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Abstract

We study how quantum systems that propagate in the spacetime of a rotating planet
are affected by the curved background. Spacetime curvature affects wavepackets of
photons propagating from Earth to a satellite, and the changes in the wavepacket
encode the parameters of the spacetime. This allows us to evaluate quantitatively
how quantum communications are affected by the curved spacetime background of
the Earth and to achieve precise measurements of Earth's Schwarzschild radius and
equatorial angular velocity. We then provide a comparison with the state of the art in
parameter estimation obtained through classical means. Satellite to satellite
communications and future directions are also discussed.

Keywords: satellite communications; quantum metrology; Kerr spacetime

1 Introduction

Quantum communications is a rapidly growing field which promises several technical
improvements to current classical communications. One example is the use of quantum
cryptography which would make communications more secure, thanks to more robust
protocols than the classical ones [1]. More fundamental aspects can also be studied using
quantum communications. For example, the interplay between quantum physics and rel-
ativity can be probed through quantum communications between moving observers and
within schemes in a curved spacetime background [2]. The results of the measurements
can then be compared with the predictions obtained by theories that were developed in
the overlap of quantum physics and relativity, the most well known and understood of
these being Quantum Field Theory (QFT) in curved spacetime [3].

Knowing quantitatively how quantum communications are affected by the curved
spacetime background would enable to compensate undesirable relativistic effects in fu-
ture quantum technologies. Precise values of the necessary corrections in such quantum
communication setups can only be obtained with an accurate knowledge of the spacetime
parameters. We thus need to employ techniques from the field of quantum metrology,
which aims at exploiting quantum resources, such as entanglement, to estimate physical
parameters [4]. Within a standard estimation protocol, an input quantum state undergoes
a transformation that encodes the parameter to be estimated. The resulting state of this
transformation is then compared, by means of the fidelity, to a neighbouring state which
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is infinitesimally close in terms of the parameter. One can define a distance between these
two states that is directly related to the Quantum Fisher Information (QFI), which in turn
is directly related to the maximum precision one can obtain in an estimation scheme.
A final measurement provides an estimation of the value of the parameter in a single-shot
run [4].

Typical applications of quantum metrology range from phase estimation in quantum
optics to estimating the gravitational potential with Bose Einstein Condensates (BECs)
[5, 6]. However, when estimating relativistic parameters, gravity usually appears as an ex-
ternal potential, or a phase modification, which does not overcome the inherent inconsis-
tency between quantum physics and relativity [7]. Recently, this gap has been bridged and
quantum field theory in curved spacetime has been employed as the core framework to
compute the ultimate bounds on ultra-precise measurements of relativistic parameters.
In particular, it was shown that it is possible to use the shifting induced on the frequency
distribution of single photons ascending the gravitational potential of a static planet to
estimate with great precision the distance between a user based on Earth and one on a
satellite [2, 8]. In this case, gravity isn’t affecting the quantum state as the simple addition
of a phase. The effects due to curved spacetime can therefore not be explained by a simple
ad hoc implementation of proper time in a classical quantum mechanics scheme. Further-
more, it was shown that these effects can have potentially high impact on specific types of
quantum key distribution (QKD) protocols [2]. This direction has the potential of leading
towards the development of new relativistic and quantum technologies aimed at testing
the predictions of quantum field theory in curved spacetime in space-based experiments
with satellites.

In this work we extend the analysis carried out in previous works which investigated
quantum estimation techniques in scenarios where photons are exchanged between Earth
and a satellite [8]. There, the Earth was assumed as static and the effects on the propagation
of the photons depend only on the Schwarzschild radius of the Earth. Here we consider a
rotating planet, and we model the metric outside the mass distribution by the well known
Kerr metric [9]. The transformation induced by the curvature on the traveling photon re-
duces to a beam-splitter, a well known linear transformation in quantum optics [10]. We
can therefore restrict ourselves to Gaussian states and employ the powerful covariance
matrix formalism that allows to achieve analytical insight in scenarios that involve Gaus-
sian states and linear unitary transformations [11, 12]. In particular, we seek out the effects
of rotation on previously employed entanglement-swapping protocols [2, 8].

