paper ID as well as your
specific responses to the reviewers.

Thank you for submitting to the IEEE Transactions on Cybernetics.

Sincerely,

Peng Shi, FIEEE, FIET, FIEAust

Editor-in-Chief, IEEE Transactions on Cybernetics

Authors’ Response:

Dear Editor,

Please find our revised manuscript entitle “A Collaborative Learning Tracking Network for Remote
Sensing Videos” (Manuscript No.CYB-E-2021-03-0587). We sincerely appreciate the reviewers’
comments and feel encouraged by their positive feedback. For reviewers’ concerns and their opin-
ions on improving the manuscript, we have made point-to-point replies and corrections to the revised
manuscript, and marked red in the revised manuscript.

Moreover, we also make the following improvements in the revised manuscript:

The point-to-point respond to the reviewer’s comments are listed as following.

Should you have any questions, please contact us without hesitation. We are looking forward to your
response.

Sincerely

Xiaotong Li, LichengJiao∗, Hao Zhu, Fang Liu, Shuyuan Yang, Xiangrong Zhang, Shuang Wang
and Rong Qu.

P.O. Box 224, No.2 South Taibai Road, Xi’an 710071, P.R. China.

Tel: +86 15771753228.

Email: lixiaotong@stu.xidian.edu.cn; lchjiao@mail.xidian.edu.cn

The Response to Associate Editor

Associate Editor Comments for Authors:

Comments to the Author:
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Three review reports have been received. All reviewers have some technical concerns about this
manuscript. The authors are encourged to address all of their comments when preparing a revised
version.

Authors’ Response:

Dear Associate Editor:

Thank you for your letter and for the reviewers’ comments concerning our manuscript entitled “A Col-
laborative Learning Tracking Network for Remote Sensing Videos” (Manuscript No.CYB-E-2021-03-
0587). Those technical comments are all valuable and very helpful for revising and improving our
paper, as well as the important guiding significance to our researches. We have studied comments
carefully and have made correction which we hope meet with approval. Revised portion are marked
in red in the paper. The main corrections in the paper and the responds to the reviewers’ comments
are as following:
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1 Response to Reviewer 1

Comments:

This manuscript proposes a collaborative learning tracking network for remote sensing video. It
mainly includes three parts, the authors first propose a consistent receptive field parallel fusion mod-
ule (CRFPF) to deal with the challenge of small goals, then propose a dual-branch spatial-channel
co-attention (DSCA) module, to uses the spatial-channel co-attention mechanism to collaboratively
learn the relevant information of the Target Classifier and IoU Regression, finally use geometric con-
straint re-track strategy (GCRT) to trace back the results of previous frames to re-evaluate and correct
the tracking results. In my opinion, the manuscript is well written and clearly understandable. The
most attractive feature of this manuscript is its novelty, and the obtained results are convincing.

However, I have some questions and suggestions as follows.

Reviewer 1 Comment 1

For the challenge of small object, the current mainstream methods usually use feature pyramid
for feature fusion among different feature levels. Why do the authors use image pyramid in
input? What are the unique differences and advantages compared with the feature pyramid?
In addition, what is the significance of keeping the consistent receptive field on the same level
layer for all branches?

Response

First of all, we thank the Reviewer very much for the valuable comments about our manuscript. We
are very sorry for not providing a clear and complete description of the image pyramid and consistent
receptive field So we elaborate on this part and re-written it according to the Reviewer’s sugges-
tion.

1) The reason why we use image pyramid as input is:

In remote sensing videos, for a single resolution input image, the convolutional features of small
objects will be lost as the neural network deepens, making it difficult to extract. Yet this is precisely
the key for accurate identification and tracking. Therefore, we augment the input source image into
a multi-resolution image pyramid structure to further enrich their semantic feature representation of
small objects.

As we know, remote sensing images are usually very large in area, and the width and height may
reach several thousand pixels. In comparison, our targets are almost extremely small objects with
side lengths in the range of [5, 10] pixels. If a deep neural network is used to directly extract image
features, the feature information will be drastically reduced as the network deepens or even loses.
The small object features obtained in this way lack deep semantic information, so they have poor
robustness in recognition. In order to retain the shallow detail features and obtain the deep semantic
features simultaneously, we augment the original image to multi-resolution spaces and construct a
series of image pyramid inputs. In this way, multi-level hierarchical features can be extracted in
parallel, which enriches the feature space of small objects. Therefore, we utilize the image pyramid
structure to address the challenge of small object feature extraction.

2) The difference between our image pyramid and the usual feature pyramid is:
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Feature pyramid takes a single source resolution image as input, which extracts multi-level features
with different scales from different layers of a neural network. While image pyramid augments the
source image into a series of multi-resolution images as input, and it extracts hierarchical features
simultaneously with the same scale from different layers of multiple parallel branches.

In some image processing tasks such as segmentation or detection, feature pyramid is a common
structure for extracting multi-scale features. These tasks are usually global recognition, requiring
a good detector to recognize multiple categories objects at any scale widely. So feature pyramid
structure must take targets of various scales into account simultaneously. The specific implementation
method is to extract features of different scales from different layers of the network. As the network
goes from shallow to deep, the feature scale also goes from large to small, forming a structure similar
to a pyramid. This achieves the purpose of taking into account both large and small goals.

However, in our remote sensing object tracking task, the target to be tracked and detected is mainly a
single designated extremely small object. Such as a moving vehicle, whose side length scale is about
5−10 pixels. Thus, the feature pyramid is not very suitable for our task scenario. In order to focus on
the hierarchical features of small objects, we extend the original resolution image to multi-resolutions
and form an image pyramid structure. In this way, we focus on extracting small object features and
avoiding redundancy.

3) The advantage of image pyramid structure is:

Image pyramid structure can further extract rich hierarchical effective representation information,
including semantic features for even extremely small objects. The original image is expanded to a
multi-resolution image pyramid series, which expands multi-scale space for feature extraction of small
objects. This designed image pyramid structure can extract local shallow detail features and deep
semantic features at the same time, making subsequent tracking of remote sensing small objects more
accurate and refined. Therefore, we use the image pyramid structure as input for feature extraction of
small objects in specific remote sensing scenarios.

4) The significance of keeping the consistent receptive field on the same level layer for all
branches:

For input image pyramid, after passing through different parallel general convolutional network
branches, the actual scene regions corresponding to the receptive fields of the obtained features are
not necessarily consistent. Even though the features’ dimensions are of the same size (which can be
directly fused in form), there is confusion and misalignment during feature fusion. In order to resist
the misalignment phenomenon during the fusion of non-same branch features, we must maintain the
consistent receptive field on the same level for all branches. Therefore, we perform precise calcula-
tions (Eq. (2)- Eq. (4) in the manuscript) to ensure that the actual scene regions of receptive fields
corresponding to features are consistent. That is, consistent receptive fields allow features of different
branches in the same level corresponding to the uniform real scene regions.

