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Abstract: A new type of photocrosslinkable polycaprolac-
tone (PCL) based ink that is suitable for three-dimensional
(3D) inkjet printing has been developed. Photocrosslinkable
Polycaprolactone dimethylacrylate (PCLDMA) was synthe-
sized and mixed with poly(ethylene glycol) diacrylate
(PEGDA) to prepare an ink with a suitable viscosity for ink-
jet printing. The ink performance under different printing
environments, initiator concentrations, and post processes
was studied. This showed that a nitrogen atmosphere dur-

ing printing was beneficial for curing and material property
optimization, as well as improving the quality of structures
produced. A simple structure, built in the z-direction, dem-
onstrated the potential for this material for the production
of 3D printed objects. Cell tests were carried out to investi-
gate the biocompatibility of the developed ink. © 2016 The
Authors Journal of Biomedical Materials Research Part B: Applied
Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater
Res Part B: Appl Biomater, 105B: 1645-1657, 2017.
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INTRODUCTION
The need for biodegradable materials for health care applica-
tions has stimulated interest in the development of bioresorb-
able polymer materials. A range of materials have been
considered for these applications, including polycaprolactone
(PCL), poly(lactic acid), and other aliphatic polyesters.'™* Of
particular interest is PCL, which is able to decompose through
random hydrolytic chain scission of its ester groups.*® PCL is
a biodegradable and semicrystalline polymer, with a relatively
long degradation period® making it suitable for implant-based
drug delivery applications. Bioresorbable drug-impregnated
polymer systems are able to release therapeutic agents to the
environment, and if one is able to incorporate the dose in a
controlled manner, this could potentially lead to new, persona-
lizable treatments.”®

Additive manufacturing (AM) [or three-dimensional (3D)
printing] is a disruptive technology that can produce a 3D
object based on digital design data through the sequential
addition of layered materials.'® This process presents signifi-
cant advantages over traditional manufacturing methods
since one is able to personalize with little marginal unit cost.
The design freedoms that are realized by AM enable greater
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flexibility and as a consequence greater value of the final
product.’® This technology has developed from a purely pro-
totyping nature, to one set for the production of objects that
can see their life in service. To date, the bespoke nature of AM
has enabled use in areas, such as prosthetics and bone
replacement.’?™*> Benefits have been sought in the recon-
struction of anatonmical structures'®™'® and for porous
implants with interconnecting fenestration for bone
growth.2?! If such benefits were combined with bioresorb-
ability and drug delivery, then a significant step change in
treatment could be achieved. In this context, PCL for AM pro-
duction of health care products has already been recognized.
Early attempts have been made to use it as a build material
for powder bed fusion, material extrusion techniques, and
stereolithography.'~*2%23 However, for advanced structures
that may contain more than one material, there is a need to
control the discrete deposition of each material with high
resolution. Although it is possible, powder bed fusion and
material extrusion have significant difficulties in the produc-
tion of multimaterial, high-resolution products.

An alternative technique is inkjet-based 3D printing to pro-
duce two-dimensional and 3D structures.>*?® This technique
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allows the co-deposition of more than one material due to the
possibility of multiple deposition heads.?® The realization of an
inkjet printable PCL-based ink, therefore, offers an increased
potential for functionality in biomaterials’ development and
drug delivery systems through the high-resolution and multi-
material deposition offered by material jetting.

The key step in inkjet based 3D printing is the conversion
of the liquid ink to a useful solid. Photocrosslinking is one
technique that is used and has seen commercialization for
example in the Stratasys Connex and 3D Systems Polyjet
machines.*® PCL itself is not photocrosslinkable but has the
potential to be modified into a photocurable polymer®'??
and, in addition, has been shown to retain the biodegradabil-
ity of PCL,®* leading to its consideration as a candidate as an
inkjet based 3D printing material. This photocrosslinkable
PCL has been shown to be processable using stereolithogra-
phy,?*?* offering its use as a AM material, but in this work,
the focus is on developing it as a base formulation for inkjet
based 3D printing to create a platform material for multi-
functional, graded structures in the future. To demonstrate
the suitability of the material for inkjet printing, the method-
ology used to create and study the performance of different
ink formulations will first be presented; subsequently it will
be shown that a 3D solid structure can be formed.

