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Abstract
Following the cubical set model of type theory which validates the univalence axiom, cubical type
theories have been developed that interpret the identity type using an interval pretype. These
theories start from a geometric view of equality. A proof of equality is encoded as a term in
a context extended by the interval pretype. Our goal is to develop a cubical theory where the
identity type is defined recursively over the type structure, and the geometry arises from these
definitions. In this theory, cubes are present explicitly, e.g., a line is a telescope with 3 elements:
two endpoints and the connecting equality. This is in line with Bernardy and Moulin’s earlier work
on internal parametricity. In this paper we present a naive syntax for internal parametricity and
by replacing the parametric interpretation of the universe, we extend it to univalence. However,
we do not know how to compute in this theory. As a second step, we present a version of the
theory for parametricity with named dimensions which has an operational semantics. Extending
this syntax to univalence is left as further work.
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1 Introduction

Homotopy Type Theory [18] introduces the univalence axiom, which basically identifies
propositional equality with equivalence of types1. We can understand the univalence axiom
as a powerful extensionality principle which allows us to replace one type by another which
has the same behaviour. It also entails functional extensionality.

The usual formulation of Homotopy Type Theory (given in the appendix of [18]) lacks a
computational understanding of univalence. With some simplification it adds the following
axiom to Martin-Löf Type Theory:

univ : A ' B → A =U B

∗ This research was supported by EPSRC grant EP/M016951/1, USAF grant FA9550-16-1-0029 and
COST Action EUTypes CA15123.

1 Equivalence of types is a proof-relevant refinement of isomorphism. Naively it is sufficient to think of
isomorphism since this notion is logically equivalent (but not isomorphic as a type).
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3:2 Towards a Cubical Type Theory without an Interval

saying that an equality in the universe is provided given an equivalence between the types
A and B. Here, equality is defined as an inductive family with the constructor refl and
eliminator J. The axiom univ adds another constructor without providing an elimination
rule for this constructor resulting in stuck terms. For example, we can define the equivalence
(not, . . . ) between Bool and Bool and thus univ (not, . . . ) : Bool =U Bool, and then using it,
define a boolean b:

coe : (A =U B)→ A→ B

coe (reflA) a :≡ a
b : Bool
b :≡ coe (univ (not, . . . )) true

We know that b should be false as we coerce along not, but coe was only defined2 for the
case refl so the term b does not compute further. One may think that it would be enought to
add the equation coe (univ (f, . . . )) ≡ f but this is not sufficient as shown by the following
example. Here we use the ap (apply path) function for a P : U→ U:

apP : A =U B → P A =U P B

apP (reflA) ≡ refl (P A)
x : P Bool =U P Bool
x :≡ apP (univ (not, . . . ))

To reduce this term we need to know how to transport an equivalence along an arbitrary
type.

We observe that the problem is caused by viewing equality as an inductive type with only
one constructor. Alternatively, we may want to exploit the characterisation of equalities for
each type (as described in chapter 2 of [18]): equality of pairs is a pair of equalities, equality
of functions is given by a function and equality of types is given by equivalence. That is
we want to define the equality relation inductively on the type structure. The theory of
logical relations, as known from parametricity ([10, 13, 5]) describes such relations: a logical
relation for pairs is a pair of relations, a logical relation for functions is a function which
maps related inputs to related outputes. When we view equality as a logical relation, the
fundamental lemma of logical relations which says that every term preserves the relation
becomes congruence for equality (usually denoted ap or cong). Our work is closely related to
the earlier work by Bernardy and Moulin on internal parametricity [6, 15, 8]. Their later
[7, 16] work uses as interval type just as [11]. The work on Observational Type Theory [3]
is related, however it uses a different heterogeneous equality with built-in proof-irrelevance.
Another work very similar to ours is [17], however it only targets functional extensionality.

Our approach is an alternative to introducing an interval pretype as in [11, 4]. Clearly,
their work is more complete in that it provides a computational understanding of univalence.
While the introduction of the interval is very elegant it is interesting to consider an alternative
approach where equality is defined recursively. However, in the moment it is not clear how
to interpret univalence in this context. The basic idea is to say that equality in the universe
is given by a symmetric notion of equivalence but the problem is that in this definition we
refer back to equality for any type in the universe. Hence we do not succeed in justifying the

2 coe was defined by pattern matching, which can be seen as a usage of the eliminator J in this case.
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usual rules for equality, in particular the eliminator J. However, justifying univalence is also
technically complicated in [11].

Our approach is also closely related to the basic cubical model of type theory as described
in [9, 14] (without connections). That is the structure of the presheaf model emerges in our
syntax. Hence, we conjecture that there is a natural interpretation of our syntax in this
presheaf category. The main question is how a univalent universe of fibrant types can be
defined in the syntax.

1.1 Structure of the Paper
We develop a naive approach to cubical type theory by defining equality in section 2. Our
main tool is to introduce heterogenous logical relations similar to Bernardy and Moulin
[6]. However, they focus on logical predicates while we are using logical relations and our
approach is based on a calculus with explicit subsitutions. We also show how to interpret
univalence and derive the eliminator for equality in this calculus (section 2.8). One issue with
this calculus as already observed by Bernardy and Moulin is the computational interpretation
of the swap operation which swaps dimensions. To address this we introduce a new system
with named dimensions in section 3. This is similar to Type Theory in Colour [8] but with
explicit substitutions and without the need to annotate all judgements with a list of colours
or dimensions. We present an operational semantics for this calculus (appendix A) but do
not prove completeness. Also the question how to interpret univalence is left open. We
conclude in section 4.

2 Naive Cubical Type Theory

In this section we introduce a naive syntax for cubical type theory. After presenting a core
substitution calculus (section 2.1) and the rules for dependent function space (section 2.2)
we show how to extend the theory by rules for external parametricity (section 2.3), internal
parametricity (section 2.4) and finally we replace relations by equality relations and admit
univalence (2.8). In each section, we introduce new derivation rules which extend the theory
given in the previous sections. We discuss the metatheoretic properties of the theory in
section 2.9.

2.1 Core Substitution Calculus
We start with an explicit substitution calculus with variable names and universes à la Russell.
Weakening is implicit. While we present the system using named variables for readability
we assume that terms are identified up to α-conversion and that name capture is always
avoided by appropriate renaming. We use U : U for presentation purposes, but mean Ui : Uj
only if i < j officially. We only define well-typed terms (no preterms) and we write equality
judgements without context and type information for brevity. For a formal account on such
an approach, see [2].

Notations:

Γ,∆,Θ contexts
x, y, z,X variables
t, u, v, f terms
A,B,C types
ρ, σ, ν substitutions

TYPES 2015



3:4 Towards a Cubical Type Theory without an Interval

Judgment kinds:

Γ ` Γ is a valid context
Γ ` t : A t is a term of type A in context Γ
ρ : ∆⇒ Γ a substitution from ∆ to Γ
Γ ≡ Γ′ definitional equality of contexts
Γ ` t ≡ t′ : A definitional equality of terms
Γ ` ρ ≡ ρ′ : ∆⇒ Γ definitional equality of substitutions

Rules:

· `
Γ ` Γ ` A : U

Γ.x : A `

Γ `
ε : Γ⇒ ·

Γ ` A : U ρ : ∆⇒ Γ ∆ ` t : A[ρ]
(ρ, x 7→ t) : ∆⇒ Γ.x : A

Γ `
idΓ : Γ⇒ Γ

ρ : ∆⇒ Γ σ : Θ⇒ ∆
ρσ : Θ⇒ Γ

∆ ` A : U ρ : ∆⇒ Γ
ρ : ∆.x : A⇒ Γ

idρ ≡ ρ ≡ ρid ν(ρσ) ≡ (νρ)σ (ρ, x 7→ t)σ ≡ (ρσ, x 7→ t[σ])

( idΓ︸︷︷︸
:Γ.x:A⇒Γ

, x 7→ x) ≡ idΓ.x:A σ : Γ⇒ ·
σ ≡ ε

Γ ` A : U Γ ` t : B
Γ.x : A ` t : B

Γ ` t : A ρ : ∆⇒ Γ
∆ ` t[ρ] : A[ρ] t[id] ≡ t t[ρ][σ] ≡ t[ρσ]

Γ ` A : U
Γ.x : A ` x : A

Γ `
Γ ` U : U U[ρ] ≡ U

We assume all coercion rules, congruence rules and reflexivity, symmetry, transitivity of ≡.
We usually omit the starting · from contexts and ε from substitutions.

2.2 Function Space

We list the rules for dependent function space here.