Considering the Reviewer’s suggestion, we have carried out a more detailed and precise description
in Section II A) in our manuscript. Special thanks for your valuable comments again!
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Reviewer 1 Comment 2

Why do the authors use spatial co-attention in the Target Classifier branch, while use chan-
nel co-attention in the IoU Regression branch? Can these two different attention modules be
exchanged between branches? If not, please give reasons.

Response

We thank the reviewer for your meaningful comments. We are very sorry for our unclear expression
in Dual-branch Spatial-Channel Co-Attention Module.

1) The purpose of using the spatial co-attention mechanism in the Target Classifier branch is to en-
hance the saliency of small target areas with weak signals. In remote sensing images, with the exis-
tence of atmospheric media, light scattering, and other multiplicative noise, the boundary between the
target signal and the surrounding background environment is blurred and difficult to distinguish. The
task of the target classification branch is to identify the approximate area of the target in the spatial
search area. Therefore, it is reasonable to use the spatial co-attention mechanism to find regions of
interest by enhancing the signal of the weak target area.

2) The purpose of using the channel co-attention mechanism in the IoU Regression branch is to obtain
an accurate regression box from the candidate area. These candidate regions are multi-channel fea-
tures obtained by sampling around the region of interest. And then, they are pooled to a uniform size
in the target classification branch. It is worth noting that these multiple channels of the features have
different contributions to the accurate prediction of IoU: Some channels in the feature make the pre-
diction of the regression box more accurate, and some channels may make the prediction box result
worse. In order to adjust the proportion of the channel under the guidance of the accurate ground-
truth box in the template frame, we design the channel co-attention module rather than the spatial
co-attention module to help regress to precise target bounding boxes.

3) The two different attention modules between branches can not be exchanged.

Because the tasks of the two branches are different, the role of the co-attention mechanism of the two
branches is different too. The Target Classification branch is to identify the approximate area of the
target in the search area. It is necessary to find the approximate area of the target in the spatial domain
according to the highest point of the probabilistic response. Therefore, the signal at the target needs
to be enhanced spatially. In the IoU Regression branch, a set of candidate regions are sampled from
rough target area. These candidate regions have very little and similar spatial information. While
features in the channel domain are diverse, each channel has a different contribution to the accurate
prediction of IoU. So we design a channel co-attention mechanism to guide the prediction of the target
bounding box with the precise ground truth features of the template frame. In other words, we utilize
channel co-attention to allocate the channel ratio of the current frame feature to maximize the use of
accurate template ground truth information.

We revise our manuscript according to your suggestions in Section II B). Thank you for your com-
ments to make our presentation clearer again.

Reviewer 1 Comment 3

In Figure 4, why are the settings of attenuation functions designed to be different? What’s the
difference between the two? Which is more relaxed? Why is it so designed?
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Response

Thank you very much for your valuable suggestions. We are very sorry for not writing clearly in this
regard.

1) The reason we design different settings of attenuation functions designed are as follows:

We take the moving vehicle as a representative (i.e., one kind of object in our remote sensing videos)
to analyze the motion characteristics of the tracking target. During the movement of the vehicle, there
are various complex positional relationships with surrounding similar interfering vehicles. A single
function is not conducive to accurately describing the scene in all different situations, such as distant
interfering vehicles, nearby interfering vehicles moving toward or away from each other, and so on.
Therefore, we analyze the motion state of the vehicles and design different decay functions under
different situations.

2) The design principle of the attenuation function is as follows:

Specifically, compared with the broad global scene size in remote sensing videos, the displacement
of objects such as vehicles between adjacent frames is minimal. So they are regarded as low-speed
moving objects. The Euclidean distance of displacement (denoted R, calculated based on the center
point of the target box) between two adjacent frames is usually less than the length of the object itself.
Therefore, we can use the diagonal length of the object bounding box itself as a reference. When
the displacement between two adjacent frames of the object is greater than the length of the diagonal
line, it indicates that the tracking result does not conform to the motion criterion of the object, and
mistracking is considered. We denote the diagonal length of the object bounding box as L, as shown
in Eq. (1) (Eq. (19) in manuscript).

L =
√

(wt)2 + (ht)2 (1)

When R > L, we enable the re-tracking procedure to attenuate the signal of the interferer area. We
design an attenuation function to obtain the attenuation factor ϕ. Since the attenuation factor ϕ needs
to be multiplied by corresponding mask Sp(Bt

org) to achieve interference signal suppression. It is
observed that the value of the functional form e−R/L is in the interval [0, 1]. So it is equivalent to
attenuating the unreliable detection object according to the distance. The larger R is, the closer ϕ is
to 0, and the attenuation is more severe. The change law of the function is in line with the attenuation
needs of the actual situation. So we take ϕ = e−R/L as the attenuation function for re-tracking. In this
way, unreliable distant detection objects are weakened so that real objects can be tracked again.

When R ≤ L we continue to consider the case: If only R ≤ L is satisfied, it is not enough to judge
whether the tracking result is the normal movement of the object, the common regression deviation,
or the wrong tracking to the very close interference object. So the conditions for judging whether it is
mistracking should be stricter. Therefore, the re-tracking conditions are not only limited by distance
but also by angle. Through geometric mapping, we find that if the tracker mistakenly follows the
similar interfering objects close to the target object, a displacement of (0.5wtarget + 0.5winterfer)
will be generated at least. (Here, w represents the shortest side length of the object bounding box.)
We approximately think that the size of the interferer is similar to the size of the target object. So we
set A as a critical threshold as Eq. (2) (Eq. (20) in manuscript). Therefore, when distance relationship
A < R ≤ L and angular relationship ∆θ > θ0 (details in Section II C) ) are satisfied at the same time,
we start the re-track procedure with the attenuation factor as ϕ = e−R/A.

A = min (wt, ht) (2)
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where wt, ht represent the width and height of the target bounding box.

When R < A, we consider the displacement as the object’s normal motion or regression deviation.
Therefore no re-tracking process is triggered, then ϕ = 1.

To sum up the above, the overall expression of the attenuation factor ϕ can be expressed as Eq. (3)
(Eq. (18) in manuscript):

ϕ =


e−R/L , R > L

e−R/A , A < R ≤ L & 4θ > θo

1 , else

(3)

Similar with ϕ = e−R/L in the previous case of R > L, the attenuation function ϕ = e−R/A is also
in the interval [0, 1] and exponentially decreases as R increases. However, they are slightly different
in the design of the exponential coefficients.

3) The difference between the two attenuation function:

We make an intuitive comparison through the curve of the function. As shown in Fig. 1, the yellow
curve shows the function ϕ = e−R/L, and the blue curve shows the function ϕ = e−R/A. Correspond-
ingly, M and N are points on function e−R/L; O and P are points on function e−R/A. It can easily
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Figure 1: Attenuation function curve comparison.

observe from the figure that both two functions are monotonically decreasing functions. WhenR > 0,
the value range of the function is in the interval [0, 1]. As R increases, the smaller the attenuation
factor ϕ is, the more severe the signal attenuation is. The rule conforms to the needs of the actual
scene: when the displacement exceeds the threshold, the farther the distance is, the less likely it is to
be the target.