MATERIALS AND MIETHODS

Material synthesis

3D inkjet printing requires a relatively low viscosity ink for jet-
ting, but in order to form 3D structures, the printed ink needs
to be able to solidify or cure quickly following deposition to
prevent spreading.3* A method of inducing curing is the use of
Ultraviolet (UV) light.3®> UV curable materials normally contain
certain photoreactive groups, such as acrylate and methyl acry-
late, which can cross-link under UV light.36 However, PCL does
not contain these chemical moieties and, therefore, cannot be
directly photocured. It has been shown that by attaching photo-
reactive groups onto a PCL polymer or oligomer chain, photo-
crosslinking is possible.’” Here, in this study, methacrylate
groups were used, leading to the production of PCL dimethyla-
crylate (PCLDMA), which was synthesized by a method based
on that proposed by Feng and Zhao.

The production of the PCLDMA proceeded in the following
way. A round bottomed flask was flame dried and filled with
anhydrous tetrahydrofuran, 100 mL (anhydrous, >99.9%,
inhibitor free; Sigma-Aldrich), PCL-dio, 110 mL, 20.2 mmol
(average Mn ~ 530; Sigma-Aldrich), and dried triethylamine,
8.46 mL, 60.7 mmol (>99%; Sigma-Aldrich) in a nitrogen
environment. The flask was then cooled to 0°C. Methacryloyl
chloride 5.92 mL, 60.7 mmol (>97.0% (GC), contains ~0.02%
2,6-di-tert-butyl-4-methylphenol as a stabilizer) was then
added slowly within an 1-hour period using an automatic
syringe pump. The reaction occurred over 17 hours and was
then warmed back to room temperature. The residual solvent
was removed using a rotary evaporator, after which diethyl
ether 100 mL (laboratory; Fisher Scientific) was added and
then stirred for 15 minutes. The mixture was settled and sep-
arated. The organic layer was extracted by a separator funnel
and dried in a vacuum oven to remove volatiles. Fourier trans-
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form infrared spectroscopy (FTIR) and Nuclear Magnetic Res-
onance (NMR) spectra were obtained to verify the formation
of PCLDMA using a Bruker Tensor FTIR and Bruker AV(III)
500 MHz NMR spectrometer.

Ink preparation

Based on the measured viscosity and suggested range for the
printhead, a diluent was required to reduce the viscosity to a
range that was printable (Figure 1). In this case, poly(ethylene
glycol) diacrylate (PEGDA) was used, which is a commonly
used photocrosslinkable biocompatible material.*3~*° Though
not an aspect investigated here, it was noted that PCL is
hydrophobic and PEG is hydrophilic, and any copolymers may
have useful tunable properties.**?

The viscosity (under a shear rate of 1000 s !) was
measured by a cone and plate rheometer (Malvern Kinexus
Pro) under varying compositions. This was then used to
identify diluent proportion and the processing temperature.
Each measurement started at 25°C and proceeded with 5°C
increments up to a maximum of 60°C. A protocol of waiting
300 seconds after reaching the test temperature was used
to ensure that the ink was in a steady-state condition before
measurement was taken. At each temperature point and
shear rate, the viscosity was recorded at 5 second intervals
within a 180 seconds testing time.

PCLDMA and PEGDA (average Mn ~ 250; Sigma-Aldrich)
were mixed together in an 8-mL amber vial and stirred at room
temperature for 15 minutes at 800 rpm (IKA RCT Basic IKAMAG
Magnetic Stirrer with Temperature Controller). Photoinitiator
(PI) (2,4-diethyl-9H-thioxanthen-9-one, 98%; Sigma-Aldrich)
and accelerator (AC) (ethyl 4-(dimethylamino)benzoate,99%;
Sigma-Aldrich) were added into the PCLDMA:PEGDA mixture
and stirred at room temperature until all the solutes were fully
dissolved. Before printing, the prepared ink required degassing
to remove dissolved oxygen to help minimize oxygen inhibition
brought about by the presence of oxygen.**** The degassing
procedure was carried out by purging the ink with nitrogen gas
for 15 minutes, though this procedure created significant nitro-
gen bubbles formation within the ink, reducing the reliability of
droplet formation during printing; as a consequence, to allow
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FIGURE 1. Viscosity distribution plot of PCLDMA:PEGDA with different
proportions between 25 and 60°C at shear rate of 1000 s .
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FIGURE 2. Structure and schematic of Dimatix printing unit and real-time curing.

the bubbles to disperse, the ink was allowed to settle overnight
before printing.