Γ.x : A ` B : U
Γ ` Π(x : A).B : U

Γ.x : A ` t : B
Γ ` λx.t : Π(x : A).B

Γ ` f : Π(x : A).B Γ ` u : A
Γ ` f u : B[(id, x 7→ u)]

(λx.t)u ≡ t[x 7→ u] f ≡ (λx.f x)

(Π(x : A).B)[ρ] ≡ Π(x : A[ρ]).B[(ρ, x 7→ x)]

(λx.t)[ρ] ≡ λx.t[(ρ, x 7→ x)] (f u)[ρ] ≡ f [ρ]u[ρ]

A→ B is an abbreviation for Π(x : A).B where B does not depend on x. Π(x : A, y : B).C
is an abbreviation for Π(x : A).Π(y : B).C.
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2.3 External Parametricity
Binary parametricity says that logically related interpretations of a term are logically related.
We can express this syntactically in the following way: given a term Γ ` t : A, and two
substitutions into Γ denoted ρ0 and ρ1 which are pointwise related at each type in Γ, then
t[ρ0] and t[ρ1] will be related at A. We formalise this idea by adding the following rules to
our theory:

Γ `
Γ= ` 0Γ, 1Γ : Γ= ⇒ Γ

Γ ` t : A
Γ= ` t∗ : A∗ t[0Γ] t[1Γ]

ρ : Γ⇒ ∆
ρ= : Γ= ⇒ ∆=

Γ= contains two copies of Γ (ρ0 and ρ1 in the above example) and a logical relation between
them. A∗ is the logical relation at A. It relates the two interpretations of the term t, in
the two different copies of Γ, which are projected out by the substitutions 0Γ, 1Γ. t∗ is the
witness of this relation. The parametricity rule for a term t says that the two versions of the
term are related at A∗ and this is witnessed by t∗. Also, substitutions can be lifted to the
−=-d contexts. We use the notation−= because (from section 2.8) we will view the relation
A∗ as the heterogeneous equality relation on A.

The following rule for relations is admissible as it follows from the rule for terms and the
equality rule for U∗ below.

Γ ` A : U
Γ= ` A∗ : A[0Γ]→ A[1Γ]→ U

The operation−= duplicates a context and adds witnesses that the two new subcontexts
are pointwise related. We add lower indices to the variable names to get new variable names.

·= ≡ ·
(Γ.x : A)= ≡ Γ=.x0 : A[0Γ].x1 : A[1Γ].x2 : A∗ x0 x1

The substitutions 0 and 1 project out the corresponding components (b = 0, 1).

b· ≡ ε : · ⇒ ·
b(Γ.x:A) ≡ (bΓ, x 7→ xb) : (Γ.x : A)= ⇒ Γ.x : A

The relation A∗ is generated by induction on A: for function types, it says that related
inputs are mapped to related outputs, for the universe, it is relation space3. As types are
just terms, we define t∗ for every term t uniformly, including the cases when it is a type:

(Π(x : A).B)∗ ≡ λf0 f1.Π(x0 : A[0], x1 : A[1], x2 : A∗ x0 x1).B∗ (f0 x0) (f1 x1)
U∗ ≡ λX0X1.X0 → X1 → U
x∗ ≡ x2

(t[ρ])∗ ≡ t∗[ρ=]
(λx.t)∗ ≡ λx0 x1 x2.t

∗

(f u)∗ ≡ f∗ u[0]u[1]u∗

Note that U∗ validates the rule U∗ : U∗ U U by reducing its type. The cases for variables,
substituted terms, abstraction and application can be seen as the proof of the fundamental
theorem of the logical relation.

3 In section 2.8 we will replace relation space by equivalence
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3:6 Towards a Cubical Type Theory without an Interval

−= on substitutions is defined componentwise.

ε= ≡ ε
id= ≡ id
(σρ)= ≡ σ=ρ=

(ρ, x 7→ t)= ≡ (ρ=, x0 7→ t[0], x1 7→ t[1], x2 7→ t∗)

Finally, we add naturality of b for b = 0, 1.

ρ : Γ⇒ ∆
ρbΓ ≡ b∆ρ=

The above rules add external parametricity to the theory. For example, using the new
rules, we can derive that a particular inhabitant of the type Π(A : U).A→ A is the identity
function. Using the parametricity rule for the term f and expanding its type using the
computation rules we get

f : Π(A : U).A→ A

f∗ : Π
(
A0 : U, A1 : U, A2 : A0 → A1 → U,
x0 : A0, x1 : A1, x2 : A2 x0 x1

)
.A2 (f A0 x0) (f A1 x1) .

Now we define a function that for any type A and element y : A shows that f A y is equal to
y. For this example we need an identity type IdA and its constructor refl to be part of our
theory. The binary relation on A says that the first component is equal to y. Obviously, this
y witnesses this relation by refl y.

λA : U y : A.f∗AA (λx0 x1.IdA x0 y) y y (refl y) : Π(A : U, y : A).IdA (f A y) y

Another example of using parametricity is given for the following term.

A : U.z : A.s : A→ A ` t : A

We can interpret the context by the following two substitutions. For this example, we need
natural numbers and booleans in our type theory.

ρ0 = (A := N, z := zero,s := suc)
ρ1 = (A := Bool,z := true,s := not)

That is, in the first case we use natural numbers with the Peano constructors for z and s and
in the second case we have booleans with true for z and negation for successor. We would like
to prove that whatever t is, it is not possible to have t[ρ0] = suc (suc zero) and t[ρ1] = false.
Binary parametricity says in this case that if we have a relation between N and Bool such
that if z[ρ0] is related to z[ρ1] and s[ρ0] is related to s[ρ1] then t[ρ0] is related to t[ρ1]. We
can define the relation A2 : N→ Bool→ U to be A2 x b := if b then Evenx else Oddx. We can
show that zero and true are related as zero is even and that the successor of an even number
is odd and the successor of an odd number is even. Parametricity tells us that t[ρ0] and t[ρ1]
need to be related by A2, hence it cannot happen that t[ρ0] is 2 and t[ρ1] is false. Collecting
together ρ0, ρ1 and the proof of their relatedness into ρ, we can express this in our theory as
follows.

A : U.z : A.s : A→ A ` t : A
(A : U.z : A.s : A→ A)= ` t∗ : A2 (t[0]) (t[1])

· ` t∗[ρ] : A2[ρ] (t[ρ0]) (t[ρ1])
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We call this theory external because even though we can show for every instance of
f : Π(A : U).A→ A that it behaves like the identity but we cannot show this internally for
an assumption of the form f : Π(A : U).A→ A.

2.4 Internal Parametricity
To internally derive that every function of type Π(A : U).A→ A is the identity, we would
need a term t expressing parametricity for f assuming it in the context containing f :

f : Π(A : U).A→ A ` t : Π(A0, A1 : U, A2 : A0 → A1 → U) .
Π(x0 : A0, x1 : A1, x2 : A2 x0 x1) . A2 (f A0 x0) (f A1 x1).

We can try to choose t to be f∗, but that lives in the context (f : Π(A : U).A→ A)=.
This motivates the definition of a substitution that goes from a context Γ into Γ=. Using

such a substitution RΓ, we can choose the above t to be f∗[Rf :Π(A:U).A→A].
We add the substitution R by the following rule.

Γ `
RΓ : Γ⇒ Γ=

We also add the following computation rules.

R· ≡ ε RΓ.x:A ≡ (RΓ, x0 7→ x, x1 7→ x, x2 7→ x∗[RΓ.x:A])
ρ : ∆⇒ Γ

RΓρ ≡ ρ=R∆

The first two rules explain how R is duplicating the elements in the context, while the last
one is a naturality rule making it possible to commute substitutions with R.

Note that x∗[RΓ.x:A] is equal to x2[RΓ.x:A] however we do not have any rules to compute
such an expression any further. Hence, this becomes a new normal form. We can use the
naturality rule to substitute into such a normal form.

2.5 Geometry Arising from the Syntax
A context (x : A) can be viewed as a context of points of type A. The context (x : A)=

is a context of lines where x2 is a line between the edges x0 and x1 (3 elements), A∗ is a
relation (the type of lines). The (x : A)== is a type of squares with 9 components: 4 points,
4 lines and a filler of. A∗∗ is a two-dimensional relation defining the type of squares: it has 8
arguments, the 4 points and the 4 lines of the square.

When iterating−= for a context with more than one type, we get a series of cubes. The
later cubes can depend on the previous ones, hence the lines are heterogeneous (the endpoints
do not necessarily have the same types). As an example, we expand the first two iterations.

(Γ.x : A)= ≡Γ=.x0 : A[0Γ].x1 : A[1Γ].x2 : A∗ x0 x1

(Γ.x : A)== ≡Γ==.x00 : A[0Γ0Γ= ] .x01 : A[0Γ1Γ= ] .x02 : A[0Γ]∗ x00 x01

.x10 : A[1Γ0Γ= ] .x11 : A[1Γ1Γ= ] .x12 : A[1Γ]∗ x10 x11

.x20 : A∗[0Γ= ]x00 x10.x21 : A∗[1Γ= ]x01 x11 .x22 : (A∗ x0 x1)∗ x20 x21

Note that e.g. the type of x20 was computed from (A∗ x0 x1)[0Γ=.x0:A[0].x1:A[1]] ≡
A∗[0Γ= ]x00 x10. Also, the type of x22 is equal to A∗∗ x00 x01 x02 x10 x11 x12 x20 x21 by the
computation rule of−∗ for applications.

More generally, the context (x : A)n (−= iterated n times) has 3n components which
make an n-dimensional cube. We can depict the first three iterations as follows. The first
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3:8 Towards a Cubical Type Theory without an Interval

dimension is drawn horizontal, the second vertical and the third is perpendicular to the plain
of the paper.

x x0 x1x2
x00

x01

x10

x11

x22

x20

x02 x12

x21

x000 x100

x010 x110

x001 x101

x011 x111

x200

x020

x120

x210

x201

x021

x121

x211

x002

x012

x102

x112

x022 →

x212
↓

↑
x202

← x122

↗
x220

x221
↙

x222

As an example we describe how to view a variable in a 3-dimensional context. If we
name the dimensions d0, d1, d2, the variable xijk represents a face of the 3-dimensional cube
which has coordinate i in dimension d0, coordinate j in dimension d1, and coordinate k in
dimension d2. By face we mean any 0,1,2 or 3-dimensional face, a 3-dimensional cube only
has one 3-dimensional face, the filler. A coordinate can be 0 or 1, in this case we can interpret
it as a usual cartesian coordinate. If the coordinate is 2, it means that this is a face spanning
through that dimension. Eg. x011 is the d0 = 0, d1 = 1, d2 = 1 point of a 3-dimensional cube
(left upper back if the dimensions are oriented in the standard way); x021 is a line in the
vertical dimension d1, it connects the points x001 and x011 on the left and in the back of the
cube; x221 is the back face of the cube; x222 is the filler of the cube.