The reason we use two exponential functions with different coefficients is to strike a balance between
sensitively capturing false tracking results and avoiding allergy alarms. Suppose we use a uniform
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attenuation function e−R/L indiscriminately, then when R ≤ L, the value of the attenuation factor
ϕ is relatively high (e.g. ϕM > ϕO = ϕN ). Therefore, we replace the attenuation function in the
interval A < R ≤ L with e−R/A, so that the nearby interferers can also be effectively attenuated
without affecting the magnitude of the long-distance attenuation. In this way, the interference signals
at different distances can be effectively attenuated during re-tracking, and the allergy alarm caused by
the jitter of bounding boxes can be avoided.

4) Through the above description, the constraint in the case of R > L is more relaxed.

In the case of R > L, only distance relation constraint needs to be satisfied to start the re-track
procedure. While in the case of R ≤ L, both the distance relation constraint A < R ≤ L and the
angular relation constraint ∆θ > θ0 need to be satisfied to execute the re-tracking procedure. So the
constraint for R > L is more relaxed.

In general, the attenuation function we designed is in line with the actual situation. And we have
re-written this part according to the Reviewer’s suggestion in Section II C) in our manuscript. Thanks
again for your wise opinion.

Reviewer 1 Comment 4

Is the angle range in the geometric constraint limited to a small acute angle In Figure 5? Is
there an obtuse angle?

Response

Special thanks to you for your good comments. We apologize for the unclear description of the angle
range in the manuscript.

In remote sensing videos, since the object to be tracked is usually a low-speed moving one, the Eu-
clidean distance the object moves between two adjacent frames is generally less than the length of
the object as the description above (i.e., R ≤ L). Based on this rule of motion, after performing the
geometric motion analysis shown in Fig. 2 (Fig. 5 in manuscript), we find that the diagonal angle θo of
the vehicle body is the critical threshold when two different vehicles meet. Because the bounding box
of the vehicle is a rectangle, it can be known from the geometric knowledge that the diagonal angle
of the rectangle is in the range of [0, 90], so the critical angle in the angular determination should be
acute.

Of course, this is the geometric rule of remote sensing objects under the condition of slow motion. If
in other scenes, such as natural video or video with a low frame rate, the object may no longer meet
the condition of slow motion, then it is possible that the critical angle value range is expanded to an
obtuse angle. Therefore, when using the Geometric Constraint Re-Track Strategy (GCRT-Strategy) in
other scenes, it is necessary to design the critical angle rule that meets the situation according to the
motion law in the specific scene. We have already supplemented this point in Section II C).

Reviewer 1 Comment 5

In the verification experiment, whether the initialization of several comparison algorithms is
consistent or not, note that the fairness of the experimental comparison algorithm is very im-
portant, please make further elaboration.
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Figure 2: Display for several possible situations. (a) R1 > L. (b) A < R2 < L, θt − θtT . It shows
the situation when similar targets are moving towards each other in close distance; (c) A < R3 <
L, θtT − θt. It shows the situation when similar targets are moving in the same direction. (d) It shows
the normal situation that R4 < A.

Response

Thank you for your careful comments. Indeed as you said, the fairness of the experimental compar-
ison algorithm is very important. The experimental setup for all our comparison algorithms and our
proposed algorithm is as follows:

1) We are conducting experiments on a unified experimental platform The overall experiments are
conducted on a workstation with Intel Xeon(R) CPU E5-2650 v4 @ 2.20GHz NVIDIA TITAN Xp
GPU. The proposed tracker and comparison algorithm are implemented on PyTorch deep learning
platform.

2) In the comparison algorithm experiments, we compare multiple algorithms on multiple datasets,
among which RSSRAI Data Set and UAV123 Data Set are public datasets.

Among these comparison algorithms, DCF, SAMF and DLSSVM are traditional algorithms with open
source codes. The experimental results in the manuscript are obtained by our testing on their official
source code.

For algorithms involving deep learning such as LCT, ECO and HDT, we adapt the open source code
to the test data set without changing the network structure, and obtain the experimental results by fair
testing.

For algorithms ATOM, DIMP and our algorithms, their frameworks are similar. So we use the consis-
tent initialization of exact same settings: We uniformly use GOT-10K and IPIUT as the training data
set. Input patches size are 72× 72 pixels from image regions corresponding to 5 times the estimated
target size. In each epoch, 60% samples are randomly selected from GOT 10K and the remaining
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40% from IPIUT . We sample image pairs from each sequence with a maximum interval of 30 frames
uniformly, and each batch includes 26 image pairs. The learning rate are also same as 2 × 10−4 in
backbone network and 1× 10−3 in IoU predictor learning with the same training epochs.

3) We use the same tracker evaluation indicators to conduct fair comparisons of multiple data sets on
the same platform.

As mentioned above, we try our best to ensure fairness in comparative experiments to more objectively
verify the performance of our algorithm.

Thank you very much for your valuable suggestion again! In fact, your suggestions give us a lot of
inspiration.
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Additional Questions:

Summary of Evaluation: Good

Organization: 4

Clarity: 4

Length: 3

References: 4

Correctness: 4

Significance: 4

Originality: 5

Attachments:4

If Survey Coverage:4

Contribution: 4

Please make very detailed technical and editorial comments and suggestions in your comments. If it
is necessary to provide mathematical corrections, please email them to us as a pdf file. If you must get
other information back to us that cannot be sent via email, please mail it to us. Your comments are an
invaluable aid to the author to help in improving the overall technical quality, utility, and readability
of the material. Such comments are not just useful, they are necessary to maintain the quality of the
articles that are published in the SMC Transactions. Particular attention should be given to details
that guide possible revisions, or that clearly explain reasons for rejection.:

What are the contributions of the paper?:

This manuscript proposes a collaborative learning tracking network for remote sensing video. It
mainly includes three parts, the authors first propose a consistent receptive field parallel fusion mod-
ule (CRFPF) to deal with the challenge of small goals, then propose a dual-branch spatial-channel
co-attention (DSCA) module, to uses the spatial-channel co-attention mechanism to collaboratively
learn the relevant information of the Target Classifier and IoU Regression, finally use geometric con-
straint retrack strategy (GCRT) to trace back the results of previous frames to re-evaluate and correct
the tracking results. In my opinion, the manuscript is well written and clearly understandable. The
most attractive feature of this manuscript is its novelty, and theobtained results are convincing.

What are the additional ways in which the paper could be improved?: I have some questions and
suggestions as follows.

