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A B S T R A C T

We present an experimental and numerical study of transport in carbonates during dissolution and its upscaling
from the pore (∼μm) to core (∼cm) scale. For the experimental part, we use nuclear magnetic resonance (NMR)
to probe molecular displacements (propagators) of an aqueous hydrochloric acid (HCl) solution through a Ketton
limestone core. A series of propagator profiles are obtained at a large number of spatial points along the core at
multiple time-steps during dissolution. For the numerical part, first, the transport model—a particle-tracking
method based on Continuous Time Random Walks (CTRW) by Rhodes et al. (2008)—is validated at the pore
scale by matching to the NMR-measured propagators in a beadpack, Bentheimer sandstone, and Portland car-
bonate (Scheven et al., 2005). It was found that the emerging distribution of particle transit times in these
samples can be approximated satisfactorily using the power law function ψ(t) ∼ t−1−β, where 0< β<2. Next,
the evolution of the propagators during reaction is modelled: at the pore scale, the experimental data is used to
calibrate the CTRW parameters; then the shape of the propagators is predicted at later observation times. Finally,
a numerical upscaling technique is employed to obtain CTRW parameters for the core. From the NMR-measured
propagators, an increasing frequency of displacements in stagnant regions was apparent as the reaction pro-
gressed. The present model predicts that non-Fickian behaviour exhibited at the pore scale persists on the
centimetre scale.

1. Introduction

Transport and reaction of fluids in porous media is important in
many hydrogeological problems. Examples include stimulation in pet-
roleum reservoirs by acidization (Fredd et al., 2017) , water and con-
taminant management (Singurindy et al., 2004) , and geological storage
of carbon dioxide (Herzog et al., 2003; Luquot and Gouze, 2009) . Rock
matrix dissolution refers to reactions at fluid/solid boundaries that re-
sult in the dissolution of the solid grains, pore growth, and variation of
flow characteristics. For practical applications, the main difficulties in
building models with predictive capabilities are twofold: first, reaction
changes the microstructure of the rock, and thus the structure hetero-
geneity starting at the pore scale. Second, there is a large disparity
between the scale at which transport can be understood from first
principles, and the scale at which practical predictions are needed
(Scheibe et al., 2015) . Since in many cases, the formal closure problem
may be too complex for general solution, we propose to study the

effects of reaction on solute transport from micrometre to centimetre
scales using a heuristic multiscale modelling approach which does not
impose a particular form to the governing equations, in conjunction
with NMR fluid propagator method to validate and calibrate the model
at the pore scale sequentially during dissolution.

The heterogeneity of porous media in geological formations is em-
bodied by the pore structure as well as the mineralogical heterogeneity
resulting from multiple components. In heterogeneous porous media,
the observed reactive transport processes frequently do not behave
according to the transport laws that can be derived for homogeneous
media, see Kang et al. (2014), Liu et al. (2015), Molins et al. (2012),
Ovaysi and Piri (2014), Szymczak and Ladd (2009) and Tartakovsky
et al. (2007), such as the classical advection-diffusion-reaction equa-
tions. Because reactive transport modelling is typically applied at large
scales, it necessarily ignores spatial heterogeneities at scales smaller
than the size of model discretization, see Li et al. (2006) and Noiriel
et al. (2004). Several techniques have been introduced as a remedy, i.e.
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to compute effective parameters which capture subscale effects, see
Chastanet and Wood (2008) and Porta et al. (2013). Furthermore, while
under limited circumstances the homogeneity assumption is reason-
able, the pore-scale heterogeneities can result in a significant “scaling
effect” because of the spatial variations of concentrations and reaction
rates, leading to the breakdown of the homogeneity assumption. This
scaling effect may be one of the causes of the order-of-magnitude dif-
ferences between laboratory measured reaction rates and that obtained
from field measurements, see Li et al. (2006) and Steefel et al. (2005).
Therefore, it is important to understand the effects of pore-scale het-
erogeneities on the reactive transport processes.

Conventionally transport simulation is performed by solving the
advection-dispersion equation (ADE) with known, albeit complicated,
boundary condition. In some cases, depending on the investigated
conditions and on the quality of the characterisation of the hetero-
geneity of the system, the ADE can still be used effectively, see Riva
et al. (2008). Furthermore, it is difficult to determine the correct values
of the coefficients in the model. As the solution of the ADE at a fine
scale over the full extent of the geological heterogeneity is prohibitively
difficult, as we have no general way to incorporate uncertainty in the
description of the reservoir model for the prediction of transport. Mo-
tivated by this problem, Rhodes et al. (2008, 2009) presented a particle-
tracking method based on CTRW (from here-on called PTM-CTRW) for
solving single-phase transport across a hierarchy of length-scales. Un-
like other upscaling methods which rely on special basis functions, or
homogenisation to capture the subscale effects (see Degond et al., 2015;
Muljadi, 2017; Muljadi et al., 2015; Porta et al., 2013) , the method
does not pre-suppose the functional form of the upscaled transport
equations, and automatically accounts for uncertainty in the field-scale
description. PTM-CTRW has been tested for simulating transport in
sandstones. Here, PTM-CTRW forms the basis of our solute transport

simulations and its application is extended to reactive transport in
carbonates.