For a two-dimensional cube (x : A)==, we have four ways to project out the lines:
0(x:A)= , (0x:A)=, 1(x:A)= and (1x:A)=. If we expand 0(x:A)= , we get x0 7→ x00, x1 7→ x10, x2 7→
x20, the bottom line of the square. However expanding (0x:A)= gives x0 7→ x00, x1 7→
x01, x2 7→ x02, the left line. In general, (bΓi)n−i projects dimension i to b while decreasing
the dimension, i.e. it consists of xj0...jn−1 7→ xj0...ji−1bji...jn−1 maps.

Similarly, from a one-dimensional cube (x : A)= there are two ways to go to the two-
dimensional (x : A)==: R(x:A)= and (Rx:A)=, depicted as the left and right square, respect-
ively.

x0

x0

x1

x1

x2[R(x:A)= ]

x2

x2

x0[Rx0:A[0]] x1[Rx1:A[1]]

x0

x1

x0

x1

x2[(Rx:A)=]

x0[Rx0:A[0]]

x1[Rx1:A[1]]

x2 x2

In general, (RΓi)n−i adds a degenerate dimension at index i, i.e. xj0...ji−1bji...jn−1 7→ xj0...jn−1

for b = 0, 1 and xj0...ji−12ji...jn−1 7→ xj0...jn−1 [(RΓi)n−i]. This can be shown as follows:
(R(x:A)i)n−i for arbitrary indices j0 . . . ji−1 includes (xj0...ji−10 7→ xj0...ji−1 , xj0...ji−11 7→
xj0...ji−1 , xj0...ji−12 7→ xj0...ji−1 [R(x:A)i ])n−i. We need to apply−= (n− i) times to the part
in parentheses. Applying−= once means substituting each component with 0 and 1 and
applying−∗ while adding indices 0, 1 and 2, respectively. For the first two components in
the substitution we simply get xj0...ji−1bk 7→ xj0...ji−1k this way for k = 0, 1, 2. If the third
component is substituted by b, we can use the naturality rule for b: xj0...ji−1 [R(x:A)ib(x:A)i ] ≡
xj0...ji−1 [b(x:A)i+1(R(x:A)i)=] ≡ xj0...ji−1b[(R(x:A)i)=]. And using the rule (t[ρ])∗ ≡ t∗[ρ=] we
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get (xj0...ji−1 [R(x:A)ib(x:A)i ])∗ ≡ xj0...ji−12[(R(x:A)i)=]. By induction on n− i, we obtain the
above rule.

The substitutions coming from iterating−= on 0Γ, 1Γ and RΓ can be depicted as follows.

Γ Γ= Γ2 Γ3. . . . . .RΓ

0Γ

1Γ

RΓ=

(RΓ)=

0Γ=

1Γ=

(0Γ)=

(1Γ)=

RΓ2

(RΓ= )=

(RΓ)2

0Γ2 , (0Γ= )=, (0Γ)2

1Γ2 , (1Γ= )=, (1Γ)2

2.6 A Swapping Substitution
We add another substitution to explain the relationship between RΓ= and (RΓ)=. This is a
two-dimensional substitution which swaps the two dimensions of the square. We specify it
with the following rule: it does not change the dimension of the context.

Γ `
SΓ : Γ== ⇒ Γ==

The first two computation rules explain how it acts on the empty and extended contexts.
For the extended context, it swaps the dimensions i.e. maps xij to xji while the swapped
x22 needs to be substituted with S because it has a different type now: the arguments of
A∗∗ have been swapped.

S· ≡ ε : · ⇒ ·
SΓ.x:A ≡ (SΓ, x00 7→ x00, x01 7→ x10, x02 7→ x20,

x10 7→ x01, x11 7→ x11, x10 7→ x01,

x20 7→ x02, x21 7→ x12, x22 7→ x22[SΓ.x:A]) : (Γ.x : A)2 ⇒ (Γ.x : A)2

The following three computation rules express that S is an isomorphism (applied twice it
gives the identity), it has a naturality rule and it can be used to express (RΓ)=: we swap the
results of RΓ= .

SΓSΓ ≡ idΓ==
ρ : Γ⇒ ∆

S∆ρ
== ≡ ρ==SΓ

SΓRΓ= ≡ (RΓ)=

We can depict the effect of Sx:A as follows.

x00

x01

x10

x11

x22

x20

x21

x02 x12
Sx:A

x00

x10

x01

x11

x22[Sx:A]

x02

x12

x20 x21

Just as x2[RΓ.x:A] introduced a new normal form, x22[SΓ.x:A] is a new normal form,
however unfortunately we only know how to commute−==-d substitutions with S using the
naturality rule. For arbitrary substitutions, we are stuck. We come back to this problem in
section 2.9.

By iterating −= on S we observe that at dimension n there are n − 1 different swap
substitutions. (SΓi)n−2−i swaps dimensions i and i+ 1 of an n-dimensional cube (n ≥ 2).
With the same line of thought as for (RΓi)n−i, we can show that (SΓi)n−2−i constitutes of
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3:10 Towards a Cubical Type Theory without an Interval

maps xj0...ji−1klji+2...jn−1 7→ xj0...ji−1lkji+2...jn−1 for k, l = 0, 1, 2 when k and l are not both 2
and has xj0...ji−122ji+2...jn−1 7→ xj0...ji−122ji+2...jn−1 [(SΓi)n−2−i] for the other case.

Note that as we do not know how to commute arbitrary substitutions and swap, we
also do not have all the rules for computing with compositions of swap substitutions. For
example, we would like to have the equality SΓ=SΓ

=SΓ= ≡ SΓ
=SΓ=SΓ

= (having 3 dimensions,
swapping dimensions 1–2, then 0–1, then 1–2 gives the same result as swapping 0–1, then
1–2, then 0–1), however this is not yet justified by our rules.

2.7 Sigma Types
We will need Σ types to express the constructs in the next section, we add them using the
following rules in the usual way. We have both β and η computation rules.

Γ.x : A ` B : U
Γ ` Σ(x : A).B : U

(
Σ(x : A).B

)
[ρ] ≡ Σ(x : A[ρ]).B[ρ, x 7→ x]

Γ ` u : A Γ ` v : B[x 7→ u]
Γ ` (u, v) : Σ(x : A).B

Γ ` w : Σ(x : A).B
Γ ` proj1 w : A

Γ ` w : Σ(x : A).B
Γ ` proj2 w : B[x 7→ proj1 w]

(u, v)[ρ] ≡ (u[ρ], v[ρ]) (proj1 w)[ρ] ≡ proj1 (w[ρ]) (proj2 w)[ρ] ≡ proj2 (w[ρ])

proj1 (u, v) ≡ u proj2 (u, v) ≡ v (proj1 w, proj2 w) ≡ w

−∗ for Σ encodes that pairs are related if they are componentwise related. The relation for
the second components depends on the relatedness of the first components (B∗ only makes
sense in context (Γ.x : A)=), this is why we need to substitute it.(

Σ(x : A).B
)∗ ≡ λw0 w1.Σ

(
x2 : A∗ (proj1 w0) (proj1 w1)

)
.B∗[x0 7→ proj1 w0, x1 7→ proj1 w1, x2 7→ x2] (proj2 w0) (proj2 w1)

−∗ on the constructor is componentwise and it commutes with the projections.

(u, v)∗ ≡ (u∗, v∗) (proj1 w)∗ ≡ proj1 (w∗) (proj2 w)∗ ≡ proj2 (w∗)

2.8 Univalence
For a type A, A∗[R] : A → A → U can be viewed as the identity type of A. We have
reflexivity of this identity by defining

refl a :≡ a∗[R],

however we cannot show transitivity and symmetry, let alone the J rule. To address this, as
a first step we replace the definition of U∗. Instead of relation space, we would like to encode
what equality should really be for the universe: equivalence. We use a notion of equivalence
which includes a relation. Such a notion is given in exercise 4.2 in [18] where an equivalence
of types A and B is given by the following Σ type where isContrX says that the type X is
contractible (this is equivalent to the other notions of equivalence in [18]).

Σ(∼: A→ B → U).Π(x : A).isContr
(
Σ(y : B).x ∼ y

)
×Π(y : B).isContr

(
Σ(x : A).x ∼ y

)
We replace the definition of U∗ by an expansion of this definition. For a type A, A∗ will
now not only contain the relation, but also the isContr proofs, hence we need to adjust the
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parametricity rule to use the relation part. We can call this rule congruence rule with the
view of ∼A∗ as the heterogeneous equality for A. ∼ projects out the relation part from A∗.

Γ ` t : A
Γ= ` t∗ : t[0] ∼A∗ t[1]

Similarly, we need to adjust the computation rule for−= on context extensions to add the
projection ∼.