• For the challenge of small object, the current mainstream methods usually use feature pyramid
for feature fusion among different feature levels. Why do the authors use image pyramid in
input? What are the unique differences and advantages compared with the feature pyramid?
In addition, what is the significance of keeping the consistent receptive field on the same level
layer for all branches?

• Why do the authors use spatial co-attention in the Target Classifier branch, while use channel co-
attention in the IoU Regression branch? Can these two different attention modules be exchanged
between branches? If not, please give reasons.
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• In Figure 4, why are the settings of attenuation functions designed to be different? What’s the
difference between the two? Which is more relaxed? Why is it so designed?

• Is the angle range in the geometric constraint limited to a small acute angle In Figure 5? Is there
an obtuse angle?

• In the verification experiment, whether the initialization of several comparison algorithms is
consistent or not, note that the fairness of the experimental comparison algorithm is very im-
portant, please make further elaboration.

Page 27 of 46 Transactions on Cybernetics



14 IEEE Transactions on Cybernetics– Response to reviewers

2 Response to Reviewer 2

Comments:

The authors propose a collaborative learning tracking network for remote sensing videos, including
a consistent receptive field parallel fusion module (CRFPF), dual-branch spatial-channel co-attention
(DSCA) module, and geometric constraint re-track strategy (GCRT).

However, there are some issues to be addressed.

Reviewer 2 Comment 1

In multi-resolution sampling, why does image patch K choose 3? Because the value of K is
very important for the extraction of depth features, is there a need for parameter evaluation
here?

Response

Thank you very much for your opinion. Indeed, K is worth choosing in feature extraction. Theoret-
ically, the larger the value of K, the richer the extracted depth features. But at the same time it also
bring about a multiplied increase in parameters and affects the speed of convergence.

We make some roughly selection of parameters for K, but they are not systematically presented in
original manuscript. So according to your comment, we think it is very necessary to do a detailed
parameter estimation of value K. The specific experimental design is as follows. In the experiments,
the detailed structure of each branch BIk is shown in Table 1 (please see the next page). Note that,
when K takes a certain value, the overall network contains branches from BI0 to BIK . Considering
that our datasets have many objects of size around 5 × 8 pixels, we conduct an overall test on these
data, and the experimental results are shown in the following Table 2 (please see the next page):

It can be seen that, at the beginning, the accuracy of the network and computational complexity both
increase with increasing K value. When K = 3, the accuracy of the network has risen to a stable
level. We consider that the network at this time has been able to sufficiently extract the deep features of
small objects. WhenK > 3, the accuracy of the network is no longer improved, but the computational
complexity is still multiplying. Therefore, according to the object size relationship in the experiments
and considering the balance between the parameter amount and accuracy, K = 3 is suitable for our
application scenario tasks. We choose K = 3 as the number of branches in the paper.

In fact, the value of K does not have to be fixed at 3. Its value can be adjusted according to the
specific practical application. We believe that its value may be affected by factors such as the size
of the object itself, the magnitude of the training dataset, and timeliness requirements. For the size
of the object, if the object is small, K does not need to be very large to satisfy the mining of deep
features. An excessively large K may not necessarily bring about gains in accuracy and may also
cause network redundancy; If the amount of training data is not large enough, it may not be able to
support the training of many branches caused by too large K; For the timeliness of the task, the user
needs to balance the value of K between the accuracy and timeliness according to the training time
requirements of the task.

Your comments are very valuable, we have added the experiments and corresponding analysis of K
to Section III C) of the manuscript.
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Table 1: The specific structure of each branch BIk in CRFPF-Module.

Branch Input Shape Output Shape Layer r∗∗ stride padding

BI0

(36,36,3) (18,18,64) Conv[7×7,64] 1 2 1

(18,18,64) (18,18,64) Conv
[ 3×3,64

3×3,64

]
× 1 1 1 1

BI1

(72,72,3) (36,36,64) Conv[7×7,64] 2 2 3
(36,36,64) (18,18,64) Pool[3×3] – 2 1

(18,18,64) (18,18,64) Conv
[ 3×3,64

3×3,64

]
× 2 1 1 1

BI2

(144,144,3) (72,72,64) Conv[7×7,64] 3 2 3
(72,72,64) (36,36,64) Pool[3×3] – 2 1

(36,36,64) (36,36,128) Conv
[ 3×3,128

3×3,128

]
× 2 2 1 1

(36,36,128) (18,18,64) Conv
[ 3×3,64

3×3,64

]
× 2 1 2 1

BI3

(288,288,3) (144,144,64) Conv[7×7,64] 7 2 3
(144,144,64) (72,72,64) Pool[3×3] – 2 1

(72,72,64) (72,72,64) Conv
[ 3×3,64

3×3,64

]
× 2 4 1 1

(72,72,64) (36,36,128) Conv
[ 3×3,128

3×3,128

]
× 1 2 2 1

(36,36,128) (18,18,64) Conv
[ 3×3,64

3×3,64

]
× 1 1 2 1

BI4

(576,576,3) (288,288,64) Conv[7×7,64] 19 2 3
(288,288,3) (144,144,64) Pool[3×3] – 2 1

(144,144,64) (144,144,64) Conv
[ 3×3,64

3×3,64

]
× 2 9 1 1

(144,144,64) (72,72,64) Conv
[ 3×3,64

3×3,64

]
× 1 4 2 1

(72,72,64) (36,36,128) Conv
[ 3×3,128

3×3,128

]
× 1 2 2 1

(36,36,128) (18,18,64) Conv
[ 3×3,64

3×3,64

]
× 1 1 2 1

BI5

(1152,1152,3) (576,576,64) Conv[7×7,64] 47 2 3
(576,576,3) (288,288,64) Pool[3×3] – 2 1

(288,288,64) (288,288,64) Conv
[ 3×3,64

3×3,64

]
× 2 23 1 1

(288,288,64) (144,144,64) Conv
[ 3×3,64

3×3,64

]
× 1 11 2 1

(144,144,64) (72,72,128) Conv
[ 3×3,128

3×3,128

]
× 1 5 2 1

(72,72,128) (36,36,64) Conv
[ 3×3,64

3×3,64

]
× 1 2 2 1

(36,36,128) (18,18,64) Conv
[ 3×3,64

3×3,64

]
× 1 1 2 1
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Table 2: Performance comparison with different value of K.

Values
of K

Target
Classier Loss

IoU Loss Total Loss Time

K=1 0.656 0.183 4.121 1h 27min
K=2 0.648 0.172 4.059 2h 13min
K=3 0.639 0.172 3.997 3h 3min
K=4 0.669 0.182 4.119 5h 51min
K=5 0.679 0.192 4.275 8h 32min

Reviewer 2 Comment 2

The value of i in formula (4) should be: i=2,...,L.