The molecular weight of synthesized PCLDMA was
determined by using size exclusion chromatography (Varian
PL-GPC50). DMF (0.1 Wt % LiBr) was used as the eluent
with a flow rate of 1 mL min~ ! at 50°C.

Jetting and curing

Following ink preparation, ~2 mL of ink was injected into a
10-pL drop volume Dimatix cartridge and printed with a Dima-
tix DMP-2830 material printer. The ink-filling procedure was
performed in the dark to prevent light being incident on the
ink thus inducing curing; careful attention was also paid to
handling to avoid bubble formation within the ink. To avoid
any curing inside the cartridge during printing due to ambient
light, the cartridge was wrapped with foil tape.

Curing was achieved by a UV unit (365 nm and
300 mW cm™ %) mounted directly on to the printing unit (Figure 2)
allowing it to move with the printhead and induce real-time UV
illumination and curing.

Characterization

An additional UV unit (365 nm and 100 mW cm ™~ %) was used
to study the influence of different postcuring time (10, 20, and
30 minutes) on the mechanical properties of the printed parts.
The printed samples were placed under the UV unit with the
upper surface exposed.

Further experiments were carried out to investigate the
influence of different PI concentrations as well as the print-
ing environments on the final properties of the printed
specimens. Inks with 1, 2, and 3 Wt % of PI and AC were
prepared and printed following the same protocol in both
air and nitrogen environments.

The mechanical properties of the printed samples were
characterized by nanoindentation at room temperature
(Micro Materials, NanoTest NTX with hot stage and inert
gas cabinet). Both the top and bottom surfaces were charac-
terized using a 5 X 5 grid of indentations with 100 pm sep-

aration between each. The peak force was set to 5 mN with
a 0.25 mN s ! loading and unloading rates. A spherical
indenter with 50 pm radius was used. FTIR measurements
were also carried out in attenuated Total Reflectance (ATR)
mode (Bruker Tensor-27) with 2 cm™ ! interval to track the
curing of the printed samples. Printed mesh structures were
sputter coated with platinum and examined by Scanning
Electron Microscope (SEM) (XL30 ESEM Philips). The trans-
mission spectrum of the printed ink with different amount
of layers was printed onto quartz slides and characterized
by UV-visible spectrophotometry.

Biocompatibility test. Biocompatibility was tested using
both indirect and direct methods to assess any cytotoxic
effects from any chemicals leaching out of the cured ink and
to assess initial cell adhesion, respectively. A biocompatibil-
ity test was performed following the method of Elomaa
et al.?* A sample was immersed in acetone for 20 hours to
remove any unreacted polymer residuals and dried under
vacuum until the weight was constant. The printed speci-
mens were then sterilized by immersion in 70% (w/v) etha-
nol in deionized H,0 that was allowed to evaporate
overnight under laminal flow. The samples were washed
with phosphate-buffered saline (PBS) (Invitrogen) three
times for 15 minutes®? and then incubated in 500 pL of the
culture media for 72 hours at 37°C, 5% CO, in air. The
media were then collected and labeled as “media extract.”
NIH3T3 fibroblasts were grown in Dulbecco’s modified
eagle medium (Sigma-Aldrich) supplemented with 10% (v/
v) of fetal bovine serum, 2 mM L-glutamine (Sigma-Aldrich),
and 1% (v/v) gentamicin/amphotericin B (Sigma-Aldrich) at
37°C, 5% CO, in air. Once cells were 80%-90% confluent,
cells were detached from the culture surface by using tryp-
sin solution (0.025% trypsin and 0.01% ethylenediaminete-
traacetic acid in PBS) and resuspended in culture media at
a concentration of 8 X 10* cells mL™*. The cell suspension
(100 pL) was then transferred into a 96-well plate and
allowed to adhere for 24 hours at 37°C, 5% CO, in air.
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FIGURE 3. Printed square samples for nanoindentation test: (a) printing pattern, (b) top view, and (c) side view.