(Γ.x : A)= ≡ Γ=.x0 : A[0Γ].x1 : A[1Γ].x2 : x0 ∼A∗ x1

We define equality in the universe by the following iterated Σ-type. The first component is
an infix relation and we use (x ∼) to denote λy.x ∼ y and (∼ y) to denote λx.x ∼ y.

∼U∗≡ λAB .Σ−∼− : A→ B → U
coe0 : A→ B

coh0 : Π(x : A).x ∼ coe0 x

uncoe0 : Π(x : A, y : B, p : x ∼ y).coe0 x ∼reflB y

uncoh0 : Π(x : A, y : B, p : x ∼ y).coh0 x ∼refl (x∼) (coe0 x) y (uncoe0 x y p) p

coe1 : B → A

coh1 : Π(y : B).coe1 y ∼ y
uncoe1 : Π(x : A, y : B, p : x ∼ y).coe1 y ∼reflA x

uncoh1 : Π(x : A, y : B, p : x ∼ y).coh1 y ∼refl (∼y) (coe1 y) x (uncoe1 x y p) p

: U→ U→ U

An equality between two types A ∼U∗ B is a relation between them, coercion functions (coe)
from A to B and backwards, together with coherence proofs (coh) that the coercions respect
the relations and uniqueness proofs (uncoe, uncoh) stating that any equality is equal to a
coercion. We can depict these conditions as follows. The components with 0 indices give us
the left square, the components with 1 indices give the middle square, while the right square
shows the types of the other two squares.

x

x

coe0 x

y

uncoh0 x y preflx
uncoe0 x y p

coh0 x

p

coe1 y

x

y

y

uncoh1 x y p

uncoe1 x y p

refl y

coh1 y

p

:

A

A

B

B

R∼reflA ∼reflB

∼

∼

Rx00 x01 x02 x10 x11 x12 x20 x21 ≡ x20 ∼refl∼ x00 x01 x02 x10 x11 x12 x21

Note that the type of the squares is degenerate in the vertical dimension. uncoe says that
any y which is equal to x (by p) is equal to the coercion of x, while uncoh gives the equality
of the coherence and the equality proof p. Using the definition of refl, we can unfold the
types of the uncoh components as follows.

uncoh0 x y p : coh0 x ∼(x∼y)∗[RA:U.B:U.∼:A→B→U.x:A,y0 7→coe0 x,y1 7→y,y2 7→uncoe0 x y p] p

uncoh1 x y p : coh1 y ∼(x∼y)∗[RA:U.B:U.∼:A→B→U.y:B ,x0 7→coe1 y,x1 7→x,x2 7→uncoe1 x y p] p

As we replaced the relation space for U∗ by the above definition, we need to define the
new components ∼, (un)coe and (un)coh for the type formers U, Π and Σ. The ∼ component

TYPES 2015



3:12 Towards a Cubical Type Theory without an Interval

for U∗ is defined above, and for Π and Σ we just use the relations given in the previous
sections, i.e.

∼(Π(x:A).B)∗ ≡ λf0 f1.Π(x0 : A[0], x1 : A[1], x2 : x0 ∼A∗ x1).f0 x0 ∼B∗ f1 x1

∼(Σ(x:A).B)∗ ≡ λw0 w1.Σ(x2 : proj1 w0 ∼A∗ proj1 w1)
.proj2 w0 ∼B∗[x0 7→proj1 w0,x1 7→proj2 w1,x2 7→x2] proj2 w1.

First we show how to define coe and coh for U and Σ (section 2.8.1), then we show how to
derive coercion and coherence for squares (2-dimensional version of the 1-dimensional coe
and coh) and show how to use this to derive uncoe and uncoh (section 2.8.2). Then we derive
coe and coh for Π (section 2.8.3). Finally, we show how to derive the usual elimination rule
for homogeneous equality (section 2.8.4).

2.8.1 coe and coh for U and Σ
We use the following abbreviation to concisely express ∼ in both directions.

x
0∼e y ≡ x ∼e y y

1∼e x ≡ x ∼e y

For U we simply use the identity function as coercion and reflexivity for coherence.

Γ= ` coebU∗ ≡ id : U→ U

Γ= ` cohbU∗ ≡ refl : Π(A : U) . A b∼U∗ A

For Σ types, coercion and coherence are pointwise.

Γ= ` coeb(Σ(x:A).B)∗ ≡ λ(u, v).(coebA∗ u, coebB∗ [x2 7→ cohbA∗ u] v)

: (Σ(x : A).B)[b]→ (Σ(x : A).B)[1− b]

Γ= ` cohb(Σ(x:A).B)∗ ≡ λ(u, v).(cohbA∗ u, cohbB∗ [x2 7→ cohbA∗ u] v)

: Π(w : (Σ(x : A).B)[b]) . w b∼(Σ(x:A).B)∗ coeb(Σ(x:A).B)∗ w

We used pattern matching lambdas for ease of notation and in the substitution [x2 7→ cohbA∗ u]
we left the x0, x1 components implicit. We need the [x2 7→ cohbA∗ u] substitution when we
using coeB∗ and cohB∗ because B is in the context Γ, x : A, hence B∗ is in the context
(Γ, x : A)= which includes the components x0 : A[0], x1 : A[1], x2 : x0 ∼A∗ x1 and we need to
provide these components.

2.8.2 Deriving coe, coh for Squares from coe, coh for Lines
A square with a missing top line and a filler can be depicted as follows.

x00

x01

x10

x11

x02 x12

x20

This corresponds to the last 7 components of the context (Γ=.x0 : A[0].x1 : A[1])=.x20 :
x00 ∼A∗[0] x10. Coercion for the type x0 ∼A∗ x1 in this context has the following type.

(Γ=.x0 : A[0].x1 : A[1])= ` coe0
(x0∼A∗x1)∗ : x00 ∼A∗[0] x10 → x01 ∼A∗[1] x11
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We can use this coercion to get the top of the square from x20 and similarly, we can use
coherence to obtain the filler. Putting them together we get a substitution which fills in the
last two components of the square.

K0,0
Γ.x:A :≡

(
id(Γ=.x0:A[0].x1:A[1])= ,

x20 7→ x20, x21 7→ coe0
(x0∼A∗x1)∗ x20, x22 7→ coh0

(x0∼A∗x1)∗ x20
)

: (Γ=.x0 : A[0].x1 : A[1])=.x20 : x00 ∼A∗[0] x10 ⇒ (Γ.x : A)==

If the right side of a square is missing, we can use the swap substitution to obtain a filler. First
we swap the components we have, then apply the above K0,0

Γ.x:A, then swap the components
back so that everything stays in its original place. We denote this substitution K1,0

Γ.x:A.
(Γ=.x : A[0])=.x10 : A[10].x11 : A[11].x20 : x00 ∼A∗[0] x10.x21 : x01 ∼A∗[1] x11

(Γ=.x0 : A[0].x1 : A[1])=.x20 : x00 ∼A∗[0] x10

(Γ.x : A)==

(Γ.x : A)==

(SΓ, x00 7→ x00, x01 7→ x10, x02 7→ x20, x10 7→ x01, x11 7→ x11, x12 7→ x21, x20 7→ x02)

K0,0
Γ.x:A

SΓ.x:A

With the help of K1,0 we can define uncoe0 and uncoh0 for a given type Γ ` A : U. We
use a substitution ρ to define the common parts.

ρ :≡
(
(RΓ)=, x00 7→ x, x01 7→ x, x02 7→ reflx,
x10 7→ coeA∗ x, x11 7→ y, x20 7→ cohA∗ x, x21 7→ p

)
: (Γ=.x : A[0].y : A[1].p : x ∼A∗ y)⇒ (Γ.x : A)2

Γ= ` uncoeA∗ ≡ λx y p.x12[K1,0
Γ.x:Aρ] : Π(x : A, y : B, p : x ∼ y).coe0 x ∼reflB y

Γ= ` uncohA∗ ≡ λx y p.x22[K1,0
Γ.x:Aρ] : Π(x : A, y : B, p : x ∼ y)

.coh0 x ∼refl (x∼) (coe0 x) y (uncoe0 x y p) p

We can analogously define K0,1 and K1,1 which go in the opposite directions (and K1,1

can be used to define uncoe1 and uncoh1). As a summary, we list here the directions of filling
for a square that we get using these substitutions.

K0,0 bottom to top ↑
K0,1 top to bottom ↓
K1,0 left to right →
K1,1 right to left ←

2.8.3 coe and coh for Π
The coerce operation for Π types takes a function of type (Π(x : A).B)[0] and needs to return
a function of type (Π(x : A).B)[1]. We define the latter function by first coercing backwards
from A[1] to A[0], then applying the original function, then coercing forward the result from
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3:14 Towards a Cubical Type Theory without an Interval

B[0] to B[1]. We define it for both directions as follows.

Γ= ` coeb(Π(x:A).B)∗ ≡λf.λx.coebB∗ [x2 7→ coh1−b
A∗ x] (f (coe1−b

A∗ x))

: (Π(x : A).B)[b]→ (Π(x : A).B)[1− b]

We left the other two components of the substitution [x2 7→ coh1−b
A∗ x] implicit.

The coherence operation for Π needs to have the following type.

Γ= ` cohb(Π(x:A).B)∗ :Π
(
f : (Π(x : A).B)[b], x0 : A[0], x1 : A[1], x2 : x0 ∼A∗ x1

)
. f xb

b∼B∗ coebB∗ [x2 7→ coh1−b
A∗ x1−b] (f (coe1−b

A∗ x1−b))

We explain in detail how to define coh0
(Π(x:A)B)∗ f x0 x1 x2, the other direction is symmetric.

