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Photodetectors for the ultraviolet (UV) range of the electromagnetic spectrum are in great demand for several technologies, 

but require the development of novel device structures and materials. Here we report on the high detectivity of UV 

photodetectors based on well-ordered laterally mesoporous GaN. The specific detectivity of our devices under UV-

illumination reaches values of up to 5.3×1014 Jones. We attribute this high specific detectivity to the properties of the 

mesoporous GaN/metal contact interface: the trapping of photo-generated holes at the interface lowers the Schottky barrier 

height thus causing a large internal gain. The high detectivity along with the simple fabrication process make these laterally 

mesoporous GaN photodetectors of great potential for applications that require selective detection of weak optical signals 

in the UV range.

Introduction  

Since the first report of mesoporous silica in 1990s,1 porous 

materials, in particular mesoporous materials, have been 

extensively investigated and widely used in various applications, 

such as energy conversion and storage,2-4 water splitting,5-7 

heteroepitaxial growth8, 9 and distributed Bragg reflectors 

(DBRs).10, 11 In general, mesoporous materials have pores with 

size between 2 and 50 nm,12 and can have exceptional 

properties including a large surface-to-volume ratio, and 

tunable bandgap energy and refractive index.13, 14 In addition, 

nanoscale effects in their mesochannels and on their pore walls 

act to reduce the interface migration distance.15 The reduced 

interface migration distance as well as the large surface-to-

volume ratio can decrease the carrier migration time and also 

increase the photo-carrier lifetime, which are both desirable in 

light detection and harvesting. Till now, various photodetectors 

and solar cells based on mesoporous semiconductors have been 

reported including mesoporous Silicon, perovskite and Gallium 

Nitride (GaN).16-18 Among these semiconductors, GaN 

represents an ideal candidate not only for light emitting diodes 

(LEDs)19, 20, but also for visible blind UV detectors that are 

needed in various applications, such as flame detection, 

environmental monitoring and UV astronomy.21 Compared with 

the Silicon-based counterpart, GaN-based UV photodetectors 

offer many advantages, such as a wide direct bandgap, a high 

electron saturation drift velocity, an intrinsic ultraviolet 

absorption window, chemical and thermal stability, etc.22, 23 

However, the performance of the currently available GaN-based 

UV detectors is not yet adequate for applications that require 

the detection of weak optical signals. Different methods have 

been used to improve their performance, including avalanche 

photodetection and coupling of light to surface plasmons.24-28 

Mesoporous GaN may offer an alternative approach, which is 

still largely unexplored.  

Although there have been reports on mesoporous GaN-

based photodetectors, previous works have focused mainly on 

vertical or 3D mesoporous GaN.29-32 Recently, a new type of 

mesoporous GaN, laterally mesoporous GaN, has generated 

increasing interest because of its many advantages compared to 

vertical and 3D mesoporous GaN: (a) it is better suited for device 

fabrication due to its flat surface; (b) it could be used to fabricate 

large scale (> 500 μm) mesoporous templates along the 

direction of the mesopores; (c) it is birefringent and exhibits 

favourable electronic transport properties.10, 33 Due to these 

advantages, laterally mesoporous GaN has been used in 

optoelectronic applications.34, 35 However, it has not yet been 

exploited for light detection. 

Here we report on the fabrication of well-ordered laterally 

mesoporous GaN and its implementation in metal-

semiconductor-metal (MSM) photodetectors with specific 

detectivity D* up to 5.3×1014 Jones under UV illumination (λ = 

340 nm). This is by far the highest ever reported for GaN-based 

UV photodetectors. 36-38 Our findings and analysis indicate that 

this new type of device structure has potential for applications 

that require selective detection of weak UV light. 
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Experimental results and discussions 

We used an electro-chemical etching process to transform a ~2-

μm-thick n+-GaN layer into laterally mesoporous GaN. The n+-

doping of GaN is needed due to the selective etching of 

electrical conductive GaN.10 Fig. 1(a) and (b) show the scanning 

electron microscopy (SEM) cross-section images of our laterally 

mesoporous n+-GaN. The shape of the mesopores varies from 

triangle-like to circle-like, indicating that both anisotropic 

etching and isotropic etching occur during the conversion of n+-

GaN into mesoporous GaN39. Statistical analysis of the 

mesopores shows that their size ranges from ~ 3 to 70 nm with 

average size of ~ 42 nm (Fig. 1(c)). In addition, we estimate the 

surface-to-volume ratio, porosity and the specific surface area 

to be 3.04 × 104 m-1, 25% and ~ 500 m2g-1, respectively. Our 

atomic force microscopy (AFM) studies (Fig. 1d) indicate that 

following the electro-chemical etching, the GaN top surface 

remains almost flat on the atomic scale with an average surface 

roughness of about 0.15 nm (as determined by the standard 

deviation of the surface height distribution). To reveal the 

morphology of the mesopores along their elongated direction, 

a thin mesoporous GaN surface layer was exposed using 

reactive ion etching induced coupled plasma. As shown in Fig. 