To rid geological transport simulation of uncertainties due to up-
scaling, it is imperative that a numerical model undergoes rigorous
laboratory validations. In our study, the model and its validation are
built upon pore-scale information. The distribution of molecular dis-
placement (or propagators) in the preasymptotic dispersion regime can
provide the basis for validation of transport models that are based on X-
ray microtomography images of the pore space — see Bijeljic et al.
(2013a,b) and Yang et al. (2013). In recent years, Nuclear Magnetic
Resonance (NMR) has been used to probe transport signatures in porous
glass beads, see Scheven et al. (2004). It has also been used in bead-
pack, sandstone and carbonate samples in the preasymptotic dispersion
regimes e.g. in Scheven et al. (2005) and Mitchell et al. (2008). This
paper augments previous work and describes how NMR 1D-imaging
and fluid propagator measurements are employed to provide experi-
mental insights of hydrochloric acid (HCl) flow through Ketton carbo-
nate cores at multiple time increments during dissolution. First, HCl
solution is injected into the core as illustrated in Fig. 1. The change in
porosity, and propagators at a large number of spatial points along the
core can be monitored throughout the experiment. These propagators
are then used to calibrate our model at a pore (∼μ m), and core-plug
scale (∼mm), as well as to derive the local probability density functions
(PDFs) of transit times, the combination of which, will be used to derive
the PDF at the core scale (∼cm).

The scope of this work can be summarized as follows. First, PTM-
CTRW is employed to reproduce the NMR-measured propagators
through a beadpack, Bentheimer sandstone, and Portland carbonate
cores and thereby validate the described model. Second, the pulsed
field gradient NMR technique is used to find a series of reactive pro-
pagators in preasymptotic flow through Ketton carbonate core at

Nomenclature

Acronyms
CTRW continuous time random walk
PFG pulsed field gradient
PTM particle-tracking method
TPL truncated-power law

Greek symbols
⟨ζ⟩0 mean particle displacement m
β power-law coefficient
Δ NMR observation time s
ϕ porosity
ψ(t) transit-time distribution
τ normalized time t/t1
ζ particle displacement m

Roman symbols
A normalization constant
d core diameter m

Dm diffusion coefficient m2 s−1

Da Damköhler number
l core length m
P probability density function
p(i, j) probability of a particle moving from i to j
Pe Péclet number
Q flux of fluid m3 s−1

t transit time s
t1 average advection time s
t2 diffusion cut-off time s
texp experimental time s
v interstitial velocity m s−1

Subscripts
C core scale
CP core-plug scale
i, j node indices
k link indices
P pore scale

Fig. 1. A reactive transport experiment where HCl solution
is injected through a core of Ketton limestone core. Flow
channels are formed due to solid dissolution. The figures
depict (a) the dimension of the core, and (b) the difference
in porosity between the beginning and the end of the ex-
periment provided using NMR imaging, with blue being the
smallest and green the largest; white indicates no change in
porosity. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of
this article.)
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multiple times during dissolution. Third, these propagators are re-
produced numerically, an array of time-transit distributions is obtained,
and thereby calibrate the present model at the pore scale. Finally, these
propagators are used as the bases of our core-scale simulation and de-
rive the upscaled CTRW parameters at the beginning and the end of the
experiments. This model can then be used to predict transport at any
scale of interest.

2. Continuous time random walks

The description of CTRW here is by no means exhaustive; for details
on the application of CTRW in a geological context, the reader is re-
ferred to an excellent review by Berkowitz et al. (2006).

Anomalous or non-Fickian transport is prevalent in heterogeneous
porous media, and is ubiquitous in the context of tracer migration in
geological formations. Anomalous transport can be described elegantly
as a continuous time random walk. In a CTRW framework, dispersion,
which results in solute spreading at the scale of observation, is ac-
counted for by a transit time distribution function ψ(t). For many sys-
tems, ψ(t) exhibits power-law dependencies: ψ(t)∼ t−1−β, where β≤ 2
is an exponent. For such systems, this leads to the scaling of outlet
concentration C(t) ∼ t−1−β, see Nunes et al. (2015).