We start in the context Γ=.f : (Π(x : A).B)[0].x0 : A[0].x1 : A[1].x2 : x0 ∼A∗ x1. First
we will fill the left incomplete square thereby obtaining the dashed line r and using this r we
construct the right incomplete square and filling it gives us the line in the bottom which is
exactly what we need. Note that the left square has telescope type (x : A)2[(RΓ)=] while the
right square has telescope type (y : B)2[(RΓ)=] and depends on the first square (by (x : A)2

we mean the telescope x00 : A[00], x01 : A[01], . . . , x22 : x20 ∼(x0∼A∗x1)∗ x21 which contains
the last 9 elements of the context (Γ, x : A)==).

x0

coe1
A∗ x1

x1

x1

x2

reflx1

coh1
A∗ x1

r

f x0

f (coe1
A∗ x1)

coe0
B∗ [. . . ] (f (coe1

A∗ x1))

coe0
B∗ [. . . ] (f (coe1

A∗ x1))

refl f x0 (coe1
A∗ x1) r refl . . .

coh0
B∗ [. . . ] (f (coe1

A∗ x1))

First we define the incomplete first square as a substitution ρ.

ρ ≡
(
(RΓ)=, x00 7→ x0, x01 7→ coe1

A∗ x1, x10 7→ x1, x11 7→ x1, x12 7→ reflx1,

x20 7→ x2, x21 7→ coh1
A∗ x1

)
:
(
Γ=.f : (Π(x : A).B)[0].x0 : A[0].x1 : A[1].x2 : x0 ∼A∗ x1

)
⇒ Γ2.x00 : A[00].x01 : A[01].x10 : A[10].x11 : A[11].x12 : x10 ∼(A[1])∗ x11

.x20 : x00 ∼A∗[0] x10.x21 : x01 ∼A∗[1] x11

The following σ substitution defines the (complete) first square and the incomplete second
square.

σ ≡
(
(RΓ)=, x00 7→ x0, x01 7→ coe1

A∗ x1, x02 7→ x02[K1,1][ρ],
x10 7→ x1, x11 7→ x1, x12 7→ reflx1

x20 7→ x2, x21 7→ coh1
A∗ x1, x22 7→ x22[K1,1][ρ],

y00 7→ f x0, y01 7→ f (coe1
A x1), y02 7→ f∗[RΓ= ]x0 (coe1

A x1) (x02[K1,1][ρ])
y10, y11 7→ coe0

B∗ [x2 7→ coh1
A∗ x] (f (coe1

A∗ x)),
y12 7→ refl (coe0

B∗ [x2 7→ coh1
A∗ x] (f (coe1

A∗ x)))
)

:
(
Γ=.f : (Π(x : A).B)[0].x0 : A[0].x1 : A[1].x2 : x0 ∼A∗ x1

)
⇒ ((Γ.x : A)=.y0 : B[0].y1 : B[1])=.y21 : y01 ∼B∗[1] y11
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Using σ we can define the coherence operation for Π as follows.

Γ= ` coh0
(Π(x:A).B)∗ ≡ λf x0 x1. x2.coe1

(y0∼B∗y1)∗[σ]
(
coh0

B∗ [x2 7→ coh1
A∗ x] (f (coe1

A∗ x))
)

: Π
(
f : (Π(x : A).B)[0], x0 : A[0], x1 : A[1], x2 : x0 ∼A∗ x1

)
.f x0 ∼B∗ coe(Π(x:A).B)∗ f x1

2.8.4 The Elimination Rule for Equality
We define the homogeneous equality Γ ` a =A b : U as Γ ` a ∼A∗[RΓ] b : U.

We express the eliminator for equality as the transport function and the fact that singletons
are contractible. From these two principles the eliminator J can be derived.

Γ ` P : A→ U Γ ` r : a =A b Γ ` u : P a
Γ ` transportP r u : P b

Γ ` a, b : A Γ ` r : a =A b

Γ ` (s, t) : (a, refl a) =Σ(x:A).a=Ax (b, r)

We validate transport using coe0 and−∗ on the predicate P .

Γ ` transportP r u ≡ coe0
P∗[RΓ] a b r u : P b

The computation rule for transport is validated by the corresponding coherence law (up to
equality, but not definitional equality). coh0

P∗[RΓ] a a (refl a) u : u =P a transportP (refl a)uu.
The type of (s, t) in the second principle is equal to

Σ(s : a ∼A∗[RΓ] b).refl a ∼(a∼A∗[RΓ]x)∗[RΓ,a,b,s] r.

We construct s by filling the following incomplete square from bottom to top.

a

a

a

b

refl a r

refl a

s

We spell it out explicitly below.

ρ :≡ (RΓ=RΓ, x00 7→ a, x01 7→ a, x02 7→ reflx10 7→ a, x11 7→ b, x12 7→ r)
: Γ⇒ (Γ=.x0 : A[0].x1 : A[1])=

Γ ` s :≡ coe0
(x0∼A∗x1)∗ [ρ](refl a) : a ∼A∗[RΓ] b

The coherence gives us the filler, however we need to swap it to get the type that we need.
Without swapping we get the following type.

Γ ` coh0
(x0∼A∗x1)∗ [ρ](refl a) : refl a ∼(x0∼A∗x1)∗[ρ] s

We define a substitution σ and compose it with SΓ.x:A and we define t as the last term in
the resulting substitution.

Γ (Γ.x : A)== (Γ.x : A)==σ SΓ.x:A

σ :≡
(
RΓ=RΓ,x00 7→ a, x01 7→ a, x02 7→ refl a,

x10 7→ a, x11 7→ b, x12 7→ r,

x20 7→ refl a, x21 7→ coe0
(x0∼A∗x1)∗ [ρ](refl a), x22 7→ coh0

(x0∼A∗x1)∗ [ρ](refl a)
)

Γ ` t :≡ x22[SΓ.x:Aσ] : refl a ∼(a∼A∗[RΓ]x)∗[RΓ,a,b,s] r
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2.9 Metatheoretic Properties
The operational semantics for the theory of external parametricity (section 2.3) is clear, we
can always eliminate the new constructs−=,−∗, 0, 1. We formalised the unary version of this
theory as a syntactic translation, see [2].

After adding reflexivities (section 2.4), we lose the property that we can translate
everything back to the original theory as we have new normal forms such as x2[RΓ.x:A]. And
even worse, we do not know how to substitute arbitrary substitutions into x22[(RΓ.x:A)=], i.e.
x22[(RΓ.x:A)=ρ] is stuck. We can defer the problem by introducing S and expressing (RΓ)=

as SΓRΓ= , but then we need to commute S and arbitrary substitutions which we do not know
how to do. This is a problem indeed in practice, e.g. we do not know how to compute with
K1,0 from section 2.8.2 which is defined by postcomposing S with another substitution. We
describe a possible solution in section 3, but this is notationally quite heavy.

We believe however that the syntax up to section 2.6 has a presheaf model with base
category the category of renamings from [14]. This category does not include connections
[12], only face maps (corresponding to our 0 and 1), degeneracies (corresponding to R) and
renamings (corresponding to S). The idea of the construction is as follows. We denote the
set with n elements (an object of the base category) n. An interpretation of a context Γ is a
covariant presheaf JΓK : C → Set, and for lifted contexts we define JΓ=Kn := JΓKn+ 1. The
interpretations of 0 and 1 are natural transformations and we set J0ΓKn := JΓK (dn = 0) i.e.
we use the action on morphisms for JΓK at the morphism which sends dimension n to 0. A
lifted substitution is the unlifted substitution at a higher dimensional object, Jρ=Kn := JρKn+1.
A type Γ ` A is interpreted as a family of presheaves over JΓK. A lifted type A∗ x0 x1 (which
depends on the last two elements in the context being x0 : A[0], x1 : A[1]) is interpreted as
the element of the higher type where the projections give the two faces in the context.

JA∗ x0 x1Kn (γ, a0, a1) :=
(
a : JAKn+1 γ

)
× JAK (dn = 0) a = a0 × JAK (dn = 1) a = a1

Terms are interpreted as sections, lifted terms are interpreted as triples corresponding to the
above sum types: Jt∗Kn γ := (JtKn+1 γ, refl, refl). Some equalities however are only validated
up to isomorphism in this model. E.g. −= on context extension is only validated up to an
isomorphism which follows from the fact that singletons are contractible.

J(Γ.x : A)=Kn
= (γ : JΓKn+1)× JAKn+1 γ

' (γ : JΓKn+1)×
(
a0 : JAK (JΓK (dn = 0) γ)

)
×
(
a1 : JAK (JΓK (dn = 1) γ)

)
×
(
a : JAKn+1 γ

)
× JAK (dn = 0) a = a0 × JAK (dn = 1) a = a1

= JΓ=.x0 : A[0].x1 : A[1].x2 : A∗ x0 x1Kn

This can be remedied using a univalent metatheory (where isomorphic sets are equal) or by
a refinement of the presheaf model as in [7] where presheaves return sets with additional
structure (called I-sets for an object I (set of dimension names) in the base category; an
I-set is a set of I-indexed tuples).

We also believe that the presheaf model of the syntax with the Kan operations (section
2.8) has Kan operations with the uniformity condition as in [14].