1(e), the mesopores are well-ordered along the direction of 

electro-chemical etching [See Fig. S1 in the Supporting 

Information]. 

Metal-semiconductor-metal (MSM) photodetectors were 

fabricated using the mesoporous GaN. Photodetectors based 

on non-mesoporous n+-GaN were also fabricated and used as 

reference samples. The photodetectors with mesoporous and 

non-mesoporous GaN, labelled PD_A and PD_B, respectively, 

are schematically illustrated in Fig. 1(f). 

Fig. 2(a) shows the current density versus applied voltage (J-V) 

curves under dark and UV light illumination (λ = 340 nm, Ilight = 

1.68 mWcm-2) for PD_A (mesoporous) and PD_B (non-

mesoporous). The dark current density, Jdark, for PD_A is ~ 0.06 

Acm-2 at V = 1V and is considerably smaller than for PD_B (Jdark 
~ 0.6 Acm-2). The lower dark current density in PD_A is 

attributed to the reduction of the background carrier density 

following the conversion of n+-GaN into a mesoporous 

structure.10 Under UV light illumination, the current density for 

PD_B is almost identical to the dark value and no measurable 

photo-response is observed. However, for PD_A, there is a 

strong photo-response with a current density Jlight ~17 Acm-2 at 

V = 1V. Thus the conversion of bulk n+-GaN into mesoporous 

GaN leads to a significant improvement in the photo-sensitivity 

to UV light illumination. 

To evaluate the spectral response of the mesoporous GaN 

photodetector (PD_A), the photocurrent spectra was measured 

in the range  = 300–400 nm at V = 1V and 0.5V. As shown in 

Fig. 2(b), the photodetector is very sensitive to photons with 

wavelength  < 350 nm. In contrast, for  > 350 nm the 

sensitivity decreases and illumination with photons of 

wavelength larger than  ~ 380 nm induces a much weaker 

photoresponse. The UV/visible rejection ratio, which we define 

as the ratio between the photoresponse at  = 350 nm and  = 

400 nm, is ~100 and ~400 at V = 1V and V = 0.5V, respectively. 

These large rejection ratios demonstrates selective detection of 

the photodetector to UV light. 

To further evaluate the performance of PD_A, we examined 

the specific detectivity, D*, and responsivity, R, at λ = 340 nm. 

The specific detectivity is a figure of merit of a detector that 

Fig. 1 (a) SEM cross-section image of the mesoporous GaN and the magnified image of the mesopores (b); (c) the size distribution of the mesopores;  (d) AFM image of the top GaN 

surface after the electro-chemical etching; (e) SEM image of the mesoporous GaN after the removal of the surface GaN layer; (f) schematic diagram of the mesoporous (PD_A) and 

non-mesoporous (PD_B) GaN photodetector. 
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describes the smallest detectable optical signal and can be 

expressed as40, 41 

𝐷∗ =
𝑅

(2𝑒𝐽𝑑𝑎𝑟𝑘)
1
2

 ,                                           (1) 

where e is the electron charge. The responsivity R can be 

expressed as 

𝑅 =
𝐽𝑃ℎ

𝐼𝑙𝑖𝑔ℎ𝑡
=

𝐽𝑙𝑖𝑔ℎ𝑡−𝐽𝑑𝑎𝑟𝑘

𝐼𝑙𝑖𝑔ℎ𝑡
= 𝑔𝜂

𝑒

ℎ𝑐 𝜆⁄
 ,                        (2) 

where Jph is the photocurrent density (i.e. Jph = Jlight - Jdark), Ilight is 

the incident light power intensity, g is the internal gain, η is the 

quantum efficiency, and h, c and λ are the Planck’s constant, 

speed of light and the wavelength of incident light, respectively. 