The culture media were then replaced with 200 pL of
the “media extract,” and the cells incubated further over a
period of 24 hours. Cell viability, using the PrestoBlue®
assay was evaluated after day 1 and then tracked at day 3
and 5 with fresh media. Cells cultured in fresh culture
media were considered as a positive control. PrestoBlue®
(Invitrogen), a resazurin-based solution, was used to deter-
mine the metabolic activity of cells. It was performed
according to the manufacturer’s protocols. In brief, a solu-
tion of 10% (v/v) of PrestoBlue® in cell culture media was
prepared, and 100 pL was added to each well. After
45 minutes of incubation at 37°C, 90 pL of the assay solu-
tion was transferred to a 96-well plate (Corning), and the
fluorescence intensity was evaluated using a spectrofluor-
ometer (Tecan Infinite M200 microplate reader) at 560/
590 nm. The percentage of viability was calculated as a
ratio of that determined from the positive control. Five sam-
ples per each condition were considered.

A direct test was performed to evaluate metabolic activ-
ity of cells directly in contact with the scaffolds. The sam-
ples, after 72 hours of immersion in culture media, were
seeded with 500 pL of cell suspension (at a density of
4 X 10° cells mL™"). A negative control was created with
the same conditions but without the addition of cells. After
24 hours, the scaffolds were moved to a new 48-well plate.
The activity of the cells was evaluated by PrestoBlue® after
1, 3, and 5 days as described earlier. Five samples were
evaluated for each condition.

Indirect and direct cytotoxicity data at different time
points were presented as mean * standard error and com-
pared using one-way ANOVA followed by a Tukey post hoc
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test using Prism 6 (GraphPad Software, v6.01). A value of
p < 0.05 was considered significant.

RESULTS

Synthesis of PCLDMA

The FTIR spectra of PCLDMA showed absorption band at
1637 and 810 cm ', which represents the C=C due to methyl
acrylation of the PCL diol. The formation of PCLDMA was also
confirmed by using '"H NMR spectrometer and the C=C
groups appeared in the 8 5.5-6.2 ppm range (figure not
shown). Both results are comparable to the characterization
results of photocrosslinkable PCLDA synthesized by Kweon
et al.*®* The molecular weight of the synthesized PCLDMA was
measured by GPC and found to be Mn ~ 1683 g mol .

Real-time curing and postcuring effects

Five square specimens, 5 mm X 5 mm, were printed with
real-time photocrosslinking to investigate how the real-time
photocrosslinking and postcuring processes will influence
the sample’s properties. The specimens were created with
100 layers of ink, corresponding to depths of ~500 pm
(shown in Figure 3).

The hardness and indentation modulus of the top and bot-
tom surfaces of the printed samples as a function of postcur-
ing time were measured using nanoindentation. It was
anticipated that as the samples were produced by stacking up
layers of material, with differing amounts of UV illumination
for different layers, that this would lead to depth-dependent
curing level and therefore depth-dependent properties.*®
What was observed, however, was that the top and bottom
surfaces of the sample had very similar properties prior to

POLYCAPROLACTONE-BASED INK FOR 3D INKJET PRINTING
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FIGURE 4. Plots of nanoindentation data for samples with different
postcuring time: (a) hardness and (b) indentation modulus, olds. Data
presented as mean * standard error (n = 4).

any postcuring treatment, suggesting that the ink with 3 Wt
% PI and AC allowed homogenous curing throughout the
depth of the sample (Figure 4, 0 minute). Following postcur-
ing, the sample’s top surface showed a manifest increase in
hardness and modulus. In contrast, the properties of the sam-
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FIGURE 5. Transmission spectrum for one layer of printed PCLDMA:-

PEGDA ink with 3 Wt % photoinitiator and accelerator in air
environment.
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FIGURE 6. Plot of transmission change at 365 nm with increment in
printed layers for PCLDMA:PEGDA ink with 3 Wt % photoinitiator and
accelerator printed in air environment.

ple’s bottom surface did not show a notable change with an
increasing postcuring time.