We find the error bound on the equatorial angular velocity of the Earth and compare
it with that achieved with cutting edge technology. The rate of improvement of quantum
optical technologies and the rapid increase of the control over quantum systems suggest
that in the near future our scheme might provide a reliable way to outperform current
technologies based on classical means.

The paper is organised as follows. In Section 2, we present the process of exchanging
photons between Earth and a satellite, we characterise and model the system, and we give
the mathematical formalism that is going to be relevant for the general relativistic calcu-
lations that will follow. In Section 3, we derive the expression of the frequency shift for
the photon travelling through the Kerr spacetime. Section 4 consists of the relativistic
quantum metrology calculations. It introduces the relevant perturbative quantities that
are affecting the states, and derives the Quantum Fisher Information (QFI) for the system
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studied, and hence the estimated error bounds for the spacetime parameters. Section 5
introduces the satellite to satellite scheme and the related precision estimations are com-
puted in the same fashion as in the Earth to satellite case. Finally, Section 6 briefly discusses
how the effects computed in this work can affect a simple QKD protocol, specifically com-
paring the magnitude of the effect with what has been found in [2].

Throughout the whole paper we employ geometrical units G =1 = ¢. Relevant constants
are restored when needed for the sake of clarity. Vectors and matrices are denoted in bold
characters. Vectors are written using the usual differential geometry notation [13], namely
X=X, X", X% X?) = X'8;, + X9, + X?3p + X?9,. Einstein’s summation convention is as-
sumed on repeated Greek indices. A and B indices denote evaluations at Alice’s and Bob’s

events respectively.

2 Introduction to the formalism

2.1 Description of the experiment

In this work we consider a spherical planet that rotates slowly. The Kerr metric can be used,
to good approximation, to model the spacetime background around the rotating planet [9].
Our work will be constrained to the equatorial plane 6 = 7 to be able to work with simple

analytical formulas. The reduced metric in Boyer-Lindquist coordinates (¢, 7, ¢) reads [9]:

2M 1 2Ma? 4M
d52=—<1——)dt2+—dr2+(r2+a2+ a )d(])z——ddtdq), (1)
r A r r
2M  a?
A=1-—+. ()
r r

For clarity, we will consider the rotating planet to be the Earth, with mass M, radius r4,
angular momentum J and Kerr parameter (i.e., angular momentum per unit mass) a = AL/I

A photon is sent radially by Alice from a laboratory on Earth’s equator to Bob who is
in a satellite circularly orbiting at radius rz in the equatorial plane of the Kerr spacetime.

A schematic representation of the setup can be found in Figure 1.

2.2 Wave packet characterisation

In this work we employ photons which are geometrically radial, namely with vanishing
angular velocities gﬁy =0= éy. We will see that in Kerr space-time such photons have a
non trivial angular momentum constant of motion, contrarily to the Schwarzschild case.
The evolution of the quantum field is thus a 1 + 1 dimensional problem. Such a photon can

be modelled by a wave packet of frequency distribution F,,(w) of monochromatic plane

Figure 1 Alice on Earth sends a photon
(localised around the straight line) to Bob in the
satellite. The photon experiences the effects of the
curvature of spacetime along the whole path while
propagating, which can be seen in the picture by
the progressive flattening and redshifting of the
Gaussian wavepacket. The final effect is a nonlocal
and cumulative effect due to travel along the whole
path.
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waves with frequency w and peaked at w,. The annihilation operator associated to this

photon by an observer (infinitely) far from Earth is:
+00 .
Gy (£) = / dwe ' F, (0)a,. (3)
0

The canonical bosonic commutation relations [awo(t),ulo(t)] = 1 for the bosonic operator
(3) at any instant of time follow directly from those for the sharp frequency operators
[aw,az),] = §(w — o) and from the normalisation of the frequency distribution function
Fuo(w) ie, [§° dwlFu(@)* =1.