Fig. 2(c) shows the bias dependence of the responsivity R 

and specific detectivity D* for PD_A in the range V = 0 to 1V at 

λ = 340 nm (Ilight = 1.68 mWcm-2). The responsivity (black curve) 

increases monotonically with increasing V, reaching values as 

high as R ~104 AW-1 at V = 1V. In contrast, the specific detectivity 

(blue curve) increases with increasing V, but reaches a plateau 

at V = 0.7V followed by a decrease for V > 0.9 V. The maximum 

value of D* is about 1.0×1014 cmHz1/2W-1 (Jones) at V = 0.8V. The 

bias dependence of the specific detectivity D* can be explained 

by examining the expression for D* from equation (1). With 

increasing V, both the responsivity (Fig. 2c) and the dark current 

density (Fig. 2a) increase. For V < 0.8V, the responsivity 

increases with V more strongly than the dark current density, 

leading to an increase of D*. In contrast, for V > 0.8V the 

increase of the dark current density dominates over the 

increase of R, leading to the saturation and decrease of D* at 

high V. 

From equation (2) for R and the measured values of R, we 

estimate the product of the internal gain g and quantum 

efficiency η. As shown in Fig. 2(d), the product gη  increases with 

increasing applied voltage and reaches a value of ~5×104 at V = 

1V. Since η < 100%, we deduce a large internal gain g > 5×104. 

An internal gain was reported before for MSM photodetectors 

and is desirable for applications requiring high responsivity.42-44 

Several mechanisms can explain an internal gain, including 

photoconductive gain,45 avalanche carrier multiplication at high 

electric fields,24 and trapping of photo-generated carriers 

(mainly holes) at the semiconductor/metal interface.46 For our 

mesoporous GaN photodetector, we propose that the trapping 

of photo-generated carriers at the GaN/metal interface is the 

Fig. 2 (a) Current density versus the applied voltage under dark and under UV light illumination (340 nm, ~1.68 mWcm-2) for PD_A (mesoporous) and PD_B (non-mesoporous); (b) 

spectral selectivity of PD_A (mesoporous) at 1V and 0.5V bias; (c) responsivity and specific detectivity of the mesoporous GaN photodetector (PD_A) versus the applied voltage; (d) 

product of the gain and quantum efficiency versus the applied voltage for the mesoporous GaN photodetector (PD_A).

Fig. 3 Schematic of the surface states close to and away from the interface of 

mesoporous GaN/metal contact.
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dominant mechanism. The photo-generated carriers act to 

decrease the height of the Schottky barrier at the 

semiconductor/metal interface, thus increasing the 

photocurrent. In particular, the gain could be significantly 

enhanced in mesoporous GaN due to the large surface-to-

volume ratio and corresponding large density of trapping 

centers at the GaN/metal interface. As shown schematically in 

Fig. 3, surface states in mesoporous GaN occur in the whole 

structure. However, only those close to the interface can affect 

the height of the Schottky barrier and hence the gain.47 

Since surface states can be effectively reduced using a 

passivation layer,48, 49 we fabricated a mesoporous GaN 

photodetector with a 5-nm-thick HfO2 passivation layer on the 

top surface of the mesoporous GaN (sample PD_C) and 

compared it with PD_A. Fig. 4(a) and 4(b) show the 

photocurrent and the specific detectivity D* of PD_A and PD_C, 

respectively, for incident UV (λ = 340 nm) light of power P. It can 

be seen that D* decreases with increasing power for both 

devices. The larger values of D* are obtained in PD_A. The 

maximum specific detectivity for PD_A is D* = 5.3×1014 Jones at 

P ~ 0.11 W, which is so far the highest reported specific 

detectivity for GaN-based UV photodetectors.36-38   

We note that the photocurrent increases non-linearly with 

increasing P. The non-linear relationship can be described well 

by a simple power law, i.e. I ∝  Pθ, where θ (0＜θ ≤1) is a 

parameter related to the trapping of the photo-generated 

carriers, with larger θ corresponding to a weaker trapping.50-52 

From the fits to the data in Fig. 4(a) and 4(b), we find θ = 0.20 

and 0.66 for PD_A and PD_C, respectively, indicating less 

significant trapping in PD_C. This observation is in line with the 

model of photo-generated carrier trapping at the mesoporous 

GaN/metal interface as the trapping of carriers by surface states 

can be reduced by the HfO2 passivation layer.  