The transmission spectrum of one printed and cured
layer of ink was measured within a wavelength range
between 200 and 500 nm (Figure 5). A further experiment
was carried out to measure the transmission of three, five,
seven, and nine layers of printed and cured ink at the wave-
length of 365 nm, which was the UV wavelength used for
curing. From Figure 6, it can be seen that a nine-layer sam-
ple’s transmission was ~5%, while for one-layer sample’s
transmission was ~67.2%. Based on the Beer-Lambert law,
the transmission of the light can be determined from the
following equation:

I
TzazefelzefsNt (1)

where T is the transmittance, I, is the incident radiation, /
is the transmitted radiation, € is the attenuation coef-
ficient, o is the attenuation cross section, [ is the distance
the light travelled, N is the number of sample layers, and ¢
is the single layer thickness. Therefore, an exponential
approach to full absorption was fitted (Figure 6):

T:e—0.34ZN (2)

Equation (2) can be used to calculate a characteristic
skin depth over which the transmission decreased to an
appreciable level, in this case N = 2.92 ~ 3 layers.

PI concentration and printing environment
Further experiments were carried out to investigate how
various concentrations of PI and AC influence sample prop-
erties in both air and nitrogen environments. Inks with 1, 2,
and 3 Wt % of PI and AC were prepared following the same
procedure as before and printed. Square samples consisting
of 100 printed layers were prepared for each ink in both air
and nitrogen environments.

Morphology variations were observed for specimens
printed with different inks in both environments (Figure 7).
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For the ink with 1 Wt % PI and AC, the printed square sam-
ples present as rounded rectangular shapes after being
printed in air [Figure 7(a)]. But the same ink produced sharp
edges and corners when printed in nitrogen [Figure 7(d)].

The hardness and modulus of these samples were meas-
ured by nanoindentation tests on both surfaces following
the same protocol established previously. The results are
shown in Figures 8 and 9. For the samples printed in air,
both the hardness and modulus of the top surface showed
an upward trend with PI and AC concentration increases.
This implies that lower PI and AC concentration will affect
the curing speed when the ink is printed in air. FTIR charac-
terization was carried out on both the surfaces of the
printed samples in order to track the curing level of the
deposited material (Figure 10).

Printing trials and characterization

Mesh structures [Figure 11(a)] of three different wall thick-
nesses (150, 300, and 500 pum) were printed and then
examined with a SEM. The distance between each wall was
set as 1 mm to allow each printed vertical or horizontal
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FIGURE 7. Optical microscope pictures of square samples printed with the inks containing different concentrations of Pl and AC in both air and
nitrogen environments (1 division = 100 pm).

wall to be separated from each other. Ten layers of
PCLDMA:PEGDA (70:30) were printed, and the sample
appearance is shown in Figure 11(b).

Figure 12 shows that under an air environment, the
PCLDMA:PEGDA (70:30) ink could not form precise, sharp
edges. Rectangular gaps were designed inside the mesh struc-
ture. However, in the actual printed structure, the rectangular
shaped gap became rounded. Meanwhile, sagging of printed
ink droplets could be observed from the SEM pictures and
caused rounded rectangular gaps as well as curved walls.
These may be due to the insufficient curing. The UV illumina-
tion unit was attached and moved with the printhead (Figure
1); therefore, the energy provided within a single scan may
not have been sufficient to allow freshly deposited ink to
become fully cured immediately. Without full curing, sagging
due to gravity or movement of the platform may occur, leading
to rounded edges and curved walls. This effect becomes more
obvious when producing samples with small features.

However, as the illumination area of the UV unit was
larger than the printed area of each printing cycle (as
shown in the schematic representation of Figure 1), the

POLYCAPROLACTONE-BASED INK FOR 3D INKJET PRINTING
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FIGURE 8. Plot of the top and bottom surface properties of the square
samples printed in air environment by PCLDMA:PEGDA (70:30) with 1, 2,
and 3 Wt % photoinitiator and accelerator: (a) hardness and (b) indenta-
tion modulus. Data presented as mean = standard error (n = 4).

previously deposited ink can still receive UV illumination
during the following the printing of subsequent droplets.
Therefore, the ink will receive intermittent UV illumination
and will be finally cured once exposed to sufficient photons,
although the curing time will be greater than would be
found for continuous UV illumination. Increasing the curing
speed could also help the printed ink cure in a shorter
period of time, hence reduce the chance of sagging and
improving the print quality. This could be achieved by either
increasing the intensity of UV illumination, creating an
oxygen-free environment or support material could be
printed simultaneously around the structure to help restrict
the sagging effect.