Response

Thank you very much for your careful comments. After careful inspection, we find that there are
indeed some omissions in the expression of formula (4). We are very sorry for not giving an accurate
representation of the value of i. We have corrected and rewritten the formula following your comments
as:

In fact, the upper part of the formula represents the case where i = 1, and the lower part represents
the case where i >= 2. So following your suggestion, we rewrite the formula into the following
form:

Fi
k =


rik × (K − 1) + 1 , i = 1

Fi−1
k + [rik × (K − 1) + 1] ·

i−1∏
p=1

stridepk , i ≥ 2
(4)

We have carefully checked other formulas in the manuscript to ensure that similar low-level mistakes
do not recur. Thanks for your reminder to make our manuscript more rigorous.

Reviewer 2 Comment 3

What does the dot in formula (4) (5) represent? This should be multiplication, which needs to
be explained.

Response

Thank you very much for your careful comments. We feel sorry for not make special explanation for
the meaning of the dot in formula (5) (6) (i.e. formula (4)(5) in the manuscript). Indeed, as you said,
the dot in the formula represent multiplication.

Specifically, in formula (5), the point represents the multiplication of two values, and in formula (6),
the point represents the multiplication of the value and the matrix. They are all dot multiplications.
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We follow your suggestion and add supplementary explanation after the formula in our manuscript as
follow:

1) For the formula (5) (i.e. formulas (4) in the manuscript):

The receptive field Fi
k of the i-th layer (i = {2, · · · , L}) is shown in following recurrence formula as

formula (5), where the dot represent dot multiplication operations in maths.

Fi
k =


rik × (K − 1) + 1 , i = 1

Fi−1
k + [rik × (K − 1) + 1] ·

i−1∏
p=1

stridepk , i ≥ 2
(5)

2) For the formula (6) (i.e. formulas (5) in the manuscript):

Therefore, we propose an adaptive feature fusion way to obtain the final fused feature Fs as fol-
lows.

Fs =
K∑
k=0

λk · FL
k

s.t. λk =
βk∑
β

(6)

where λk represents the fusion weight of feature FL
k , which is normalized by βk to interval [0, 1]. And

the dot represent dot multiplication operations.

Thanks again for your careful comments!

Reviewer 2 Comment 4

There are many symbols in this paper, which leads to a hard follow for readers. For example,
in Fig. 3, C should represent the number of bands, but in Fig. 2, C() represents convolution. I
suggest that some parameters can be changed to more understandable statement, and re-phrase
the whole paper to give a clearer description for each module.

Response

Thank you very much for your careful comments, and we are very sorry for our unclear notation. We
have performed a comprehensive review of the entire manuscript, and have corrected the repetitions
and misuse of symbols. For example, the specific changes as follows:

1) In Fig. 3 (Fig. 2 in manuscript), we correct the represent ’C’ to ’Conv’, so that the repetitions of
convolution are consistent in the manuscript.

2) In Fig. 3 (Fig. 2 in manuscript), we change the represent of the input RGB image patch
{R0

0, R
0
1, · · · , R0

k, · · · , R0
K} to {I00 , I01 , · · · , I0k , · · · , I0K}. The symbols involved in the text have also

been changed uniformly.

In this way, the symbolic representation of the image input can be kept in a unified correspondence
with the input in below Fig. 4 of manuscript.
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Figure 3: Flowchart of CRFPF-Module. The input is I01 and the output is fused feature Ffuse. Con-
struction of Parallel Multi-Resolution Input is in the grey dashed circle. Feature Extraction with
Consistent Receptive Field is in the blue dashed circle. Adaptive Feature Fusion are in the purple
dashed circle.

3) In Eq. (2)(3)(4) (in manuscript), we replace K (representing the convolution kernel size) with Ker
to avoid confusion with the letter K representing the number of branches.

4) In Eq. (10) (in manuscript), we replace the letter A (representing a binary label) to letter G. The
corresponding a ∈ A is also replaced by g ∈ G. This avoids confusion with the letter A in Eq. (18)
introduced in geometric constraint re-track strategy module.

5) For the simplicity and clarity of Eq. (11) in manuscript, we remove the subscript i of the letters ωi,
yi µi. The revised equation becomes:

Lcls(X
C
S , Y ) =

∑
(f(xcs;ω)− y)2 + µ‖ω‖2 (7)

where, Y is the Gaussian sampling label centered at the object, XC
S is the final attention feature,

y ∈ Y and xcs ∈ XC
S . The value range of y is [0, 1]. ω is the weight of the fully convolutional layers,

µ is the amount of regularization on ω.

6) Similar to the situation in 3), in order to avoid misunderstanding caused by the use of the letter K,
we replace X0

C ∈ RK×K×C with X0
C ∈ RJ×J×C (at line 320 and 326, page 5). That is to use the

letter J instead of letter K to represent the spatial size of the feature.

7) The letter B of {BI0 , · · · , BIk , · · · , BIK} representing parallel convolution branches in consis-
tent receptive field parallel fusion module is easy to be confused with the letter B representing re-
gion within bounding boxes in channel co-attention module and geometric constraint re-track strategy
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module (E.g. Bg, Be, Bt and Bt
org). Therefore, we use the different format B to represent parallel

branches, that is, {BI0 , · · · ,BIk , · · · ,BIK}.

Following your comments, we try our best to correct unclear expressions in each module to give a
clearer description. Corrections not mentioned above are marked in the manuscript one by one.

Reviewer 2 Comment 5

There are many grammatical errors in the paper, please check the full text in detail.

Response

Thank you very much for your careful comments. We apologize for a lot of low-level mistakes in
English usage that reduce the readability of the paper and cause inconvenience. We try our best
to correct the language expressions in the manuscript. In addition, we also consult several experts
English-speaking experts in the field. Some modifications are shown as follows:

1) For sentence (Line 36, page 1): Object tracking is one of the key technologies in video analysis and
understanding applications and understanding applications, and many advanced trackers for natural
videos have been proposed.

we corrected it to: Object tracking is one of the key technologies in video analysis and understanding
applications. Many advanced trackers for natural videos have been proposed.

2) For sentence (Line 122, page 2): For the tracked results, we design a re-track strategy to judge
whether the objects is false tracked through geometric constraint,

we corrected it to: For the tracked results, we design a re-track strategy to judge whether the objects
are false tracked through geometric constraint.

3) For sentence (Line 269, page 4): We design the spatial co-attention map Sr to measure the similarity
of Z1

S and X1
S in corresponding spatial position.

we corrected it to: We design the spatial co-attention map Sr to measure the similarity of Z1
S and X1

S

in the corresponding spatial position.

4) For Sentence (Line 357, page 5): The indiscernible appearance of objects leads to the difficulty to
retrieve objects once lost.

we corrected it to: The indiscernible appearance of objects leads to the difficulty of retrieving objects
once lost.

Following your suggestions, we have split and rewritten the long sentences to express more clearly.
For confusing sentences, we have rearranged and expressed them in a way that is easier to understand.
Corrections not mentioned above are also marked with red font in the revised manuscript. Thanks
again for your valuable comments.