It is possible to rewrite the annihilation operator (3) of the same photon as described by

Alice or Bob. We then follow notation in [2] and reproduce the equation below:

+00
agyo(tk) = /0 dQKe_’QK’KFS(QO (Qr)agy, (4)

where the index K = A, B refers to observer Alice or Bob respectively. The quantity Q is
the frequency of the photon as measured locally by the observer K with proper time zx.
We have introduced the peak frequency Qg of the frequency distribution Fg;)’o, and the
bosonic canonical commutation relations for each observer read [aQK,agK] =1.

Alice now prepares and sends a wave packet Fﬁ(?/;,o at altitude r4 which is received by
Bob on the satellite as a wave packet Fgﬁ , ataltitude rg. Throughout its journey, the wave
packet has changed due to the spacetime being curved. The relation between the two
frequency distributions has been already found in [2]. We define the frequency shift as
Qg =fQa, where f is the fotal shifting function that will be made explicit later (notice that

we are not using the same definition for f as in [2, 8]). Then one finds:

Fg) () = ﬁpgygp GQB) (5)

Bob knows that the photon Alice has sent was characterised by F&)’O. One way to quantify
the change in the state of the photon is to use the fidelity between the initial state prepared
with wave packet Féﬁo and the final state received with wave packet Féf;o. The fidelity
F =|@|? for a single photon in a pure state is simply defined through the overlap function

between the two frequency distributions:

+00
o= / QD" (@) FL (). (6)
0

Q4,0

The fidelity would tend to zero for photons traversing regions of the spacetime with suffi-
ciently strong curvature, while it would reach unity in flat spacetime.
A convenient choice of wave packet is a normalised Gaussian wave packet of width o

and with a frequency distribution of the form:

1 (Rx-2x,0)*

Q)= 7—=e 7 . (7)

V2o

F(K )

QK0
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We therefore employ (6) and (7) (also see [2]) to find:

2(1+6) - %o
@ = — " e 41+(1+8)%)o , (8)
1+(1+8)2

with the amount of shifting being quantified by the new parameter § defined by:
§=1-f%. )

In the following, we will derive the explicit formula for f in terms of the spacetime param-
eters.

3 Frequency shift in Kerr spacetime

3.1 Preliminaries

The general frequency shift formula for a photon emitted from Alice on Earth and received
by Bob in the satellite reads [13, 14]:

Qp _ [kXB]Ix:xB

T Qu kXl 1o

f

IX=x4

where X4 and X are the four-velocities of Alice and Bob respectively, while k is the tangent
vector to the affinely parametrised null geodesic that the photon follows. For simplicity of
the computations, we restrain our study to a satellite that follows a circular orbit, i.e. we
have 75 = 0 = 774, where the dot stands for derivative with respect to proper time. Bob’s
satellite has its motion constrained to the equatorial plane of the Kerr spacetime, thus

65 = 0 and Alice has neither a §-motion. Also our photon is geometrically radial, hence:

KM (Xi), = K (Excgu + Prcgio)s (11)

where again K = A, B.

The velocity of our observers are [15, 16]:

Xa=ya(d; + 0ady), (12)

X5 = y5((1+ €awp)d, + ewpdy), (13)

where € = +1 for direct orbits (i.e., when the satellite co-rotates with the Earth), and ¢ = -1
for retrogade ones (i.e., the opposite way). The parameter w4 = d¢4/dts denotes Earth’s
angular velocity at the equator, while wp = ,/M/r3 is Bob’s orbit frequency. The normali-

sation factors y4 and yj are given by:

S

2M B
Ya = <1 -’ (rf\ + az) - r_(l - aa)A)2> , (14)
A

3M T2
Vg = <1 -— 4 2eaa)3) . (15)

rp
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The tangent vector to the photon’s worldline reads:

k:E},<%8t ¥ ﬁa,), (16)
a* 2M 4 M’a?
K:1+r_2 1+T +jr—4, (17)

r

where it has been used that for such a geometrically radial photon we have:

E, 2M
o — (18)

L,=-a
14 r
r

The constants of motion E, and L, are respectively the energy and longitudinal angular
momentum of the photon as measured by an inertial observer at space infinity. These
quantities are conserved along geodesics thanks to the presence of the two Killing fields

d; and 9. After evaluation at X, the explicit form of the numerator in (10) thus reads:

. E,ygkp 2M 2M
" - _r _ = -
[k (XB)"]\XB A (1 . +eaa)3(1+ . )) (19)

The denominator of (10), after evaluation at X4, reads:

[k“(XA)M]\XA = _EyZiKA <1 - %(1 - ZﬂwA)>« (20)

The A and B subscripts on the quantities A and « denote evaluation at r4 and rp respec-
tively. We now have all the ingredients to compute explicitly the frequency shift of the
photon (10).