3. Transport model description

Traditionally CTRW has been applied to find the ensemble average
behaviour of a plume in a macroscopically homogenous domain, see
Berkowitz et al. (2006) and Dentz et al. (2004). CTRW has been applied
to heterogeneous media, but for relatively coarsely gridded two-di-
mensional systems where the solution involves the numerical inversion
of a multi-dimensional Laplace transform, see Cortis et al. (2004).
Rhodes et al. (2008, 2009) developed a simpler approach, PTM-CTRW,
to describe transport spanning across microns to kilometre scales. The
stochastic framework also allows more complicated boundary

conditions and various types of distribution function to be used. Here
the modelling framework according to PTM-CTRW is explained, in
which transport is seen as a series of random hops from one node in a
3D lattice to its neighbouring node. Particles move between a series of
discrete nodes or sites with a probability ψ(t : i,j) that a particle that first
arrives at site i will move to site j in a time t+dt.

At the heart of PTM-CTRW is the correct choice of transit-time dis-
tribution ψ(t). In their pore-scale simulation, Rhodes et al. (2008) em-
ployed two types of transit-time distribution, one derived from the
advection-diffusion equation, as presented in Bijeljic et al. (2004), and
another a truncated power-law function as an ensemble averaged
transit-time distribution, presented in Dentz et al. (2004). They con-
ducted numerical studies comparing the two functions; the former was
employed in a 3D lattice with a Berea sandstone derived distribution of
throat radii, while the latter was implemented in an effective homo-
genous lattice. They compared the results from both methods with
experimental data for Berea sandstone and found that the truncated
power-law function gave the observed transport behaviour and re-
produced the dispersion coefficients obtained from experiments accu-
rately. The truncated power-law (TPL) transit-time distribution func-
tion, as presented in Dentz et al. (2004), is

= +− − −ψ t Ae t t( ) (1 / ) ,t t β/
1

12 (1)

where A is a normalization constant such that ∫ =′ ′ψ t dt( ) 1t
0 , and β ≤

2 is a power-law coefficient.
Using network modelling of transport, Bijeljic and Blunt (2006)

were able to match the transit-time probability density function mea-
sured in links between neighbouring pores of a Berea sandstone pore
network using Eq. (1) with β=1.8. Furthermore, Bijeljic et al. (2011)
performed direct simulations of transport in the pore spaces of micro-
CT images of Berea sandstone and Portland carbonate and obtained
β=1.8 and β=0.7 respectively. Transit times were now measured as
the time particles to migrate from one pore voxel to another.

At the Darcy scale, an explicit relationship between the histogram of

Fig. 2. The pore-to-core simulation technique. Transport is
modelled as a series of hops between nodes via links with a
known transit time distribution ψ(t). At the smallest scales, ad-
vective and diffusive transport is simulated through a lattice
representing the porous medium of interest. Transport from one
pore to another is described by ψP that is averaged over all
possible statistical realizations of the structure. This ψP(t) is then
input into a simulation at the core-plug scale to compute ψCP(t)
for transitions of particles over the mm scale. Finally, transport at
a core scale can be represented as a single hop governed by the
transit-time distribution function ψC(t). .
Source: This figure is adapted from Rhodes et al. (2008)
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permeability and β has been demonstrated (Edery et al., 2014). Here, a
truncated power-law is also used to describe small-scale transport,
where the exponent β exponent acts as a measure of heterogeneity. In
Fig. 2, the pore-to-core transport simulation framework is described.

To clarify the implementation of our method, in Fig. 3 we show the
behaviour of ψ given the variety of its parameters. We plot Eq. (1)
where ψ, is a function of the normalized time τ= t/t1 for several Péclet
numbers Pe=2t2/t1. The left figure shows ψ for β=0.6, and the right
figure β=1.8. At larger β, the long-time distribution diminish faster as
illustrated by the power-law trend ψ ∼ τ−1−β.

At the pore scale (∼μ m), a transit time distribution function ψP(t) is
derived from either a semi-analytic description in an idealized network,
or from direct simulation. ψP(t) will form the basis of simulation at the
core-plug scale (∼mm). Numerical upscaling will be implemented such
that transport at this scale can be modelled as a single hop governed by
a transit-time distribution ψCP(t). For the core-scale simulation (∼cm),
a lattice is used that is similar in shape to the rock core used in the
experiments—a cylinder—in which ψCP(t) is applied in each link, this
core-scale lattice will be calibrated a priori. Numerical upscaling will
then be used again to obtain ψC(t) (see Section 6).