Figure 13 shows a printed curving mesh structure with
PCLDMA:PEGDA (70:30) ink, which demonstrates the capa-
bility of the developed ink to create complex structures.
Fifty layers were printed, and surface profiling data [Figure
13(d)] show that the total height of the structure was
~250 pm. Figure 14 shows optical microscopy images of a
printed curving mesh structure. It was also observed in
these samples that the ink did not fully cure immediately
after deposition, and some of the droplets at the edges

ORIGINAL RESEARCH REPORT

slipped down to the substrate forming coarse structures at
the base. Currently, this photocrosslinkable PCL-based ink
has been used to form structures down to 200-300 um in
x- and y-axes, which could reach 50-100 pm if co-printing
supports and printheads with smaller orifices were used.
This makes it a competitive candidate to produce 3D-
printed polymeric biomaterials.

Printing accuracy and resolution

In order to investigate the printing accuracy and resolution
of the developed ink, line structures with different widths,
number of layers, and gaps were printed and characterized
with an optical microscope. Figure 15(a) compares the
intended line width with the observed width, showing that
when attempting to print on length scales near to a single
droplet, differences of the order of a factor of two are
observed, but at 10X this scale, the differences drop to
~10%. The dependence of the feature size on the number
of layers was also tested. This indicated that although there
was some spreading and growth, it was small and once
again, if supporting structures were used, could be limited
even further [Figure 15(b)]. The smallest separation of
structures observable was ~39 pm, suggesting a resolution
in the order of a droplet diameter.

" \M

6 - \

5 4

—a— Top Surface
——Bottom Surface

Hardness /MPa
s

0 1 2 3 4
Concentration /wt%

@

g

=
o

(o1}
o

-\L\‘

—a—Top Surface

Indentation Modulus /MPa
B
o

N
o

——Bottom Surface

0 1 2 3 4
Concentration /wt%

(b)

FIGURE 9. Plot of the top and bottom surface of the square samples
printed in nitrogen environment by PCLDMA:PEGDA (70:30) with 1, 2,
and 3 Wt % photoinitiator and accelerator: (a) hardness and (b) inden-
tation modulus. Data presented as mean = standard error (n = 4)
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Biocompatibility of the photocrosslinked ink

The results of the biocompatibility experiments are shown
in Figures 16 and 17. The PrestoBlue® assay is an indirect
measure of cellular metabolic activity and was used to
assess if any cytotoxic chemicals leached from the materials

1 mm

1 mm

N\

Wall thickness

(a)

and also to assess the ability of the cells to adhere to the
samples. In the cytotoxicity experiment, the percentage via-
bility as compared to a control (cells cultured on tissue cul-
ture plastic) was 60% after day 1, which then increased to
77% after day 3 and to 95% after day 5, suggesting that
cells proliferated following exposure to the media extract,
and so any initial cytotoxicity was overcome by the cells.

The metabolic activities of cells seeded on scaffolds in
the direct compatibility test were evaluated after days 1, 3,
and 5. After day 1, an elevated fluorescence signal indicated
that cells adhered to the sample. On subsequent test days,
at days 3 and 5, further increases in fluorescence suggest
proliferation and viability on the cured ink.