The trapping of the photo-generated carriers can also be 

seen in the time-resolved measurements. The time-resolved 

photocurrent of PD_A and PD_C was measured by the temporal 

modulation of a UV-LED via a signal generator and a power 

amplifier [also see supplementary Fig. S2]. As shown in Fig. 4(c) 

and 4(d), the yellow and pale blue regions correspond to cycles 

during which the UV-LED is on and off, respectively. The rise and 

decay times of the photocurrent are larger than 20s and 60s, 

respectively, for PD_A. These times are one to two orders 

magnitude longer than those for PD_C. The longer rise and 

decay times for PD_A are attributed to the trapping and de-

trapping (emitting) of photo-generated carriers and support the 

trapping model for the mesoporous GaN/metal interface. 

To explain the gain, we consider the schematic energy band 

diagram in Figure 5. As shown in Fig. 5(a), without illumination, 

Fig. 4 (a) (b) Power-dependence of the photocurrent and specific detectivity for the mesoporous GaN photodetector (PD_A) and mesoporous GaN photodetector with HfO2 

passivation layer (PD_C); (c) (d) time-dependence of the current for the mesoporous GaN photodetector (PD_A) and mesoporous GaN photodetector with HfO2 passivation layer 

(PD_C).
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the band bending at the interface of mesoporous GaN and the 

metal contacts forms two back-to-back Schottky junctions. At 

the mesoporous GaN/metal interface, ionized acceptor-like 

surface states (trapping centers) exist below the Fermi level 

(illustrated using a black box). Under an applied bias, a 

depletion region forms, as shown in Fig. 5(b). Under light 

illumination, light generates electron-hole pairs; the electrons 

and holes photo-generated in the depletion region are 

separated by the applied bias and drift to the positively and 

negatively biased contacts, respectively. The photo-generated 

holes drift to the negatively biased contact and are captured by 

the trapping centers at the mesoporous GaN/metal interface, 

thus producing a net positive charge. In turns, this acts to lower 

the height of the Schottky barrier at the negatively biased 

contact compared to the case of no illumination.42, 44, 46, 53 The 

lowered Schottky barrier under UV light illumination increases 

the thermionic current, resulting in a large photocurrent and 

internal gain.  

  The height of the Schottky barrier can be calculated from the 

Schottky thermionic current: 

𝐼 = 𝐼1 (exp (
𝑒𝑉

𝑛𝐾𝐵𝑇
) − 1) + 𝐼2 (exp (−

𝑒𝑉

𝑛𝐾𝐵𝑇
) − 1),            (3) 

𝐼1 = 𝐴𝐴∗𝑇2exp⁡(−𝑒𝜑𝑏1/𝐾𝐵𝑇),                                      (4) 

𝐼2 = 𝐴𝐴∗𝑇2exp⁡(−𝑒𝜑𝑏2/𝐾𝐵𝑇),                                      (5) 

where A is the area of the photodetector, A* is the effective 

Richardson constant, e is the electron charge, V is the applied 

voltage, n is the ideality factor, T is absolute temperature, KB is 

the Boltzmann constant and qφb1 and qφb2 are the heights of the 

Schottky barriers at the two contacts. By fitting the measured J-

V curves in Fig. 3(a) with the equations above, we obtain qφb1 = 

qφb2 =0.58 eV for the PD_A in the dark, and qφb1 = qφb2 =0.37 eV 

under UV light illumination (λ = 340 nm, ~1.68 mWcm-2). Thus, 

the height of the Schottky barrier is significantly decreased by 

UV light, resulting in a larger photocurrent. 

 Our schematic energy band diagram is consistent with the 

time-resolved measurement results. When light is switched on, 

the trapping centers capture the photo-generated holes, 

decreasing the height of the Schottky barrier and increasing the 

photocurrent. Because the capture rate is proportional to the 

density of empty traps, the capture rate gradually decreases as 

the traps are occupied by the photo-generated holes. Thus the 

Schottky barrier height gradually decreases with time and the 

photocurrent increases until it reaches a plateau, consistent 

with our time-resolved response measurements. However, 

when the light is switched off, the holes can escape from the 

traps. Thus the Schottky barrier tends to recover its height and 

the photocurrent gradually decreases. The photodetector 

behaves like a capacitor. The lowering and recovery sequences 

for the Schottky barrier can be compared to the charge and 

discharge of a capacitor, respectively. We have carried out a 

series of time-resolved measurements with different light 

switching periods ranging from 500 s to 100 ms [see Fig. S2 in 

the Supporting Information]. Although the photo-response 

decreases with increasing switching frequency,  f, a large 

photocurrent（100 μA) is still obtained at f  =2× 103 Hz. Thus 

laterally mesoporous GaN photodetectors could be used for fast 

detection of weak UV signals.  