In the pore-scale simulation, transport is simulated on a homo-
geneous 3D lattice consisted of nodes and links. Within each link,
transport is governed by the transit-time distribution function ψP(t), Eq.
(1). First, a pressure difference is assigned at the inlet and outlet faces.
Then the pressure field is solved by enforcing mass balance at each
node, assuming slow, single-phase, Newtonian flow. At each node, the
mass-flux (q) conservation ∑ =q 0k k is applied for each node con-
nected to links k by which the velocity field at each link can be known,
see Appendix A for details. Assuming complete mixing at each node, the
probability p(i,j) that a particle landing at pore i will move to one of its
neighbours is calculated
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Then a number of particles are released either at the inlet face, or
randomly in the lattice.

At an intersection, a random number a is generated. P(i,j) is then
read from memory, and defined as = ∑P i j p i m( , ) ( , )m ; m≤ j. The
process is iterated such that

− ≤ ≤P i j a P i j( , 1) ( , ). (4)

When Eq. (4) is satisfied, the particle will move along the link i–j. A
random number z is generated and the time t required to move along
the link i–j is found by solving, using a root-finding method, F(t)=z i.e.,

∫= =F t ψ t z( ) ( )
t

P
0 (5)

where

= +− − −ψ t Ae t t( ) (1 / )P
t t β/

1
12 (6)

and t1= l/v, l is the link length and v is the fluid velocity within that
link. t2= l2/Dm is the cut-off diffusion time, and Dm is the self-diffusion
coefficient of the working fluid. v and Dm, thus t1 and t2 are known a
priori; leaving the adjustable parameter β that describes transport het-
erogeneity.

To obtain the transit-time distribution at the next larger scale, the
same technique as in Rhodes et al. (2008) is used, i.e. a number of
particles at t=0 is released at the inlet face of a 3D lattice and the time
required for each particle to transit recorded. ψ(t) can be obtained at the
next larger scale by matching the emergent distribution of the transit
times of each particle to Eq. (1). This is illustrated in Fig. 4 where ψs(t)
is the transit time distribution function at a scale larger than where
transport is governed by ψr(t). This methodology is applied to obtain
both ψCP(t) from ψP(t), and ψC(t) from ψCP(t).

4. Experimental technique, apparatus and results

In this paper, pulsed field gradient nuclear magnetic resonance
(PFG-NMR) is used to obtain propagator measurements, i.e. probability
distributions, P(ζ), of molecular displacement for a given observation
time (Δ) as described in Kärger and Heink (1983). Here, the experi-
ments are applied such that the water, resident in the rock core, is
studied. By observing the displacement, ζ, of water molecules over a
range of observation times Δ and flow velocities v, the fluid behaviour
and pore-scale heterogeneity can be characterised. These experiments
are time-consuming when the data is fully sampled, requiring experi-
mental durations of the order of hours to complete which is impractical

Fig. 3. ψ as a function of τ= t/t1. (left) β=0.6, and (right)
β=1.8, for several Pe numbers using Eq. (1).

Fig. 4. The upscaling methodology. First, flow in each link is solved such that t1 and t2
can be determined. Then a number of particles are launched at the inlet face at t=0. The
time required for one particle to reach the outlet face is that particle's transit time. ψ t( )r

k is

the transit-time distribution function governing transport in link k. ψs(t) is obtained by
matching the emergent transit-time distribution with Eq. (1).
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for the study of the dynamic, reacting system being investigated here. In
this work, we have reduced the data acquisition time through under-
sampling and reconstruction of the smooth acquisition domain signal.
Further details of the sampling and reconstruction parameters used here
can be found are described in Colbourne et al. (2016).

For the reaction, 10 l of a 0.01 M HCl solution was flowed at
Q=8.3×10−7 m3 s−1, through a 7.2 cm long by 3.81 cm diameter
sample of Ketton limestone. Propagators are recorded in 0.88 cm slices
along the core with an observation time (Δ) of 0.25 s. In each slice, the
porosity ϕ and propagator are measured throughout the dissolution
process with porosity profile measurements being acquired in 0.5 min
and the propagator measurements being acquired in 14.5 min using the
undersampling methods described in Colbourne et al. (2016).

The diffusion coefficient Dm of water, in water, at 293 K is
2.1×10−9 m2 s−1. The initial porosity of the core ϕ is 0.24. The in-
terstitial velocity v is = × −3.06 10Q A

ϕ
( / ) 3 m s−1. The characteristic

length l of the Ketton limestone can be estimated i.e., l=π/S, where S
[m−1] is the specific surface area, such that l=4.07×10−4 m, as
presented in Mostaghimi et al. (2013). The corresponding Péclet
number, Pe= lv/Dm, is therefore 593. The Damköhler number, the ratio
of acid consumed and the acid transported by convection, is defined in
Menke et al. (2016) as,

=Da πr
vn (7)

where r is the reaction rate constant of pure calcite in 0.01 M HCl so-
lution at 293 K (1.5×10−3 mol m−2 s−1) measured experimentally in
Peng et al. (2015). n is calculated using n=ρcalcite[1−ϕ]/Mcalcite. ρcalcite
is the density of pure calcite (2.71×103 kg m−3), and Mcalcite is the
molecular mass of calcite (0.1 kg mol−1). In our experiment,
Da=7.7×10−5.