3 Cubical Type theory with Named Dimensions

In this section we remedy the problem of the previous approach which was that we did not
know how to compute with the S substitutions. We define a new syntax where each usage of
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the−= and−∗ operators is decorated with a dimension name. A two-dimensional context
Γ== will be denoted Γij where i and j are dimension names. They are assumed to be fresh
in every rule. With named dimensions at our hand, we will equate the contexts Γij and Γji
as they contain the same information in different order. A context (x : A)ij can be viewed
as a collection of types indexed by i = 0, 1, 2 and j = 0, 1, 2 regardless of the order; i and j
are the dimension names, and given a coordinate for each dimension, we get a type. The
information about which dimension has which index will be stored in the variable names,
e.g. xi0j1, xi1j2. This eliminates the need of the swapping substitution S and the problem
with its computation rules. However the theory becomes more involved as we need Π types
to remember their dimensions as well. As higher dimensional contexts are order-agnostic,
lifted Π types need to be order-agnostic too, hence they need to carry information about
their dimensions. Instead of defining the lifted relation (Π(x : A).B)i as an iterated Π type
Π(xi0 : A[0]).Π(xi1 : A[1].Π(xi2 : xi0 ∼Ai xi1) . . . , we will use Π(x : A)i . . . which shows that
this type has arguments of dimension i.

We start with the core substitution calculus given in section 2.1. First we add telescopes
to the calculus in section 3.1. Then we define the function space with dimensional information
in section 3.2. Sections 3.3 and 3.4 show how to define the parametricity operation (called
−= before) for this calculus. Section 3.5 adds a definitional quotient thereby e.g. equating
Γij and Γji. We need this quotient to internalise parametricity in section 3.6. This version
corresponds to section 2.4 of the naive calculus. We stop here and do not interpret univalence
in the nominal calculus. In appendix A we define an operational semantics.

3.1 Telescopes
We add new judgment types to the core substitution calculus defined in section 2.1.

Γ ` Ω Ω is a telescope context in context Γ
Γ ` ω : Ω ω is a telescope substitution of type Ω in context Γ
Γ ` Ω ≡ Ω′ definitional equality of telescope contexts
Γ ` ω ≡ ω′ : Ω definitional equality of telescope substitutions

Explanation:

Just as Γ ` t : A can be viewed as (idΓ, x 7→ t) : Γ⇒ Γ.x : A,
Γ ` Ω can be viewed as Γ ++ Ω `

and Γ ` ω : Ω can be viewed as (idΓ ++ ω) : Γ⇒ Γ ++ Ω.

Telescope contexts are generalisations of types into lists of types which might depend on
each other. They can also be thought of as named iterated Σ-types.

Γ `
Γ ` ·

Γ ` Γ ` Ω Γ ++ Ω ` A : U
Γ ` Ω.x : A

We explain how to extend contexts with telescope contexts:

Γ ` Ω
Γ ++ Ω ` Γ ++ · ≡ Γ Γ ++ (Ω.x : A) ≡ (Γ ++ Ω).x : A

Substitution of telescope contexts is pointwise:

Γ ` Ω ρ : ∆⇒ Γ
∆ ` Ω[ρ] ·[ρ] ≡ · (Ω.x : A)[ρ] ≡ Ω[ρ].x : A[ρ]
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Telescope substitutions are generalisations of terms into lists of terms.

Γ `
Γ ` ε : ·

Γ ` ω : Ω Γ ++ Ω ` A : U Γ ` t : A[(idΓ ++ ω)]
Γ ` (ω, x 7→ t) : Ω.x : A

We explain how to extend normal substitutions with telescope substitutions:

ρ : ∆⇒ Γ ∆ ` ω : Ω[ρ]
ρ++ ω : ∆⇒ Γ ++ Ω ρ++ ε ≡ ρ ρ++ (ω, x 7→ t) ≡ (ρ++ ω, x 7→ t)

Substitution of telescope substitutions is pointwise:

Γ ` ω : Ω ρ : ∆⇒ Γ
∆ ` ω[ρ] : Ω[ρ] ε[ρ] ≡ ε (ω, x 7→ t)[ρ] ≡ (ω[ρ], x 7→ t[ρ])

Extending telescope contexts with telescope contexts and telescope substitutions with tele-
scope substitutions is done in the obvious way. Specification:

Γ ` Ω Γ ++ Ω ` Ω′
Γ ` Ω ++ Ω′ Ω ++ · ≡ Ω Ω ++ (Ω′.x : A) ≡ Ω ++ Ω′.x : A

Γ ` ω : Ω Γ ` ω′ : Ω′[ω]
Γ ` ω ++ ω′ : Ω ++ Ω′ ω ++ ε ≡ ω ω ++ (ω′, x 7→ t) ≡ (ω ++ ω′, x 7→ t)

The pr telescope substitution generalises the projection Γ.x : A ` x : A.

Γ ` Ω
Γ ++ Ω ` prΩ : Ω Γ ++ · ` pr· ≡ ε : · Γ ++ (Ω.x : A) ` prΩ.x:A ≡ (prΩ, x 7→ x) : (Ω.x : A)

Note that we have not added new types in the universe, telescopes live outside the world
of types.

3.2 Function Space
We would like to have Γij ≡ Γji. This forces us to provide a new type former for Π(x : A)ij .B
instead of using the iterated Π(xi0j0 : A[0i0j ]).Π(xi0j1 : A[0i1j ]). . . . .B. When applying
arguments to such a function, we need to supply all of them at the same time, because the
order of arguments will not matter, only their dimension indices.

For this reason, we add functions where the domain can be a telescope context. However,
we only allow special telescope contexts, ones which arise from applying the lifting operator
zero or more times. Hence, a function will be able to have only 3k number of arguments
where k is the number of dimensions. We will denote such a telescope context (x : A)I , where
I is a set of dimensions which might be empty.

Also, to express the type of the relation Ai : A[0i] → A[1i] → U, we need functions
with incomplete cube arguments, {x : A}I will denote (x : A)I without the last element, so
Ai : Π{x : A}i.U. Hence, we will also have functions with 3k − 1 number of arguments.

We will add rules to compute (x : A)I and {x : A}I in the next section.
Our function space also needs to be stable under substitution. For example, consider

the type (X : U)i ` Π(x : X)i.B : U. Here all the 3 types in the domain of the function
are variables, hence they can be given arbitrary values by a substitution ρ : · ⇒ (X : U)i.
Performing the substitution (Π(x : X)i.B)[ρ] results in Π(xi0 : Xi0[ρ], xi1 : Xi1[ρ], xi2 :
Xi2[ρ]xi0 xi1).B[ρ] which does not have the form Π(x : A)i.B for some A anymore. This is
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we decorate the domain of the function with a telescope substitution providing the types
and A will be fixed to be a variable X. The formation rules:

Γ ` ξ : (X : U)I Γ ++ (x : X)I [ξ] ` B : U
Γ ` Π(x : X)I [ξ].B : U

Γ ` ξ : {X : U}Ii
Γ ` Π{x : X}Ii[ξ].U : U

These are just the usual rules for telescope functions, restricted on the domain (and for
relations, in the codomain too). Note that the domain for relation space cannot be zero-
dimensional. Also, we have not defined substituting a telescope context with a telescope
substitution, so we mean (x : X)I [id ++ ξ] when we write (x : X)I [ξ].

Most rules have the same shape for functions and relations, for these, we introduce the
notation ({x : A})I which can mean (x : A)I or {x : A}I . We use the notation appI(f, ω) for
function application, appI(R,ω) for relation application and appI(f, ω) can be either.

Γ ++ ({x : X})I[ξ] ` t : B
Γ ` λ({x : X})I[ξ].t : Π({x : X})I[ξ].B

Γ ` f : Π({x : X})I[ξ].B Γ ` ω : ({y : X})I[ξ]
Γ ` appI(f, ω) : B[id ++ ω]

The computation rules include η:

appI(λ({x})I.t, ω) ≡ t[id ++ ω]
f ≡ λ({x : X})I[ξ].appI(f, pr({x:X})I[ξ])

(Π({x : X})I[ξ].B)[σ] ≡ Π({x : X})I[ξ[σ]].B[σ ++ pr({x:X})I[ξ[σ]]]

(λ({x : X})I[ξ].t)[σ] ≡ λ({x : X})I[ξ[σ]].t[σ ++ pr({x:X})I[ξ[σ]]]

appI(f, ω)[σ] ≡ appI(f [σ], ω[σ])

If the telescope substitution ξ is the projection pr, we omit it, eg. we write Π(x : X)I .B for
Π(x : X)I [pr].B. Also, we write Π(x : A)I .B for Π(x : X)I [(X 7→ A)I ].B and Π{x : A}I .B
for Π{x : X}I [{X 7→ A}I ].B.

Note that in the case when I is empty, Π(x : A)I .B becomes the usual function space, we
denote it as Π(x : A).B.

3.3 The Operations (−)i and (−)i on Contexts and Substitutions

We define (−)i and {−}i on contexts, telescope contexts, substitutions, telescope substitutions.
The definitions for contexts are the same as in the naive version.