Conclusion 

In summary, we have fabricated metal-semiconductor-metal 

photodetectors based on well-ordered laterally mesoporous 

GaN. The conversion of GaN into a mesoporous structure leads 

to a significant performance improvement. The specific 

detectivity of our devices under UV illumination (340 nm) can 

reach values of up to 5.3×1014 Jones at applied voltages of 1V. 

We attribute this high detectivity to the large internal gain 

caused by the trapping of photo-generated holes at the 

interface between the mesoporous GaN and the metal contact. 

This charge trapping reduces the height of the Schottky barrier 

at the mesoporous GaN/metal contact interface, thus 

increasing the thermionic current. The high-detectivity along 

with the simple fabrication process make these laterally 

mesoporous photodetectors useful for the selective detection 

of weak optical signals in the UV spectral range. 

Experimental Section  

Epilayers: The investigated GaN epilayers were grown on (0001) 

sapphire substrate using metal-organic chemical vapor 

deposition. Firstly, the sapphire was thermally cleaned under H2 

at 1100℃ for 10 minutes. After that, a ~30-nm-thick low 

Fig. 5 Schematic energy band diagrams of a mesoporous photodetector under (a) zero 

bias and without UV illumination, (b) applied bias, and (c) applied bias and light 

illumination.
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temperature GaN buffer layer was grown onto the sapphire 

substrate at 525℃. Subsequently, a ~1-μm-thick undoped GaN 

layer was grown at 1060℃, followed by a ~2-μm-thick n+-GaN:Si 

layer (3×1018cm-3) grown at 1045℃. 

Etching process and mechanism: The ~2-μm-thick n-type bulk 

GaN layer was transformed into laterally mesoporous GaN using 

an electro-chemical etching process. As shown schematically in 

Fig. S1 (a), before etching, a ~800-nm-thick SiO2 protective layer 

was deposited onto the GaN epilayer to avoid the etching of the 

top GaN surface. Subsequently, a laser-scribing process was 

performed to form the lateral etching channels (windows) with 

a 550 μm spacing. During the etching, n+-GaN contacted with 

platinum metal was used as anode, and a platinum contact was 

used as cathode. The etching mechanism is depicted in Fig. S1 

(b). With the n+-GaN immersed in the nitric acid (65 wt%) 

electrolyte, a Schottky junction is formed at the GaN/electrolyte 

interface. Under an external applied DC voltage, the n+-GaN is 
oxidized by holes near the GaN/electrolyte interface:15 

𝐺𝑎𝑁 + 3𝐻2𝑂 + 3ℎ+ = 𝐺𝑎(𝑂𝐻)3 +
1

2
𝑁2 + 3𝐻+.             (6) 

Since the oxidized product of GaN ( 𝐺𝑎(𝑂𝐻)3 ) is not 

thermodynamically stable in the acid electrolyte, it dissolves 

into Ga3+: 

𝐺𝑎(𝑂𝐻)3 + 3𝐻+ = 𝐺𝑎3+ + 3𝐻2𝑂 .                      (7) 

Then the mesopores form where the GaN dissolves. After 

etching, the SiO2 protective layer was removed using diluent HF, 

and the wafers were ultrasonically cleaned in DI water and dried 

in N2. 

Device fabrication: Semi-transparent interdigitated Schottky 

contacts made of a Ni (5 nm)/ Au (5 nm) multilayer were 

deposited using e-beam evaporation. The pattern was defined 

by standard lithography and lift-off techniques. Thereafter, a Ti 

(50 nm)/ Au (300 nm) multilayer was patterned and evaporated 

to form the contact pads. The fingers are 10-μm-wide and 200-

μm-long with 5-μm-wide inter-finger spacing. The active area of 

the photodetectors is 260×200 μm2. The 5-nm-thick HfO2 layer 

was deposited via atomic layer deposition using Hf(NMe2)4 and 

water with nitrogen as carrier gas. The pressure and 

temperature are 0.2 Torr and 120℃, respectively. The thickness 

per growth cycle is ~0.13nm/cycle and the total growth cycles 

are 38. 

Measurement setup: The photo and dark current density–

voltage (J-V) characteristics of the photodetectors were 

measured using an Agilent semiconductor parameter analyzer 

B1500A, and the light output from a 150W Xe lamb was directed 

into a monochromator for single wavelength selection. The 

incident optical power onto the photodetectors was measured 

using a calibrated power meter (Thorlabs GmbH., PM 100D). 

The power-dependent response was measured using an 

attenuator to change the incident light power. The time-

resolved response was measured using a UV-LED, a signal 

generator and a power amplifier.  
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