Reviewer 2 Comment 6

The network designed in this paper involves a lot of parameters. How to deal with the compu-
tational complexity in the training process?

Response
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Thank you very much for your valuable comments.

Spatial

 Co-Attention 

Channel

 Co-Attention 

CRFPF-

module

BB Estimate

CRFPF-

module

Response 

Map

IoU

GCRT-strategy
 Saliency

Attention

Template Frame

Current Frame
DSCA-module

Ground Truth

Weight Sharing
 Target Classfier

 IoU Regression

Figure 4: The overall process framework, including a consistent receptive field parallel fusion module
(CRFPF), a dual-branch spatial-channel co-attention module (DSCA), and geometric constraint re-
track strategy (GCRT).

Indeed, compared to the single-branch network framework, our multi-branch network has slightly
more parameters. So we train the overall framework in a step-by-step manner to deal with the compu-
tational complexity. We follow the overall flow in Fig. 4 (Fig. 1 in manuscript) to explain our training
process in detail:

1) Train the backbone network for feature extraction in CRFPF-module :

To construct the input to the network, we select two frames from the same video sequence in the
training set within a fixed frame interval. For the pair of selected frames, we crop out the image
patches that with several times (5 times in our experiments) the size of the object and centered on the
bounding box. And we send them into the backbone network, that is CRFPF-module, with sharing
weight. For the convenience of training, we add a classifier head after the backbone network.

According to quantitative calculation, the total number of parameters of the backbone network com-
posed of parallel branches (when K = 3) is about 9.27 million, and the memory occupied is about
35.35MB. The memory of other backbone network commonly used in remote sensing tracking like
ResNet is 21.23MB.

2) Train the Target Classfier and IoU Regression with Co-Attention in DSCA-module.

After the above backbone network training is completed, the parameters of this part are frozen in later
training. Following, we train the subsequent Target Classfier and IoU Regression. Fused features from
the above backbone network (that is the purple and the orange cubes) are delivered to dual co-attention
module to obtain the classification response map and the IOU value of proposal regions. A trained
Target Classfier can classify the feature map into target and background. Then the IoU Regression
around the target to get an accurate tracking bounding boxes. At this point, the offline training process
of the tracker is completed. And the number of our training sets is also sufficient to support the above
training process.

According to our calculation, the total number of parameters of the Target Classfier branch with spatial
co-attention module is about 2.52 million, and the memory is about 9.61MB. The total number of
IoU Regression branch parameters with channel co-attention module is about 2.14 million, and the
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memory is about 8.15MB. Since there are not many layers and channels set for each network block,
the amount of parameters is not very large as it looks.

3) In the testing process, the template frame (which is the first frame) and the current frame, are
sent into the above trained network in pairs to obtain the preliminary tracking results. At this time,
GCRT-strategy judges the result of the tracking box. The geometric constraints are used to measure
whether the tracking result is abnormal. If the re-tracking procedure is triggered, the saliency template
is updated to retrieve the mistakes and the object will be re-tracked.

We greatly appreciate your opinion and add the analysis of network complexity with Table VII in
revised manuscript. Indeed, it is found during the experiment that the network design of our algorithm
is relatively complex. In our future research, we are preparing to further simplify the network structure
to improve the efficiency of the tracker while maintaining the accuracy of the algorithm.

We have added the training procedure of the algorithm and the calculation of the amount of parame-
ters, as well as the corresponding analysis, to the revised manuscript.

Reviewer 2 Comment 7

Fig. 2 is not explained in the paper. In particular, the meaning of each step in this figure should
be marked with respect to the statement.

Response

Thank you very much for your useful suggestions. In the description of Consistent Receptive Field
Parallel Fusion Module, we only focus on the structure and principle, but neglect the detail steps of
the overall process. This caused confusion in understanding. Therefore, we complement the detail
introduction of this module completely with reference to Fig. 3 (Fig. 2 in manuscript). The specific
steps are as follows:

1. The first step of the process is the area within the gray dashed circle.

(a) The original image patch I01 , enhanced by the red border, is the input of the module.

(b) Then a series of sampling rates {α0, · · · , αk, · · · , αK} are calculated according to formula (1) (in
manuscript).

(c) Finally, we perform multi-resolution sampling on the original image patch I01 , and obtain a series
of image patches {I00 , · · · , I0k , · · · , I0K} as inputs for multiple parallel branches.

2. The second part is shown in the blue dotted line in Fig. 3.

(a) First, we build a standard convolutional network branch BI1 as the feature extraction branch of the
initial image I01 .

(b) Then, according to the principle of receptive field consistency set by formula (2)-(4) (in
manuscript), we obtain multiple parallel branches BIk , (k = {0, 1, · · · ,K}) with given sampling
rate αk, (k = {0, 1, · · · ,K}) and dilation rate r11 of branch BI1 .

(c) Finally, the multiple resolution images patches {I00 , · · · , I0k , · · · , I0K} are sent to their respective
branches for feature extraction. So far, a series of hierarchical features {FL

0 , · · · , FL
k , · · · , FL

K} are
extracted.
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3. The third step is the area within the purple dashed circle.

We adaptively fuse the hierarchical features {FL
0 , · · · , FL

k , · · · , FL
K} obtained in 2) according to

the fusion function expressed by formula (5)-(6) (in manuscript). The fusion feature Ffuse is ob-
tained.

Indeed, as you said, the three subsections in our original manuscript are not intuitive enough to under-
stand. Therefore, we modify the title of the subsection in the original manuscript as follows:

1) Construction of Parallel Image Pyramid Input.

2) Feature Extraction with Consistent Receptive Field.

3) Adaptive Feature Fusion.

At the same time, we describe Fig. 3 (Fig. 2 in manuscript) in detail, and add the corresponding
explanation in the manuscript (e.g., Line 160-165, page 2; Line 206-215, page 3), so as to facilitate
the reader’s overall understanding of the module.

Thank you very much again. Your valuable comments are very meaningful and make our manuscript
a greatly improvement.
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Additional Questions:

Summary of Evaluation: Fair

Organization: 3

Clarity: 2

Length: 3

References: 4

Correctness: 3

Significance: 3

Originality: 3

Attachments:4

If Survey Coverage:4

Contribution: 3

Please make very detailed technical and editorial comments and suggestions in your comments. If it
is necessary to provide mathematical corrections, please email them to us as a pdf file. If you must get
other information back to us that cannot be sent via email, please mail it to us. Your comments are an
invaluable aid to the author to help in improving the overall technical quality, utility, and readability
of the material. Such comments are not just useful, they are necessary to maintain the quality of the
articles that are published in the SMC Transactions. Particular attention should be given to details
that guide possible revisions, or that clearly explain reasons for rejection.:

What are the contributions of the paper?:

The authors propose a collaborative learning tracking network for remote sensing videos, including a
consistent receptive field parallel fusion module (CRFPF), dual-branch spatial-channel co-attention
(DSCA) module, and geometric constraint re-track strategy (GCRT).