Specification:

Γ `
(Γ)i `

ρ : ∆⇒ Γ
(ρ)i : ∆i ⇒ Γi

Γ ` Ω
(Γ)i ` Ωi

Γ ` ω : Ω
(Γ)i ` ωi : Ωi

Γ.x : A `
{Γ.x : A}i `

ρ : ∆⇒ Γ.x : A
{ρ}i : ∆i ⇒ {Γ.x : A}i

Γ ` Ω.x : A
Γi ` {Ω.x : A}i

Γ ` ω : Ω.x : A
Γi ` {ω}i : {Ω.x : A}i
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Implementation:

(·)i ≡ ·
(Γ.x : A)i ≡ Γi ++ (x : A)i

εi ≡ ε : Γi ⇒ ·i

(ρ, x 7→ t)i ≡ (ρ)i ++ (x 7→ t)i : ∆i ⇒ (Γ.x : A)i

Γi ` (·)i ≡ ·
Γi ` (Ω.x : A)i ≡ Ωi.xi0 : A[0iΓ].xi1 : A[1iΓ].xi2 : appi(Ai, (x)i)
Γi ` εi ≡ ε : ·i

Γi ` (ω, x 7→ t)i ≡ (ωi, xi0 7→ t[0iΓ], xi1 7→ t[1iΓ], xi2 7→ ti) : (Ω.x : A)i

{Γ.x : A}i ≡ Γi ++ {x : A}i
{ρ, x 7→ t}i ≡ ρi ++ {x 7→ t}i : ∆i ⇒ {Ω.x : A}i

Γi ` {Ω.x : A}i ≡ Ωi.xi0 : A[0iΓ].xi1 : A[1iΓ]
Γi ` {ω, x 7→ t}i ≡ (ωi, xi0 7→ t[0iΓ], xi1 7→ t[1iΓ]) : {Ω.x : A}i

The operation {−}i does the same as (−)i but omits the very last element (because of this, it
does not work on empty contexts or substitutions).

The substitutions 0 and 1 project out the corresponding components (b = 0, 1) while
losing the dimension i.

bi· ≡ ε : · ⇒ ·
bi(Γ.x:A) ≡ (biΓ, x 7→ xib) : (Γ.x : A)i ⇒ Γ.x : A

We also add how (−)i operates on special substitutions:

(ρσ)i ≡ ρiσi (idΓ)i ≡ idΓi

(−)I is an iterated version of (−)i. {−}Ii is just (−)I composed by {−}i. For contexts we
express this by the following rules, for the substitutions etc. we have analogous rules.

Γ∅ ≡ Γ ΓIj ≡ (ΓI)j {Γ}Ij ≡ {ΓI}j

An element of a (telescope) context produced by multiple applications of (−)i can be
viewed as an |I|-dimensional cube.

3.4 (−)i on Terms

The operation which maps a term to the witness of parametricity is the same as in the naive
version, but with the additional information added for the function space. We need to handle
functions and relations separately because performing (−)i on a full cube gives a full cube,
but on incomplete cubes it does not even give an incomplete cube. We need to fill in the
omitted two elements in the latter case. Note that (x : A)I has 3|I| elements and {x : A}I
has 3|I| − 1 elements.

Specification:

Γ ` t : A
Γi ` ti : appi(Ai, {x 7→ t}i) (1)
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Implementation:

(t[ρ])i ≡ ti[ρi]
xi ≡ xi2
Ui ≡ λ{X}i.Π{x : X}i.U

(Π(x : X)I [ξ].B)i ≡ λ{f}i.Π(x : X)Ii[ξi].appi(Bi, {y 7→ appI(f, (x)I)}i)
(λ(x)I .t)i ≡ λ(x)Ii.ti

(appI(f, ω))i ≡ appIi(ti, ωi)
(Π{x : X}I [ξ].U)i ≡ λ{y}i.Π{x : X}Ii[ξi ++ {XI2 7→ y}i].U

(λ{x}I .B)i ≡ λ{x}Ii.appi(Bi, {y 7→ xI2}i)
(appI(R,ω))i ≡ λ{y}i.appIj(Ri, ωi ++ {xI2 7→ y}i)

xI2 is a notation for the variable x where all the dimensions have index 2, eg. xijk2 is xi2j2k2.

3.5 A Definitional Quotient
Now we can add rules equating (−)ij and (−)ji.

Γ `
(Γi)j ≡ (Γj)i

Γ ` Ω
Γij ` (Ωi)j ≡ (Ωj)i

Γ ` ω : Ω
Γij ` (ωi)j ≡ (ωj)i : Ωij

ρ : ∆⇒ Γ
(ρi)j ≡ (ρj)i : ∆ij ⇒ Γij

Γ ` t : A
Γij ` (ti)j ≡ (tj)i : appij(Aij , {x 7→ t}ij)

Γ `
{Γi}j ≡ {Γj}i

Γ ` Ω
Γij ` {Ωi}j ≡ {Ωj}i

Γ ` ω : Ω
Γij ` {ωi}j ≡ {ωj}i : {Ω}ij

ρ : ∆⇒ Γ
{ρi}j ≡ {ρj}i : ∆ij ⇒ {Γ}ij

So we can treat the dimensions of a context, substitution etc. as a set and write them without
parentheses.

Now we have (biΓ)j ≡ biΓj for b = 0, 1.

3.6 Internalisation of Parametricity
We add a substitution R that adds a dimension to a context.

Γ `
RiΓ : Γ⇒ Γi

Γ ` t : A
Γ ` t i : appi(Ai[RiΓ], (xi0 7→ t, xi1 7→ t))

Ri· ≡ ε : · ⇒ ·

Ri(Γ.x:A) ≡ (RiΓ, xi0 7→ x, xi1 7→ x, xi2 7→ x i ) : (Γ.x : A)⇒ (Γ.x : A)i

t i ≡ ti[RiΓ]
ρ : ∆→ Γ

RiΓρ ≡ ρiRi∆

Note that we can derive a i [ρ] ≡ (a[ρ]) i from the above rules. Also, the computation rule
does not give us anything new if a is a variable:

Γ.x : A ` x i ≡ xi[Ri(Γ.x:A)] ≡ xi2[Ri(Γ.x:A)] ≡ x i .
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We finally add the rule describing how (−)i works on the substitution R and how it interacts
with the projections b = 0, 1:

(RjΓ)i ≡ RjΓi biΓRiΓ ≡ idΓ

The first rule needs the definitional quotient to typecheck.
With this rule, we defined a type theory with internal parametricity. We describe an

operational semantics in appendix A.

4 Conclusions and Further Work

We defined a naive version of cubical type theory in which univalence is admissible however
we do not yet know how to compute in this theory. An advantage of this theory is that it
is close to the usual syntax of Martin-Löf’s type theory, hence it might be a step towards
a translation from cubical type theory into intensional type theory. We conjecture that it
has a presheaf model in a univalent metatheory (as some equations are only validated up to
isomorphism – note that this problem does not appear for Cohen et al’s cubical type theory
[11], however it does appear in [7]).

We also defined a nominal version of the theory for parametricity together with a big-step
normalisation function. We still have to establish that this normalisation function is sound
and complete following [1]. However, as far as we know the computational behaviour of the
operational semantics suggested in [11] has not been fully investigated yet, either.

In our approach the cubical structure arises naturally by iterating the−= and−i operators
and it is not a consequence of extending the theory with a pretype for the interval as in [11, 4].
One interesting difference is that we directly define a family of equality types while the
approach based on the interval type defines the family by fixing the endpoints of functions on
the interval. On the other hand the notational overhead in the interval type based approach
seems to be less than in our approach. Introducing an univalent universe is hard and is the
most difficult aspect in [11], hence it is maybe unsurprising that we have not achieved this
yet in this more low level approach.

While in the moment the interval based approach presented in [11] seems to offer many
advantages it may be a good idea to consider alternative approaches as the ones suggested
here. We may also wonder whether we should need to explain an interval type when we want
to introduce type theory?
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A An Operational Semantics for the Nominal Calculus

A.1 Evaluation
We describe a call by name operational semantics for the theory defined in section 3. We
conjecture that the semantics defined below is terminating, and when viewed as a syntactic
model construction, sound and complete (we refer to [1] for the meaning of these properties);
decidability of definitional would equality.

We define values (weak-head normal forms), and show how to evaluate terms into values.
Next we define normal forms, and show that by recursively applying evaluation, we can
normalise terms.

In what follows, ({−})I can mean both (−)I and {−}I . Note that in the latter case I is
nonempty. We define the following inductive sets by listing their constructors.

t, A ::= t[ρ] |x |U |Π(x : X)I [ω].A |Π{x : X}I [ω].U

|λ({x})I.t | appI(t, ω) | ti | t i terms
ρ ::= id | ε | (ρ, x 7→ t) | ρρ′ | ρ++ ω | 0i | 1i |Ri | ρi | {ρ}i substitutions
ω ::= ε | (ω, x 7→ t) |ω[ρ] |ω ++ ω′ | prΩ |ωi | {ω}i telescope substitutions
x, f,X ::= . . . variables
i ::= . . . dimension names
I ::= ∅ | Ii sets of dimension names
v ::= U | (Π({x : X})I[ω].A)[ν] | (λ({x})I.t)[ν] |n values (whnfs)
ν ::= ε | (ν, x 7→ g) | (ν, x 7→ t[ν]) environments
n ::= g | appI(n, ψ) neutral values

g ::= x | g i generic values
ψ ::= ε | (ψ, x 7→ g) | (ψ, x 7→ t[ν]) telescope environments
Ω ::= · |Ω.x : A |Ω[ρ] |Ω ++ Ω′ |Ωi | {Ω}i telescope contexts
Ξ ::= · |Ξ.x : A linear telescope contexts

We have the following judgment types for evaluation.