3.2 Frequency shift formula

Plugging (19) and (20) in (10), we obtain the explicit expression of the frequency shift for
the photon exchanged between Alice on Earth and Bob in the circularly orbiting satellite.
We find:

2M 2M
_KBVBAA 1- E +eaa)3(1+ E

= 21
KayalAp 1- %4(1—2110)14) 1)

In the Schwarzschild limit (a4, w4) — (0, 0), the frequency shift simplifies to:

(22)

Therefore, equation (21) reduces to the known result for a radial photon in a static planet
spacetime that has been used in [2, 8]. As expected by the symmetry of the problem in
the case of a radial photon propagating in Schwarzschild spacetime, the result does not
depend on the direction of rotation of the satellite, namely on €. One can also notice that,

in this limit, photons received on satellites orbiting at radius rg = %rA will not experience
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any frequency shift. In the Schwarzschild picture, this is the altitude at which the gravita-
tional effect of the Earth and the special relativistic effect due to the motion of the satellite
compensate each other, and Bob’s clock rate becomes equal to the clock rate of Alice. In-
deed, the satellite’s motion around the Earth slows down Bob’s proper time, but the higher
altitude of Bob introduces a lower redshift which therefore has also a lower effect on Bob’s
clock rate, as compared to Alice. Special relativistic effects thus dominate the frequency
shift of photons received at altitudes below rg = %rA, where photons will actually be re-
ceived blue-shifted, while the photons will be received red-shifted at rz > %rA where the
gravitational frequency shift dominates.

A last relevant check is to verify the absence of frequency shift in flat spacetime. Unsur-

prisingly, we get from the relevant limit of (21) that in Minkowski spacetime fj; = 1.

4 Quantum estimation of rotation parameters of the Earth
In this section, we apply quantum estimation techniques to find the ultimate bounds on

the precision of measurements of parameters of the Earth.

4.1 Summary of spacetime parameters
In our result (21) for the frequency shift of a radial photon traveling from Earth to space
there are five dimensionless perturbative parameters of interest, for which we give numer-
ical values in the Table 1.

We have used the following values: a = 3.26 m, w4 = 7.29 x 107> rad/s, 4 = 6,378 km,
M =5.97 x 10** kg. Furthermore we consider two orbits for satellites, low Earth orbits
rg(LEO) = r4 + 2,000 km and geostationary ones rg(GEO) = r4 + 35,784 km.

4.2 Quantification of the frequency shift
The amount of change in the photon’s frequency distribution is quantified by our general

parameter §:

§=1- |2, (23)

where Q5/Q4 has an explicit expression in (21). We proceed by expanding perturbatively
in the parameters from Table 1 the square root of (21). We obtain a § parameter of the
following form:

8 =85 + 8rot + 8¢ (24)

Table 1 Dimensionless perturbative parameters in the frequency shift formula

Quantity (N. Units) Quantity (S.1.) Value Orbit
M/ra GM/(rsc?) 6.95 x 10710 /
M/rg GM/(rgc?) 1.05 x 10710 GEO
529 x 10710 LEO
alra alr 511 x 1077 /
alrg alrg 7.74 x 1078 GEO
389 x 107/ LEO

rawa rawalc 155 x 107 /
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where &g is a first order Schwarzschild term, 8, is the lowest order rotation term, and we
gather all higher order corrections in §.. We give explicit values of the first two:

L
1 s 1—27—
b= S, (25)
8rqa 1+ é
2
v
Suop =\ AZA) ~10783, (26)

where we have introduced the Schwarzschild radius of the Earth rg¢ = 2M and the distance
between Alice and Bob L = rg — r4. Notice that §s in (25) is different to the § displayed
in the Schwarzschild scenario papers [2, 8]. Apart from minor changes in conventions,
it comes from the fact that we are expanding the fotal frequency shift (21) taking into
account both special and general relativistic effects, while in [2, 8] § has been obtained by
expanding only the gravitational frequency shift. With the values used in Table 1, we have
85 ~ —107! for LEO orbits and §s ~ 1071° for GEO orbits. Lowest order terms from §, are
of order 10722,

If one assumes that the positions of Alice and Bob are known with sufficient (i.e. infinite)
precision, one can employ (24) to express the precision A§ on measurements on § in terms
of the precision Arg on the Schwarzschild radius:

AS = Bgﬂ. (27)
rs
We have used that for most orbits |§s| > |8.| to neglect terms coming from §,.. Yet, as
noticed in (22), there is no frequency shift in Schwarzschild spacetime for orbits L = r4/2,
and consequently 85 vanishes for these orbits. Hence, for such orbits L ~ r4/2 we need
to take higher order corrections from &, into account, and (27) will have a more involved
expression.

We are also interested in the precision one can achieve for the measurement of Earth’s

equatorial angular velocity. The relation between A§ and Awy is simply:
A5 28,0 DA (28)
WA
We will now proceed to employ the quantum estimation techniques necessary to find the
ultimate bounds on the measurement errors we have explicitly found above. In order to
achieve this goal, we need to compute the Quantum Fisher Information H(§) which will
allow us to employ the Cramér-Rao theorem.

4.3 Quantum Fisher information (QFI) and single parameter estimation

The most important quantity in quantum metrology is the quantum Fisher information H,
which allows to directly compute the bounds on measurements of interest through the well
known Cramér-Rao theorem [17]. In particular it was shown in [17] that, if one wishes to
estimate the parameter § encoded in the final state p(8) of a system after a transformation
U(8), one can employ the fidelity F(o(8), (8 + d8)) between the states p(8) and p(§ + d3)
and obtain the QFI as

H= im gL= V7 (P©), 06 +d8) (29)

ds—0 ds?
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One can then compute the ultimate bound on the error A§ through the Cramér-Rao in-
equality as

|AS| > (30)

1
VNH’
where N is the number of probes in the experiment.
Following [8], we employ an initial two mode squeezed state and compute the fidelity F
in order to obtain the QFI. It reads:

Q? + Q2

F=1
402

sinh?(s) d82, (31)
where s denotes the squeezing parameter, o the spread of the frequency distribution of the
photon, and 2; denote the peak frequencies of the distribution of each mode, i.e., i =1,2.
From this we compute the QFI as:

_Qf+§2§

H 2

sinh?(s). (32)
o

Finally, we find our desired result:
o

VN(QZ + Q2)sinh(s)

In the following we specialise equation (33) to different estimations, such as estimation of

|AS] =

(33)

the Schwarzschild radius or the equatorial angular velocity of the Earth.

4.4 Optimal bounds for the error on spacetime parameters

In this section we will focus on applying the previous techniques to estimate the ultimate
error bounds on the Schwarzschild radius rs and on the equatorial angular velocity w4 of
the Earth. We assume absence of losses and use typical values for the parameters of the
setup such as the bandwith o = 10® Hz, the peak frequencies ) = Q = Q =7 x 10 Hz
and the allowed number of measurements N = 101, In practice, these numbers imply a
measurement time of No ™! ~ 3 hours. Furthermore, we present results for squeezing s =
2, which is achievable with state-of-the-art technology [8, 18]. The optimal bound for the
error on the measurement of Earth’s Schwarzschild radius is given by:

|Ars| - 1 o s |_1 (34)
rs /2N sinh(s) 2 st

The rotation terms being negligible, the result is essentially the same bound as in [8] for
measurements of the Schwarzschild radius, namely |Ars/rs| ~ 107> for LEO orbits and
| Ars/rs| ~ 107 for GEO orbits. Yet, these values now take into account special relativistic
effects due to Alice’s and Bob’s motion.