Fig. 5 shows the propagators as a function of axial position along the
core-plug, before and after dissolution. Before reaction, the propagators
are uniform along the length of the core, showing a sharp stagnant
region centred on 0 displacement and a broad flowing region extending
to a displacement of ∼3.5 mm. After dissolution of the solid matrix has
taken place, predominantly in the first half of the core, the propagators
in this region evolve — fast moving fluid slows as the pore-space is
opened up and the overall porosity is increased.

5. Model validation

5.1. Comparison with NMR-measured propagators in a beadpack,
Bentheimer sandstone, and Portland carbonate

The results of the numerical methods are now compared with the
NMR-measured propagators, without reaction, transport only (Scheven

et al., 2005) in a beadpack, Bentheimer sandstone, and Portland car-
bonate.

The computational domain is a homogenous
0.008×0.008×0.008 m3 lattice consisting of 80×80×80 links. In this
analysis, the system is homogeneous at the core scale and the measure-
ments of displacement are taken across the whole core. In these compu-
tations, the same interstitial velocities are used as in the experiments,
namely v=9.1×10−4,1.03×10−3, and 1.26×10−3 m s−1 for bead-
pack, Bentheimer sandstone, and Portland carbonate respectively.
Particles are launched at random locations in the lattice at t=0 s and their
movement is tracked. If a particle exits the inlet or outlet, it is randomly
reassigned to the opposite face using a flux-weighted assignment.

The propagators were measured at different Δ. The propagators
were computed using the transit-time distribution, Eq. (1). Average
advection times t1=0.11,0.097, and 0.079 s are known from the in-
terstitial velocities v and the cut-off diffusion time is t2= l2/Dm=15 s.
By fitting the power-law exponent βs, it was possible to match the ex-
perimental data: β=1.96,1.76, and 0.63 yield propagator profiles with
those of a beadpack, Bentheimer sandstone, and Portland carbonate
respectively, at all studied observation times, as shown in Fig. 6. The
experiments therefore calibrate our model at the pore scale. As ex-
pected, transport is the most heterogeneous in the Portland sample, and
the least in the beadpack. Our model matches the persistently dominant
stagnant region in the Portland sample, which is a manifestation of
transport heterogeneity. This is discussed in more detail in Bijeljic et al.
(2013b).

5.2. Comparison with NMR experiments of transport involving mineral
dissolution

The propagators obtained from NMR measurement of reactive
transport experiments are now reproduced. The model is calibrated
with experimental data of porosities ϕ and propagators in a number of
slices along the sample measured at the beginning and the end of the
dissolution process. Transport in each slice of the core is computed in a
lattice consisting of 100×100×100 links representing a cube of side
length 8×10−3 m. Each link in the lattice has a length of 8×10−5 m,
which is the resolution of our pore-scale simulation. 100,000 particles
are launched at random locations in the lattice at t=0 s. Periodic
boundary conditions are applied at the inlet and outlet faces. If a par-
ticle exits the inlet or outlet, it is randomly reassigned to the opposite
face using a flux-weighted rule. At this scale, transport is governed by
ψP according to Eq. (1). The CTRW parameters t1, t2 are computed using
the knowledge of flow rate Q=8.3×10−7 m3 s−1, molecular diffusion
coefficient, and porosity ϕ within that slice, from which interstitial
velocity v can be computed. For example, for the slice with initial
porosity ϕ=0.24, the initial interstitial velocity is

Fig. 5. Experimental results showing the NMR
propagator contour at (a) texp=0 s—the be-
ginning of the experiment; and at (b)
texp=11,800 s—the end of the experiment.
The average flow velocity v is
3.06×10−3 m s−1, and the observation time
Δ is 0.25 s. The propagator P(ζ) consists of the
normalized probability of displacement ζ such
that ∫ =P ζ dζ( ) 1ζ .
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Fig. 6. Computed probability of particle
displacement P(ζ) ×⟨ζ⟩0) as a function of
displacement ζ/⟨ζ⟩0 (solid lines), compared
with the propagators obtained with NMR
experiments by Scheven et al. (2005) (dashed
lines) for Δ=0.2,0.45, and 1 s.