What are the additional ways in which the paper could be improved?:

• In multi-resolution sampling, why does image patch K choose 3? Because the value of K is very
important for the extraction of depth features, is there a need for parameter evaluation here?

• The value of i in formula (4) should be: i=2,...,L.

• What does the dot in formula (4) (5) represent? This should be multiplication, which needs to
be explained.

• There are many symbols in this paper, which leads to a hard follow for readers. For example,
in Fig. 3, C should represent the number of bands, but in Fig. 2, C() represents convolution. I
suggest that some parameters can be changed to more understandable statement, and re-phrase
the whole paper to give a clearer description for each module.

• There are many grammatical errors in the paper, please check the full text in detail.

• The network designed in this paper involves a lot of parameters. How to deal with the compu-
tational complexity in the training process?
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• Fig. 2 is not explained in the paper. In particular, the meaning of each step in this figure should
be marked with respect to the statement.
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3 Response to Reviewer 3

Comments:

The paper is well written and the three proposed modules are novelty and effective. Extensive experi-
ments have been conducted to verify the effectiveness of proposed modules in solving three challeng-
ing problems for remote sensing videos, i.e detecting small-size objects, distinguishing the objects
and background, and eliminating interference of similar objects.

Reviewer 3 Comment 1

But if the authors can discuss the time complexity analysis of their method, it will be perfect.

Response

Thank you very much for your valuable comments. As you said, I am very sorry that we only count
the test time of each algorithm, but ignore the detailed calculation and analysis of its time complexity.
As you said, computing and analyzing the time complexity of the proposed algorithm is an important
measure to evaluate the algorithm. Here, taking convolution as an example, the calculation formula
of time complexity is as follows:

Time ∼ O(

D∑
l=1

M2
l ·K2

l · Cl−1 · Cl) (8)

where D represents the overall number of layers of the network; Ml is the side length of the output
feature map of the l-th layer; Kl is the side length of the convolution kernel of the l-th layer; Cl−1 is
the number of input channels of the l-th layer, which is also that of the output channels of the (l−1)-th
layer; Cl is the number of output channels of the l-th layer.

Combining the network structure in Table II in the manuscript, we can calculate the time complexity
of the proposed algorithm and the compared baseline algorithm ATOM as shown in Table 3. It can
be seen from the results that the complexity of the proposed algorithm is generally higher than that of
ATOM.

We analyze the reason: Compared with the single-branch backbone network of ATOM, the backbone
network of the proposed algorithm is multi-branch, but the parameter quantity of each branch is less
than that of ATOM branch. As shown in Table 3, the whole time complexity of ATOM isO(13.67E+
09), while the whole time complexity of the proposed algorithm is O(18.91E + 09). Among them,
the backbone network time complexity of ATOM is O(9.95E + 09), and the backbone network time
complexity of the proposed algorithm is O(15.16E + 09), which is 1.52 times that of ATOM.

It can be seen that their parameters are in the same order of magnitude. In addition, the proposed
algorithm also introduces an co-attention mechanism and a re-tracking mechanism, which also takes
up a certain time complexity.

Thank you very much for your valuable comments, we add the calculation and analysis of time com-
plexity in the corresponding position of the manuscript (line 725-733, page 11). In the near future, we
will do further research on the algorithm, aiming to improve the tracking accuracy while simplifying
the network, thereby reducing the time complexity of the framework.
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Table 3: Model Complexity Analysis.

Time Complexity Space Complexity
Backbone Total Backbone Total

ATOM
Parameters O(9.95E + 09) O(13.67E + 09) T (5.57E + 06) T (11.16E + 06)
Memory 37.05GB 50.94GB 21.23MB 42.58MB

base-ABC (Ours)
Parameters O(15.16E + 09) O(18.91E + 09) T (9.27E + 06) T (13.92E + 06)
Memory 56.49GB 70.44GB 35.35MB 53.11MB

(a) (b)

Figure 5: Comparison of different algorithms on IPIU data set. (a) Precision plot. (b) Success plot.

Reviewer 3 Comment 2

Besides, I am curious about whether the proposed three modules can also improve the per-
formance of other comparative methods, not only ATOM. It will be more convinced to verify
whether the three modules are model-agnostic.

Response

Thank you very much for your constructive comments. Indeed as you said, the original experiments
in our manuscript only evaluated the performance of the proposed three modules with ATOM as the
baseline. We are also curious about the performance of our proposed module on other compara-
tive algorithms. Therefore, we select the deep learning tracker DIMP as an additional baseline, and
respectively embed CRFPF-Module, DSCA-Module and GCRT-Strategy into it for supplementary
experiments, to further verify the effectiveness and universality of each module.

For brevity in the experiment, CRFPF-Module embedded in DIMP is denoted as DIMP-A, DSCA-
Module embedded in DIMP is denoted as DIMP-B, and GCRT-Strategy embedded in DIMP is denoted
as DIMP-C. Therefore, the overall experimental results after supplementation are as follows:

As shown in Table 4 (Table VI in the manuscript) and Fig. 5-7 (Fig. 12 in the manuscript), overall
in the three datasets, DIMP-A, DIMP-B, and DIMP-C have improvements in Success and Precision
compared to the DIMP algorithm alone.
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(a) (b)

Figure 6: Comparison of different algorithms on RSSRAI data set. (a) Precision plot. (b) Success
plot.

(a) (b)

Figure 7: Comparison of different algorithms on UAV123∗ data set. (a) Precision plot. (b) Success
plot.
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Table 4: Ablation Study and Performance Comparison Results of Three Data Sets.

IPIU RSSRAI UAV123∗

Precision Success FPS Precision Success FPS Precision Success FPS
DCF [15] 0.516 0.156 428.782 0.261 0.084 338.482 0.407 0.334 455.448

SAMF [56] 0.546 0.179 20.995 0.360 0.133 16.963 0.403 0.263 24.813
DLSSVM [57] 0.750 0.414 100.319 0.536 0.340 83.592 0.206 0.039 104.636

LCT [58] 0.544 0.040 35.795 0.348 0.159 33.697 0.394 0.274 43.012
ECO [22] 0.856 0.484 15.167 0.781 0.431 13.136 0.529 0.282 16.760
HDT [23] 0.266 0.008 46.817 0.168 0.031 31.672 0.153 0.013 51.864
DIMP [27] 0.468 0.215 18.361 0.674 0.441 14.733 0.661 0.612 22.612
DIMP-A 0.521 0.241 22.541 0.691 0.511 17.495 0.698 0.648 25.280
DIMP-B 0.505 0.224 17.230 0.675 0.479 14.933 0.681 0.612 20.957
DIMP-C 0.517 0.238 15.282 0.670 0.500 13.476 0.696 0.639 21.072

ATOM [26] 0.794 0.395 20.731 0.729 0.437 16.954 0.440 0.285 23.696
base-A 0.828 0.419 25.060 0.783 0.449 19.827 0.653 0.511 27.293

base-AB 0.877 0.454 16.103 0.784 0.494 14.932 0.661 0.599 19.692
base-ABC (Ours) 0.954 0.554 14.051 0.816 0.566 12.516 0.729 0.621 15.671

Specifically, DIMP-A is embedded with the parallel multi-resolution feature extraction branches,
thereby obtains robust hierarchical fusion features for small objects, so the Precision and Success
are significantly improved; for DIMP-B, under the guidance of the dual-branch co-attention mecha-
nism, Target Classfier and IoU Regression are more accurate, so the tracking accuracy is improved
more; for DIMP-C, tracking mistakes are reduces due to the introduction of the geometric constraint
re-track strategy, therefore Success is improved.