DISCUSSION

This work aimed to demonstrate a developed photocros-
slinkable PCL-based ink that is suitable for 3D inkjet print-
ing to produce biocompatible 3D structures. During the
investigation of the influences of processing parameters on
the product properties, it was noticed that when the printed
samples were subjected to further UV illumination (postcur-
ing), a marked difference in the properties on the upper
and lower surfaces was observed. The mechanical proper-
ties of the sample’s top surface, which was directly illumi-
nated by UV light, increased considerably after 10 minutes
of postcuring (Figure 4). However, additional postcuring for
20 and 30 minutes did not further influence these proper-
ties. This suggested that the cross-linking density induced
by the UV light has been almost saturated and no further
cross linking occurred.*®*” When a specimen was printed,
the conversion of the C=C group into the covalent cross-
link was not likely to reach 100%, but the UV illumination
during postprocessing can help convert the remaining C=C
groups to form new cross-links and enable the material to
reach its higher stiffness. During the postcuring procedure,
samples were illuminated from the top surface, and the UV
irradiation needs to penetrate the whole sample before
reaching the bottom surface. The apparent homogeneity in
the mechanical properties and the subsequent difference
when subjected to intense radiation from above mean that
each layer was able to partially cure to the same degree
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FIGURE 11. Printed mesh samples for processing accuracy check. (a) Schematic diagram of printing pattern design and (b) printed sample with

different wall thickness (150, 300, and 500 um from left to right).
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FIGURE 12. SEM pictures of printed mesh structure with different wall thickness: (a) 150 um, (b) 300 pm, and (c) 500 pum.

during the manufacture process. This suggests that signifi-
cant numbers of photons were not penetrating to layers
below. With the second stage of illumination, even with the
high intensity of illumination, there was no significant
increase in modulus observed on the bottom layer, and
thus, one may assume that in this case, few photons were
able to penetrate to this depth (Figure 18). This was further
confirmed by the measurement of the absorbance spectrum
(Figures 5 and 6).

The samples printed in air with lower PI concentration
showed more spreading (rounded edge) than those with
high PI concentrations or printed in nitrogen environment.
The likely cause of this is that the curing speed of the ink
with 1 Wt % PI and AC is slower air, allowing the droplet
to continue spreading and possibly be unable to support
drops deposited on to it sufficiently well to create sharp
edges. Higher PI and acceleration concentration will gener-
ate more excited Pl-free radicals when illuminated by UV
light as well as more excited ACs to protect the reaction
from being inhibited by the oxygen in the environment,
both of which will accelerate the cross-linking procedure. In
principle, if each droplet can become fully cured as soon as
it is deposited, they should be able to stack up (Figure 19).

However, when there was insufficient curing, the droplets
may only be partially cured before the other drops were
coincident. This effect will be amplified further when the
next drop is placed on top, as the partial curing will mean
the low viscosity drop will “sag” and slide down the edge of
the previous drop due to gravitational and spreading effects.
This caused irregular and rounded edges [e.g., Figure 7(a,b)].
As the curing speed increases, the deposited drops will be
more viscous and less mobile, creating a situation where
edges will be sharper and less susceptible to spreading effects
[Figure 7(c-f)]. This hypothesis was verified using FTIR analy-
sis (Figure 10) where the characteristic peak at 810 cm ™! was
used to track the conversion of the double bond.*®*° Figure
10(b) shows the normalized peak height at 810 cm™* for each
sample, and it can be seen that the intensity of the characteris-
tic peak at 810 cm ! decreased as the PI concentration
increased, indicating more conversion of the C=C double
bond and higher levels of curing for samples printed in air
with higher initiator concentration.

This is because the higher initiator concentration will gen-
erate more excited free radicals at the initiation stage, which
largely increases the chance that excited free radicals meet an
oligomer and enter the chain propagation stage. This, therefore,
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FIGURE 13. Curving mesh structure printing: (a) printing pattern, (b) sample appearance after taking off from glass slide, (c) top view of printed
sample, and (d) surface profiling of printed curving mesh structure.
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FIGURE 14. Microscopy pictures of printed curving mesh (1 division = 100 pm).