For orbits at altitude around L ~ %‘ however, the Schwarzschild term 8 in (34) vanishes,
we then need to add the lowest order terms from §.. These are several orders of magni-
tude smaller than Js, therefore satellites orbiting at these altitudes are not recommended
for the experiments proposed here since the precision they would provide for the mea-
surement of the Schwarzschild radius is significantly lower. This result is new compared
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to the study carried in [8], it comes from taking into account special relativistic effects due
to our observers’ motions.

We shift our attention to estimating the bound for the equatorial angular velocity of the
Earth. We get:

[Awal _ 1 o

> —rorr (35)
wa 24/2N sinh(s) @ ™

which gives bounds of order | Awa|/wa ~ 1073. We are five orders of magnitude below the
IERS Numerical Standards that give a relative uncertainty of order 1078 [19], as well as the
per billion precision of a recent direct measurement involving large ring laser gyroscopes
[20] and of old interferometer experiments [21]. However, given the current rate of im-
provement in quantum technologies, it is reasonable to assume that, in the near future,
we will be able to employ higher squeezing values and photons of higher energy. Finally,
larger number of measurement probes would also contribute to enabling us to exceed the

state-of-the-art precision.

5 Satellite to satellite communication

Another possible experimental setup would see two parties, Bob and Charlie, both fol-
lowing geodesic circular orbits in the equatorial plane of the Earth, located at altitudes
rg and r¢ respectively, with rp > rc. The advantage of this setup is that the channel (i.e.,
the free space between the two parties) is free from the noise introduced, for example, by
the presence of the atmosphere in the case of Alice sending a photon from Earth to Bob’s
satellite [22, 23]. Using (10) with Charlie instead of Alice and (19) for Bob and Charlie, the
general frequency shift formula for a photon emitted from Charlie’s device on a satellite
and received later by Bob on a higher satellite reads:

Qs B VeksAc 1- % + eawp(l + %)

-~ ’ (36)
Qc  yckcApl-— % +nawc(l + 2,%4)

where all the quantities with a C subscript are the same as Bob’s but substituting rz with
rc and € with 5. Similarly to Bob’s €, n = £1 depending on which way Charlie’s satellite
revolves around the Earth. In this expression there are four perturbative parameters of
interest: the Schwarzschild parameters M/rg, M/rc, and the Kerr parameters a/rg, a/rc. In
order to obtain the shift quantity §; = 1—/Q5/Q¢ that quantifies the shift in the frequency
distribution of the photon, we need to expand perturbatively the square root of (36) with

respect to these four parameters. Doing so, we find an expression of the following form:

55 = 85,5 + (Ss,rot + Ss,m (37)
with:
3 LI’S 1 _10
855 == — ~1077, 38
B8 14 L (38)
rc

1 rea® L\3
Sorot = = - (1 - (1 + —) ) ~107%, (39)
8 re rc
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where now L = rg — r¢ > 0, 8 are higher order contributions that are negligible, and we
give numerical values of §;s and §; ot for Charlie following a LEO and Bob a GEO. Notice
that in this scheme where both observers are geodesic, contrary to the Earth to satellite
setup, there are no orbits for which the Schwarzschild term §;s vanishes. We can now
express the error Ad; on our shift parameter §; in terms of the error on the spacetime
parameters. We find:

A}"S A}"S
A(ss = (SS,S + as,rot)— ~ 85,8—7 (40)
rs rs
Aa Aa)A
A(Ss = 2(Ss,rot_ = 28s,rot—» (4‘1)
a [OF}

where we have used for the last equality that a = 2lw4/rs, where I is Earth’s moment
of inertia. For a photon sent from Charlie on a low Earth orbit (r¢ ~ 8,000 km) to Bob
on a geostationary one (rg ~ 42,000 km), we find the order of magnitude for the preci-
sion on the Schwarzschild radius to be |Arg|/rs ~ 107® and on the rotation parameters
|Aalla ~ |Awa|/wy > 1. Therefore, in this satellite to satellite scheme, the rotation pa-
rameters measurements are losing several orders of magnitude of precision compared to
the Earth to satellite setup. This is understandable by looking at the nature of the observer.
On Earth, Alice is strongly dragged by Earth’s rotation while the satellites experience only
a slight dragging due to the weak rotation of the metric. It is then not surprising that the
satellite to satellite setup, which is made of two geodesic orbiting observers, is less sensi-
tive to the rotation parameters of the Kerr spacetime. However, the value for the precision
on the measurement of the Schwarzschild radius is similar to the Earth to satellite scheme,
making both setups equally good in theory. Yet, one has to keep in mind that a satellite to
satellite scheme will provide channels free from any atmospheric noise and should there-
fore eventually yield more precise measurements.