Fig. 7. (a) Evolution of porosities followed by the initial and final (after reaction) propagators at location: (b) 7.1×10−3; (c) 2.57×10−2; (d) 5.22×10−2; (e) 1.77×10−2; and (f)
4.16×10−2 m from the inlet. Propagators are reproduced numerically using ψ according to Eq. (1). The corresponding βs are shown in the figures. The propagators are matched with
experimental data i.e., dotted lines are the computed ones whereas solid lines are measurements.
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v=3.06×10−3 m s−1. Hence, t1= l/v is 0.0261 s, whereas t2= l2/
Dm=3.03 s. This leaves β as the only tunable parameter. We match our
computations in each lattice with the propagators measured within
each slice.

In Fig. 7, the porosity profiles at the beginning and the end of the
dissolution process are given. Then five propagator profiles at various
locations along the core—computed at initial and final times re-
spectively—are plotted and matched with the propagators computed
according to unique and different β values. First, it is worthy of note
that the numerical results satisfactorily match the experimental data.
Second, as dissolution takes place along the core, β values at the front of
the experiments become smaller.

As in Section 5.1, the propagators can be computed beyond
Δ=0.25 s. In Fig. 8, the propagators can be observed, computed in-
itially with β=0.8 and 0.62, with t1 and t2 0.0275 and 9.6 s respec-
tively, plotted at observation times Δ up to 1.6 s. Our model shows that
the stagnant, diffusion dominated regimes persist even at later ob-
servation times. Asymptotically, according to Berkowitz et al. (2006),
Fickian behaviour should be expected at t much larger than t2.

5.3. Core-plug scale CTRW parameters

Transport at the core-plug scale is modelled as a hop governed by
ψCP(t) which is obtained using the methodology illustrated in Fig. 4. At
this scale, transport is modelled in each 8.8×10−4 m-thick slice of the
core using a cubic lattice, with side length 8.8×10−4 m, consisting of
100×100×100 links; see Fig. 9. Particles are injected into the inlet
face at t=0 and record the transit-time required by each particle to
reach the outlet face. Transport in each link is governed by
ψP=ψ(βP,t1,t2) where βP is calibrated for every slice along the core i.e.,
by matching the NMR-measured propagators during dissolution. An
example of how βP is obtained has been reported in Section 5.2, i.e. by
computing the propagators in each section along the core and matching
them with those measured in the experiments. t1= l/v can be de-
termined by knowing the constant flow rate Q=8.3×10−7 m3 s−1,
and porosities ϕ of each slice. For example, for the slice where porosity
ϕ=0.32, the interstitial velocity is v=2.74×10−3 m s−1. Hence,
t1= l/v is 3.2×10−3 s. The diffusion cut-off time t2= l2/Dm is 0.036 s
in a single micron-scale link. ψCP=ψ(βCP) for every 8.8×10−4 m-thick
slices are obtained by matching the emergent transit-time distribution
with Eq. (1).

ψCP(t) from ψP(t) are obtained using the upscaling methodology
presented in Rhodes et al. (2008), which is illustrated in Fig. 9. First, we
run a particle tracking simulation in each core-plug lattice described
above. Then, the emergent transit-time distribution ψCP is matched with
Eq. (1) by selecting the correct βCP value whereas t1, and t2 are assigned
according to the lattice dimension, flow rate, and porosities at before
and after dissolution. The list of βCP coefficients, and measured poros-
ities, obtained before and after reaction, at a number of points along the
core, can be found in Appendix B. After reaction, we found that the

markedly increased porosities especially in the first half of the core near
the inlet, do not lead to a more homogeneous spread of particle dis-
placements. Rather, the overall transport process becomes more het-
erogeneous as shown by the change of propagator profiles before and
after reaction. Quantitatively, this is shown by the decrease of βCP. This
shows that emergent channels in the core result in some particles ex-
periencing an increase in velocity, whereas other particles who remain
in the slower regions now become even more stagnant in comparison.
The non-Fickian features are more pronounced after dissolution. This is
characterised and quantified by a smaller beta values after dissolution.
A smaller beta value means a higher probability of long transit times.
This is apparent when seeing the propagator profiles where the most
common displacement after dissolution is much smaller than the
average.

6. Transport at the core scale: obtaining ψC(t)

At the core scale, transport can be interpreted as a single hop with
corresponding ψC. For transport at this scale, a cylindrical lattice is
used, see Fig. 10, with length and diameter similar to the core plug used
in the experiments. Within each link in the lattice, transport is governed
by a transit-time distribution ψCP, which has previously been computed.
The diameter of the lattice is 3.8 cm, and the length 7.16 cm — iden-
tical to the core used in the experiments. The lattice comprises
40×40×82 links.