Note that, on RSSRAI data set, Success of DIMP-C (i.e. 0.500) is improved compared with that of
DIMP (i.e. 0.441), but its Precision (i.e. 0.670) slightly decreases by 0.004 compared with that of
DIMP (i.e. 0.674). Since the resolution of the RSSRAI data set is 1.13m/pixel, the object blur is
more serious than the other two data sets. In this case, when re-tracking strategy is used alone, the
accuracy of bounding boxes obtained during regression is affected. In this way, although the target
object can be recovered (Success is improved), precision of bounding boxes obtained from regression
is affected.

In addition, on UAV123∗ data set, Success of DIMP-A is improved to 0.648 compared to baseline
DIMP (0.612). Since this data set is shot on drone platforms, there are a lot of flips, target defor-
mation, and angle changes of view. This is different from satellite remote sensing videos with small
changes in the angle of view. The DIMP baseline algorithm has an online updated classifier module,
so its algorithm performance on UAV123∗ data set is overall better than the baseline ATOM algo-
rithm.

In summary, the three proposed modules can also be effectively transferred to other tracking algo-
rithms and bring about performance improvements. This further demonstrates the extensibility of the
module. Based on your comments, we add the above experimental content and experimental analysis
to the experimental section in the manuscript.

Thanks again for your valuable suggestion to make our experiment more complete and convinc-
ing.
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Reviewer 3 Comment 3

Although the proposed three modules have shown great advantages, DSCA-module needs the
ground truth of the template frame by frame, which limits the flexibility of the strategy in
practical application. In practice, it is hard and laborious to annotate the ground truth of each
frame.

Response

Thank you very much for acknowledging our manuscript. Indeed, as you said, the training process of
the DSCA-module relies on a large number of annotated tracking frames, which limits the flexibility
of the strategy in practical application. Although with the emergence of more and more large-scale
annotated public tracking datasets, this contradiction has been alleviated to a certain extent. But this
is still one of the challenges faced by current deep learning trackers.

During testing, in order to use as little data as possible to achieve effective tracking, in fact, we only use
the ground truth of the first frame as template to guide the learning of the attention mechanism.

In the online tracking process, the tracking result of the current frame is obtained from the pseudo-
labels of the previous frames and the ground truth of the template frame. And the tracking result of
this frame is used as a pseudo-label to predict the next frame.

Thank you for this very instructive comment. In the future research, we will take this challenge as
a meaningful direction to continue to improve the training and learning method of the framework,
so that it can reduce the dependence on the amount of training data while maintaining the accuracy.
Finally, we have supplemented the analysis and outlook in this direction in the conclusion section of
the manuscript based on your comments.

Reviewer 3 Comment 4

Besides, the additional three modules plugin current model, e.g. ATOM, it will increase com-
putational complexity and slow the speed of inference. In some practical scenarios, it will be
limited by some low-computational devices, such as Unmanned Aerial Vehicle (UAV). All in
all, the efficiency of their algorithm should be improved in the future.

Response

Thank you very much for your considerate comments. Indeed, computational complexity and al-
gorithm efficiency are valuable directions for extending algorithm performance. The computational
efficiency of our algorithm is indeed somewhat slower than the original model, even though they are
in the same order of magnitude. When designing the model, we mainly focus on improving the track-
ing accuracy of small objects in remote sensing scenes, so we adopt a multi-branch parallel network
structure, which increased the computational complexity of the network. In addition, the mechanism
of re-tracking is added, which also limits the overall speed of the algorithm.

In the near future, we will further simplify the network structure to improve the efficiency of the
tracker under the condition of ensuring the accuracy of the algorithm. For example, we are thinking
of borrowing from the teacher-student network in distillation learning to lighten the structure of the
test network, so that our tracking framework is also scalable on low-computational devices.
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Correspondingly, we have added an analysis and outlook in this direction to the conclusion section of
the manuscript.
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Additional Questions:

Summary of Evaluation: Good

Organization: 5

Clarity: 5

Length: 3

References: 5

Correctness: 5

Significance: 5

Originality: 5

Attachments:1

If Survey Coverage:4

Contribution: 4

Please make very detailed technical and editorial comments and suggestions in your comments. If it
is necessary to provide mathematical corrections, please email them to us as a pdf file. If you must get
other information back to us that cannot be sent via email, please mail it to us. Your comments are an
invaluable aid to the author to help in improving the overall technical quality, utility, and readability
of the material. Such comments are not just useful, they are necessary to maintain the quality of the
articles that are published in the SMC Transactions. Particular attention should be given to details
that guide possible revisions, or that clearly explain reasons for rejection.:

What are the contributions of the paper?:

In this paper, the authors propose a collaborative learning tracking network for remote sensing videos,
including a consistent receptive field parallel fusion module (CRFPF), dual-branch spatial-channel
co-attention (DSCA) module, and geometric constraint re-track strategy (GCRT), to solve three chal-
lenging problems, i.e detecting small-size objects, distinguishing the objects and background, and
eliminating the interference of similar objects respectively. The extensive experimental results on
multiple data sets demonstrate the effectiveness of their proposed three modules.

What are the additional ways in which the paper could be improved?:

Although the proposed three modules have shown great advantages, DSCA-module needs the ground
truth of the template frame by frame, which limits the flexibility of the strategy in practical application.
In practice, it is hard and laborious to annotate the ground truth of each frame. Besides, the additional
three modules plugin current model, e.g. ATOM, it will increase computational complexity and slow
the speed of inference. In some practical scenarios, it will be limited by some low-computational
devices, such as Unmanned Aerial Vehicle (UAV). All in all, the efficiency of their algorithm should
be improved in the future.
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4 The End

We tried our best to improve the manuscript and made some changes in the manuscript. These changes
will not influence the content and framework of the paper. And here we did not list the changes but
marked in red in revised paper. We appreciate for Editors/Reviewers’ warm work earnestly, and hope
that the correction will meet with approval.

Once again, thank you very much for your comments and suggestions.
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