t[ν] ⇓ v evaluate a closure to a value
ρν ⇓ ν′ evaluate a substitution closure to an environment
ω[ν] ⇓ ψ evaluate a telescope substitution closure into a telescope environment
Ω ⇓ Ξ evaluate a telescope context into a linear telescope context
ν(x) v look up the value of a variable in an environment
ti  t′ one step in calculating the meaning of a lifted term
ρi  ρ′ one step in calculating the meaning of a lifted substitution
ωi  ω′ one step in calculating the meaning of a lifted telescope substitution
ν ++ ψ  ν′ composition of environments and telescope environments
ψ ++ ψ′  ψ′′ composition of telescope environments
prΞ[ν] ψ evaluating a telescope projection

We give a case for each judgment type for each constructor. Evaluation of terms is
standard, the interesting cases are for ti and t i : for the former we use the one-step
evaluation relation ti  t′, for the latter we use the computation rule for− i .
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t[ν] ⇓ v

ρν ⇓ ν′ t[ν′] ⇓ v
t[ρ][ν] ⇓ v

ν(x) v

x[ν] ⇓ v U[ν] ⇓ U (Π({x : X})I[ω].A)[ν] ⇓ (Π({x : X})I[ω].A)[ν]

(λ({x})I.t)[ν] ⇓ (λ({x})I.t)[ν]
t[ν] ⇓ (λ(x)I.t′)[ν′] ω[ν] ⇓ ψ ν′ ++ ψ  ν′′ t′[ν′′] ⇓ v

appI(t, ω)[ν] ⇓ v

t[ν] ⇓ n ω[ν] ⇓ ψ
appI(t, ω)[ν] ⇓ appI(n, ψ)

ti  t′ t′[ν] ⇓ v
ti[ν] ⇓ v

ti[Ri][ν] ⇓ v
t i [ν] ⇓ v

For substitutions, the interesting cases are again for our special constructions: the substi-
tutions 0i, 1i (denoted bi) project out the corresponding components, while the substitution
Ri duplicates the content of the environment. Its substitution rule ensures that we can move
the− i through the environment ν′.

ρν ⇓ ν′

idν ⇓ ν εν ⇓ ε
ρν ⇓ ν′

(ρ, x 7→ t)ν ⇓ (ν′, x 7→ t[ν])
ρ′ν ⇓ ν′ ρν′ ⇓ ν′′

(ρρ′)ν ⇓ ν′′

ρν ⇓ ν′ ω[ν] ⇓ ψ ν′ ++ ψ  ν′′

(ρ++ ω)ν ⇓ ν′′

biε ⇓ ε
biν ⇓ ν′

bi(ν, xib 7→ t) ⇓ (ν′, x 7→ t)
biν ⇓ ν′

bi(ν, xic 7→ t) ⇓ ν′
cnot=b

Riε ⇓ ε
Riν ⇓ ν′

Ri(ν, x 7→ g) ⇓ (ν′, xi0 7→ g, xi1 7→ g, xi2 7→ g i )

Riν ⇓ ν′′

Ri(ν, x 7→ t[ν′]) ⇓ (ν′′, xi0 7→ t[ν′], xi1 7→ t[ν′], xi2 7→ t i [ν′])

ρi  ρ′ ρ′ν ⇓ ν′

(ρ)iν ⇓ ν′
ρi  ρ′ ρ′ν ⇓ (ν′, x 7→ t)

{ρ}iν ⇓ ν′

ω[ν] ⇓ ψ

ε[ν] ⇓ ε
ω[ν] ⇓ ψ

(ω, x 7→ t)[ν] ⇓ (ψ, x 7→ t[ν])
ρν ⇓ ν′ ω[ν′] ⇓ ψ

ω[ρ][ν] ⇓ ψ

ω[ν] ⇓ ψ ω′[ν] ⇓ ψ ψ ++ ψ′  ψ′′

(ω ++ ω′)[ν] ⇓ ψ′′
Ω ⇓ Ξ prΞ  ψ

prΩ[ν] ⇓ ψ
ωi  ω′ ω′[ν] ⇓ ψ

ωi[ν] ⇓ ψ

ωi  ω′ ω′[ν] ⇓ (ψ, x 7→ t)
{ω}i[ν] ⇓ ψ

Ω ⇓ Ξ

· ⇓ ·
Ω ⇓ Ξ

Ω.x : A ⇓ Ξ.x : A
Ω ⇓ ·

Ω[ρ] ⇓ ·
Ω ⇓ Ξ.x : A Ξ[ρ] ⇓ Ξ′

Ω[ρ] ⇓ Ξ′.x : A[ρ]

Ω ⇓ · Ω′ ⇓ Ξ
Ω ++ Ω′ ⇓ Ξ

Ω′ ⇓ (Ξ.x : A) Ω ++ Ξ ⇓ Ξ′

Ω ++ Ω′ ⇓ Ξ′.x : A
Ω ⇓ ·
Ωi ⇓ ·
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Ω ⇓ Ξ.x : A Ξi ⇓ Ξ′

Ωi ⇓ Ξ′.xi0 : A[0i].xi1 : A[1i].xi2 : appi(Ai, (x 7→ x)i)
Ω ⇓ Ξ.x : A Ξi ⇓ Ξ′

{Ω}i ⇓ Ξ′.xi0 : A[0i].xi1 : A[1i]

ν(x) v

ν(x) = g

ν(x) g

ν(x) = t[ν′] t[ν′] ⇓ v
ν(x) v

The one-step part of the evaluation is given by following the rules in section 3.4.

ti  t′

(t[ρ])i  ti[ρi]
xi  xi2

Ui  λ{X}i.Π(x : X)i[{X 7→ X}i].U
(Π(x : X)I [ω].A)i  λ{f}i.Π(x : X)Ii[ωi].appi(Ai, {x′ 7→ appI(f, (x′′ 7→ x)I)}i)

(λ(x)I .t)i  λ(x)Ii.ti

appI(t, ω)i  appIi(ti, ωi)
(Π{x : X}I [ω].U)i  λ(X ′)i.Π{x : X}Ii[(ωi, {XI2 7→ X ′}i)].U

(λ{x}I .A)i  λ{x}Ii.appi(Ai, {x′ 7→ xI2}i)
appI(t, ω)i  λ{x′}i.appIi(ti, {ωi, (xI2 7→ x′}i))

tj  t′

(tj)i  t′
i (t j )i  (tj [Rj ])i

The definition of ρi  ρ′ for substitutions follows a similar pattern, it uses the functor
laws for substitutions given in section 3.3. ωi  ω′ describes one-step evaluation of telescope
substitutions.

ρi  ρ′

idi  id
εi  ε

(ρ, x 7→ t)i  (ρi, xi0 7→ t[0i], xi1 7→ t[1i], xi2 7→ ti)

(ρρ′)i  ρiρ′
i

(ρ++ ω)i  (ρi ++ ωi)
(bj)i  bj

(Rj)i  Rj

ρj  ρ′

(({ρ})j)i  ρ′
i

ωi  ω′

εi  ε

(ω, x 7→ t)i  (ωi, xi0 7→ t[0i], xi1 7→ t[1i], xi2 7→ ti)
(ω[ρ])i  ωi[ρi]

(ω ++ ω′)i  (ωi ++ ω′
i)
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ωj  ω′

(({ω})j)i  ω′
i

ν ++ ψ  ν′

ν ++ ε ν
ν ++ ψ  ν′

ν ++ (ψ, x 7→ t) (ν′, x 7→ t)

ψ ++ ψ′  ψ′′

ψ ++ ε ψ
ψ ++ ψ′  ψ′′

ψ ++ (ψ′, x 7→ t) (ψ′′, x 7→ t)

prΞ[ν] ψ

pr·[ν] ⇓ ε
prΞ[ν] ⇓ ψ

prΞ.x:A[(ν, x 7→ t)] ⇓ (ψ, x 7→ t)

A.2 Normalisation

vn ::= U |Π({x : X})I[ψn].vn |λ({x})I.vn |nn normal forms
nn ::= g | appI(n, ψn) neutral normal forms
ψn ::= ε | (ψn, x 7→ vn) normal telescopes

v V vn

UV U
({x : X})I[id ++ ω] ⇓ Ξ prΞ  ψ ν ++ ψ  ν′ A[ν′] ⇓ v v V vn ω[ν] ⇓ ψ′ ψ′ V ψ′n

(Π({x : X})I[ω].A)[ν]V Π({x : X})I[ψ′n].vn
({x : X})I[id ++ ω] ⇓ Ξ prΞ  ψ ν ++ ψ  ν′ t[ν′] ⇓ v v V vn

(λ({x})I.t)[ν]V λ({x})I.vn
nV nn
nV nn

nV nn

g V g
nV nn ψ V ψn

appI(n, ψ)V appI(nn, ψn)

ψ V ψn

εV ε
ψ V ψn

(ψ, x 7→ g)V (ψn, x 7→ g)
ψ V ψn t[ν] ⇓ v v V vn

(ψ, x 7→ t[ν])V (ψn, x 7→ vn)

To generate the identity substitution, we need to linearize contexts, it can be done in the
same way as for telescope contexts before (Ω ⇓ Ξ). We denote this by Γ ⇓ ∆.

id∆ ⇓ ν

id· ⇓ ε
id∆ ⇓ ν

id∆.x:t ⇓ (ν, x 7→ x)

Normalisation can be performed as follows:

Γ ` t : A Γ ⇓ ∆ id∆ ⇓ ν t[ν] ⇓ v v V vn
t normalises to vn
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