400 -—--- Intended Line Width
] Printed Line Width
350 L
300
£ 2l
£ P
=
= 200
= 7
2
£ 1504
100
504
0 v T v T Y T ¥ T v 1
0 2 4 6 8 10
Line Numbers
(@

ORIGINAL RESEARCH REPORT

350] - Intended Line Width
30— Printed Line Width
330
320
310 ]
300 -]
290 4
280
270
260 -
250
240 ]
230 -
220 ]
210
200 . . :

0 2 4 6 8 10

Number of Layers

(b)

Line Width /um

FIGURE 15. (a) Comparison of printed line width with intended line width in the designed pattern. (b) Line width increment with the increase in
the number of printed layers. Data presented as mean * standard error (n = 5).

can accelerate the cross-link reaction in a less favorable envi-
ronment, e.g., top surface of the sample printed in air (oxygen
inhibition and less UV illumination due to no subsequent layers
deposited on top and, therefore, no further passes of the UV) as
many backup excited initiators were generated. This assumes
that an improved curing speed at the top surface would be
achieved for the samples with higher initiator concentration
and printed in air environment. However, in the chain propaga-
tion stage, a high concentration of excited oligomer chains will
also have a greater chance to meet another excited oligomer
and terminate. This will lead to more premature polymer
chains being terminated, which reduces the cross-link density
of the whole network. Therefore, a sample with lower cross-
link density (higher initiator concentrations) will manifest
lower hardness and modulus. Moreover, higher PI concentra-
tion also means that more uncross-linkable reactants were
introduced that lead to a lower cross-link density also. Similar
effects have been reported®®>! where excessive PI concentra-
tions reduced the modulus of cured samples. Similarly, Naka-
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FIGURE 16. Metabolic activity of 3T3s cultured in extract media com-
pared to the control. Data presented as mean =* standard error
(n = 5). No statistical differences were found at day 5 between sample
extract media and the control (*p < 0.05).

jima et al.>® observed that excessive initiator concentration led
to the formation of dangling chains, which caused a reduction
in modulus.

It was also observed from Figure 8 that on the bottom
surface, inks with lower PI and AC concentrations manifest
higher hardness and modulus. This may indicate that if the
sample was properly cured, the samples with lower PI and
AC concentrations will possess higher hardness and modulus
values. A similar phenomenon was also observed for the
samples printed in a nitrogen environment, as shown in
Figure 9, but this time on both the top and bottom surfaces.
This gave further strength to the hypothesis that when the
samples can achieve sufficient curing, the sample with the
lower PI and AC concentrations will manifest greater hard-
ness and modulus.

The ink was shown to be biocompatible both by direct
contact with the cells and also upon exposure of the cells to
media containing any chemicals that may have leached from
the printed. PEGDA is added as a diluent but is not generally
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FIGURE 17. Metabolic activity of 3T3s seeded on scaffolds. Data pre-
sented as mean = standard error (n = 5).
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FIGURE 18. Schematic representation of the cross-linking of the internal polymer chains during postcuring.
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FIGURE 19. Schematic representation of deposited droplet in z-direction with different curing conditions.

considered easily degradable. However, the need for PEGDA
can be minimized in the future through the use of alternative,
higher temperature printhead units, leaving methacrylated
PCL as the dominant component. Methacrylated PCL has pre-
viously been demonstrated to be degradable,*® suggesting
that in the future, the utility of products printed with this for-
mulation may be extended to include biodegradable systems.
Furthermore, the inherent scalability of ink jet printing, where
printheads with numbers of nozzles in excess of 1024 are not
uncommon, demonstrates the possibilities for ink jet-based
manufacture of bespoke biomedical products.

CONCLUSIONS

A photocrosslinkable PCL-based ink that is suitable for 3D
inkjet printing to produce biocompatible 3D structures has
been demonstrated for the first time. In this article, PCLDMA:
PEGDA (70:30) was chosen and observed to be printable from
a Dimatix DMP-2830 at 60°C. The prepared ink could be cured
sufficiently to retain structures during printing, and stable
products were produced. Differences in hardness and modu-
lus on the printed sample’s top and bottom surfaces were
observed. Both hardness and indentation modulus increased
when postcuring was applied, but only the mechanical prop-
erties at the directly illuminated surface were improved as the
UV light could not penetrate through the whole sample. The
sample printed in an air environment had a hardness of

1656 HE ET AL.

~4 MPa and a modulus of ~40 MPa, while those printed in a
nitrogen environment had a hardness ~6 MPa and a modulus
~65 MPa, suggesting that optimization of the printing and
curing processes may offer some degree of enhancement in
the material properties. The developed ink also showed good
biocompatibility with living mammalian cells in a cytotoxity
test, suggesting possible uses in the biomedical field.
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