The relation = +− − +ψ Ae t t(1 / )CP
t t β/

1
1 CP2 is applied in each link with

t1 and t2 equal to 0.3 s and 1161 s respectively. 100,000 particles are
launched at the inlet face at t=0 s.

The flux Q is determined from experiment. Having measured the
porosity of every slice along the core, the interstitial velocity v is
computed for every link along the flow direction. The times required for
each particle to break through and reach the outlet face are recorded.
The emergent transit-time distribution function is plotted for three Pe
numbers—59.3, 593 (the Pe number of the experiments), and
5930—before and after reaction, see Fig. 11, and have them matched to
a functional form i.e., Eq. (1). Thus, the corresponding βC at initial and
final experimental times can be obtained i.e., 0.75 and 0.65 respec-
tively. Note that the power-law behaviour continues to exist at the core,
cm, scale.

Prior to reaction, the emergent transit-time distribution function
showed a power law behaviour with βC=0.75. According to Dentz
et al. (2004), in this region i.e., 1/2< β<1, the longitudinal disper-
sion is super diffusive. This can be seen from the propagators (Fig. 7).
Initially, the bulk of displacement occurs below the mean displacement.
With reaction, transport becomes more heterogeneous and even more
super-diffusive, as seen in other dissolution experiments (Menke et al.,
2016) .

(a) = 0 .8 (b) = 0 .62

Fig. 8. Prediction of propagators at larger observation times
Δs. We predict numerically that at around 1.6 s mark, a mobile
region at around the main displacement will start to occur.
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7. Conclusions

A robust multiscale modelling of transport based on CTRW is vali-
dated with a combination of NMR imaging and transport experi-
mentation to study reactive transport signatures at a pore, and core-
plug scale. For the specific conditions investigated in our work, the
analysis of the propagators before and after reaction show that trans-
port becomes more heterogeneous after reaction. The present model
reproduces these results well and quantifies the increase in hetero-
geneity by the decrease of β values. For a beadpack, Bentheimer
sandstone, and Portland carbonate systems, the numerical results agree
with the experimental data, validating the pore-scale CTRW model for
different porous-media heterogeneities.

By predicting the propagators at longer observation times, it is
shown that non-Fickian behaviour persists at the cm scale. Truncated
power law behaviour is demonstrated for transport at the core-plug
scale, emerging from the pore-scale representation of heterogeneity.

In future work the modelling could be extended to include reactive
transport at the pore-scale and hence predict the change in transport
properties with time.
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Fig. 9. Transport in each slice along the core is represented as
a single hop governed by ψCP(t). Each slice is represented as a
3D lattice consisting of 100×100×100 links. In each link,
transport is governed by ψP(t)=ψ(t1,t2,βP). t1, t2 are computed
using the knowledge of flow rate, Q=8.3×10−7 m3 s−1, and
porosity ϕ. For each slice, βP has been calibrated by matching
the NMR-measured propagators. Next, we use the upscaling
methodology (Rhodes et al., 2008) to obtain ψCP(t). ψCP(t) for
every slice is tabulated in Appendix B.

(a) Ketton core (b) 3D Lattice

Fig. 10. 3D cylindrical lattice for core-scale si-
mulation with diameter 3.8×10−2 m, and
length 7.16×10−2 m. The computational do-
main is a 3D lattice consisting of 40×40×82

links. v(x,y)=0 for + >
× −

x y ( )2 2 3.81 10 2

2
2 m2.

Transport in each link is governed by ψCP(t). Then
the upscaling method (Rhodes et al., 2008) is
used to obtain ψC(t).

(a) Before reaction

(b) After reaction

Fig. 11. Core-scale ensemble averaged transit-time distribution function ψC(τ), at initial
texp=0 and final time texp=11,800 s, where τ= t/t1 are the normalized transit times.
Three Pe numbers are used where 593 is the Pe number of the experiments.
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Appendix A. Pressure solver

Flow in each link is computed by solving mass conservation equation in each node i such that for each link k adjacent to node i,∑ =q 0k k applies,
or in a matrix form,

=B q[ ] 0 (A.1)

where [B] is an incidence matrix — Nk×Ni where Nk is the number of links and Ni is the number of nodes — describing the topology of network.
q=qk is the mass flux vector. Applying Darcy's law, flux can be expressed in terms of the pressure drop such that

= − C Bq p[ ][ ] ,T (A.2)

where [C] is a conductivity matrix; an Nk×Ni diagonal matrix with entries =Ck
K A

l
k k
k

where K is the permeability of the link, A the cross-sectional
area, μ the viscosity and l the length of the link. Substituting Eq. (A.2) into Eq. (A.1) we derive

=B C B p[ ][ ][ ] 0.T (A.3)

The nodal pressure p in the network is obtained by solving the linear Eq. (A.3) using MUMPS: a MUltifrontal Massively Parallel sparse direct Solver
— see Amestoy et al. (2001).