6 Quantum bit error rate (QBER) in a simple QKD protocol
In order to complete our analysis of the possible means of detecting these effects, we can
compute the QBER for a simple QKD protocol, following closely what has been done in [2].
Alice and Bob have two memories each: A1, A2 and B1, B2 respectively. The optical modes
contained in the memories of one user (e.g. Alice’s) are propagated to the other user (Bob,
in this case). The optical modes from memories A1 and Bl are then entangled at the re-
ceiver’s lab and similarly for A2 and B2. Alice then beam splits A1 and A2 and each output
branch of the beamsplitter is measured by a detector. Bob performs the same operation
with Bl and B2. If each user has one detector clicking, the protocol has been working suc-
cessfully. The probability for Alice and Bob to share the same bit, i.e., the probability for
memories Al, Bl and A2, B2 to have the same state is p = 1 — q/2, where g <« 1 will in our
case be related to our § parameter and the wave packet distributions. The QBER is the
rate of bits that were not shared between Alice and Bob, i.e. QBER=p=1-p = q/2. We
employ the same protocol between Alice and Bob and adapt it to our new results, which
take into account Earth’s rotation and special relativistic effects. From [2] we have:
QBER ~ %, (42)
802
8202
802

in the regime § €« —2° « 1.
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In the Earth to satellite setup, the contribution of the rotation to § in (24) is negligible for
most orbits. We obtain a QBER of order 10~° for communications to LEO orbits and 10~*
to GEO orbits. For orbits at radii rg ~ %rA however, the rotation term becomes dominant
and the QBER shrinks to ~1071°, Hence, these orbits are recommended to reduce the
QBER in Earth to satellite quantum communications.

In the satellite to satellite case, the Schwarzschild part of the shift is always dominant.
The value of the shift between a LEO and a GEO satellite is similar to the GEO orbits
case in the Earth to satellite scheme, hence the value for the QBER for quantum commu-
nications between a LEO and a GEO satellite is of order 10~* too. However, taking into
account atmospheric effects in the ground to satellite case would make the satellite to

satellite scheme more accurate.

7 Conclusion

In this paper we have derived an expression for the general relativistic frequency shift of
a photon travelling through Earth’s rotating surrounding spacetime. We have specialised
to photons travelling with vanishing angular velocities from an equatorial laboratory on
Earth towards a satellite revolving in the equatorial plane of the Kerr spacetime. This
study provides analytical insight and successfully extends previous results obtained for
Schwarzschild spacetime [2, 8]. We have found that including the rotation of the Earth
does not change previous estimates obtained for the Schwarzschild radius in a quantum
metrology scheme. However, we were able to estimate the precision for the quantum mea-
surement of the equatorial angular velocity of the Earth. We find that the error bound pre-
dicted for the equatorial angular velocity of the Earth can exceed the precision obtained
with the state of the art when high values of squeezing and a large number of probe sys-
tems (or measurements) are employed. Suitably chosen signals, such as frequency comb,
instead of Gaussian-shaped frequency distributions, could also improve precision [24, 25].
Taking into account special relativistic effects, we have also found a specific class of cir-
cular orbits where the frequency of the received photons remains almost unchanged. For
quantum metrology purposes these orbits have to be avoided since the quantum state of
the photons is less perturbed, yet they are very useful for minimal curved spacetime dis-
turbance channels for quantum communication. To complete our analysis, we have added
a study of the error bounds for the same parameters when communication occurs between
two satellites, which has relevance for practical implementations of many quantum infor-
mation schemes, such as proposed implementations of QKD through satellite nodes [26].
We conclude that recent advances in quantum technologies, which include the ability to
create larger values of squeezing, show the promising opportunities of improving the state
of the art for measurements of physical parameters of the Earth.
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