Appendix B. Porosities and the corresponding βCP coefficients

The table below shows the porosities and the corresponding βCP coefficients along the core, before and after the experiment. The porosities are
measured, whereas the βCP values are computed (see Section 5.3).

Distance from inlet (m ×10−2) Porosity ϕ βCP

Before After Before After
0.00 0.32 0.59 0.65 0.46
0.09 0.27 0.48 0.77 0.51
0.18 0.26 0.42 0.79 0.51
0.27 0.25 0.38 0.81 0.59
0.35 0.25 0.35 0.80 0.59
0.44 0.25 0.33 0.81 0.61
0.53 0.25 0.32 0.79 0.60
0.62 0.25 0.31 0.83 0.61
0.71 0.25 0.30 0.84 0.62
0.80 0.25 0.29 0.83 0.71
0.88 0.25 0.28 0.82 0.70
0.97 0.25 0.28 0.82 0.71
1.06 0.25 0.28 0.83 0.71
1.15 0.25 0.27 0.82 0.70
1.24 0.25 0.27 0.82 0.75
1.33 0.25 0.26 0.84 0.76
1.42 0.24 0.26 0.84 0.77
1.50 0.25 0.26 0.82 0.76
1.59 0.25 0.27 0.81 0.69
1.68 0.24 0.26 0.86 0.79
1.77 0.24 0.26 0.85 0.73
1.86 0.24 0.26 0.84 0.75
1.95 0.24 0.26 0.84 0.75
2.03 0.24 0.26 0.83 0.74
2.12 0.24 0.26 0.84 0.77
2.21 0.25 0.26 0.85 0.78
2.30 0.25 0.27 0.85 0.78
2.39 0.25 0.26 0.83 0.79
2.48 0.25 0.26 0.87 0.77
2.57 0.24 0.26 0.88 0.80
2.65 0.25 0.26 0.85 0.81
2.74 0.25 0.26 0.85 0.81
2.83 0.25 0.26 0.86 0.79
2.92 0.24 0.26 0.82 0.78
3.01 0.25 0.26 0.84 0.79
3.10 0.25 0.26 0.82 0.80
3.18 0.25 0.25 0.80 0.79
3.27 0.25 0.25 0.79 0.79
3.36 0.24 0.25 0.80 0.78
3.45 0.24 0.25 0.81 0.80
3.54 0.24 0.24 0.80 0.79
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3.63 0.24 0.24 0.81 0.81
3.72 0.24 0.24 0.80 0.80
3.80 0.24 0.24 0.81 0.81
3.89 0.24 0.24 0.79 0.79
3.98 0.24 0.24 0.80 0.80
4.07 0.24 0.24 0.81 0.81
4.16 0.24 0.24 0.80 0.80
4.25 0.24 0.24 0.80 0.80
4.33 0.24 0.24 0.80 0.80
4.42 0.24 0.24 0.79 0.79
4.51 0.24 0.24 0.80 0.80
4.60 0.24 0.24 0.83 0.83
4.69 0.23 0.23 0.83 0.83
4.78 0.23 0.23 0.82 0.82
4.87 0.24 0.23 0.85 0.82
4.95 0.24 0.23 0.83 0.82
5.04 0.23 0.23 0.82 0.82
5.13 0.24 0.24 0.80 0.80
5.22 0.24 0.23 0.80 0.80
5.31 0.24 0.24 0.82 0.82
5.40 0.24 0.24 0.80 0.80
5.48 0.24 0.24 0.80 0.80
5.57 0.24 0.24 0.80 0.80
5.66 0.24 0.23 0.80 0.80
5.75 0.23 0.23 0.80 0.80
5.84 0.23 0.23 0.80 0.80
5.93 0.23 0.23 0.81 0.81
6.02 0.23 0.23 0.82 0.82
6.10 0.23 0.23 0.81 0.81
6.19 0.23 0.23 0.83 0.83
6.28 0.23 0.23 0.83 0.83
6.37 0.22 0.22 0.88 0.88
6.46 0.22 0.22 0.87 0.87
6.55 0.22 0.22 0.88 0.88
6.63 0.22 0.22 0.89 0.89
6.72 0.22 0.21 0.88 0.88
6.81 0.22 0.22 0.87 0.87
6.90 0.22 0.22 0.7 0.7
6.99 0.22 0.22 0.71 0.71
7.08 0.22 0.22 0.73 0.73
7.16 0.22 0.22 0.74 0.74
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