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We show how field- and information theory can be used to quantify the relationship between genotype
and phenotype in cases where phenotype is a continuous variable. Given a sample population of pheno-
type measurements, from various known genotypes, we show how the ordering of phenotype data can
lead to quantification of the effect of genotype. This method does not assume that the data has a
Gaussian distribution, it is particularly effective at extracting weak and unusual dependencies of geno-
type on phenotype. However, in cases where data has a special form, (eg Gaussian), we observe that
the effective phenotype field has a special form. We use asymptotic analysis to solve both the forward
and reverse formulations of the problem. We show how p-values can be calculated so that the signifi-
cance of correlation between phenotype and genotype can be quantified. This provides a significant gen-
eralisation of the traditional methods used in genome-wide association studies GWAS. We derive a field-
strength which can be used to deduce how the correlations between genotype and phenotype, and their
impact on the distribution of phenotypes.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Explaining the causes of phenotypic variation has been an aim
of natural science since its inception. In more recent times, deter-
mining the extent to which genetic variation, as opposed to envi-
ronmental factors, cause variation has been a heated topic of
discussion. With the massively increased availability of data in last
few years, it is now possible to use statistical tools to quantify the
effect of individual genes on phenotype.

The most commonly used tool in this field is Genome-Wide
Association Studies (GWAS) (Manolio, 2010; Pearson, 2008). This
method typically identifies correlations between a genetic variant
and the presence of a particular condition or disease. These meth-
ods make use of only basic features of the distribution of pheno-
types for each genotype, such as mean and variances of
subpopulations, and the differences in means. The term ‘genetic
variant’ means Single Nucleotide Polymorphisms (SNPs) - which
is the alteration of a single nucleotide (A, C,G, or T) in the DNA.
GWAS is then used to produce ‘Manhattan plots’ that show p-
values which show the association between the point mutation
and likelihood of having a particular disease. This corresponds to
a discrete phenotype, as individuals either have or do not have
any particular disease. This approach has led to the identification
of groups of genes involved in various diseases (Gibson, 2010;
Ozaki et al., 2002).

In this paper, we address the more complicated scenario of a
continuous distribution of phenotype values, for example, height,
weight, BMI. The aim of this paper is to provide a theoretical
framework to understand the relationship between phenotype
and genotype. To establish a basic theory, we consider a single phe-
notype, for example, height or weight and a single gene. We then
assume that the genetic state of each individual is known, the
information contained in the sequence of genetic states is anal-
ysed. In Section 2 we derive an algorithm to calculate statistics
from the observations of phenotype and genotype. The algorithm
considers a sample taken from the population, and ranks individu-
als from the sample according to their phenotype (eg putting them
in height order), to form an ordered list. We then calculate statis-
tical values to quantify the significance of various outputs in Sec-
tion 3. The underlying mathematical basis of the algorithm is
derived in Section 4, where we explain a generalisation of Shan-
non’s Information theory (Shannon et al., 1948). We postulate an
effective genotype field whose effect is to account for any skew-
ness in the phenotype distribution; we then make use of varia-
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tional calculus to compute this field from the observed genotype-
phenotype data sequence. We describe the resulting model as GIFT,
that is, Genomic Informational Field Theory.

The model gives rise to two problems: the forward and inverse:
the forward problem corresponds to the determination of location
probabilities from theorised field strengths, whilst the inverse
problem refers to obtaining field strengths from observed location
probabilities. Since the inverse problem is simpler to solve, we con-
sider that first, in Section 5. The forward problem is addressed in
section 6 using asymptotic analysis to solve the case of a weak
interaction between genotype and phenotype. In Section 3, we per-
form more detailed calculations on the range of possible arrange-
ments of genotypes in the list so that we can assign p-values to
any particular observed outcome. Results of numerical simulations
which illustrate how the method works are presented in Section 7.
Finally, conclusions are drawn and discussed in Section 8, whilst
the appendices contains some of the lengthier mathematical
derivations, in particular, the variational derivatives, A, a master-
equation approach B which complements the calculation of p val-
ues in Section 3. A final appendix (C) shows how the minor modi-
fications required if one wanted to plot results against actual
phenotype value rather than aganst a position in the ordered list.
2. Statistical algorithm

2.1. Experimental setup & observable data

We assume that a sample of individuals has been taken, and for
each individual, there is genetic data available and a phenotype
measurement has been made. We use N to denote the size of the
population sample, and enumerate individuals using j where
1 6 j 6 N. We denote the phenotype by X, which we assume is a
continuous variable, that is, X 2 R, and we label this data by indi-
vidual, j, thus X jð Þ. We assume that the gene occurs in one of three
states, as occurs in diploid organisms. For example, the case of two
dominant alleles (AA) will be denoted ‘þ1’, the heterozygous state
(Aa) is denoted by ‘0’ and the homozygous state of two recessive
alleles (aa) by ‘�1’. We use Nþ;N0;N� for the numbers in each
genetic state, then we have N ¼ Nþ þ N0 þ N�.

The method is based on the comparison of two arrangements of
individuals. First, we consider the ordered state in which the indi-
viduals are arranged in increasing phenotype measurements, that
is

X 1ð Þ < X 2ð Þ < X 3ð Þ < . . . < X Nð Þ: ð2:1Þ

For example, if our sample are horses, and the phenotype is
height, then we can envisage this as allocating horses to paddocks
based on their height: the shortest horse to the first paddock j ¼ 1,
the second shortest horse to paddock j ¼ 2, etc, and paddock j ¼ N
to the tallest horse. This allocation is based purely on phenotype
and there is no explicit influence of genotype on the arrangement.

Now we assume that the genetic state of each individual is
known, that is, for each subject 1 6 j 6 N, we know whether it is
þ1;0;�1. We denote this state by cj where, for each j; cj takes
one of the values q 2 þ1;0;�1f g. We thus construct a sequence
C of genetic states given by

C ¼ c1; c2; c3; . . . cNð Þ; ð2:2Þ

where the order is important, since cj corresponds to phenotype
X jð Þ. As an example, C ¼ þ1;þ1;0;�1;0;þ1;0;0;�1;�1;�1ð Þ rep-
resents a sample of N ¼ 11 individuals, Nþ ¼ 3 of which have the
+ 1 genetic state (AA), N0 ¼ 4 are of heterozygous (‘0’=Aa) and
N� ¼ 4 are recessive and homozymous (‘�1’=‘aa’). This list of infor-
mation, C, (2.2) is the key quantity which we wish to analyse to
determine the strength of genetic on phenotype.
2

Clearly if the first Nþ of these states are all cj ¼ þ1, and the next
N0 are all cj ¼ 0, and the remaining N� are all cj ¼ �1, then the
genotype has a strong influence on the phenotype. However, if
the sequence C appears random, then the genotype and pheno-
types have no correlation and we can confidently claim that the
gene has no influence on phenotype. Between these two extremes,
there are the real-life cases where there is some correlation,
between genotype and phenotype, without the magnitude of the
effect being clear. We propose to use information theory to find
the strength and form of the relationship.

The second allocation method we refer to as a completely ran-
dom configuration or, rather, the average over all possible arrange-
ments of individuals to positions in the list. In our example, horses
are allocated to paddocks with no influence of phenotype or geno-
type, so there is a probability of a paddock being occupied by a
horse of a particular genetic state, and this probability is the same
for all paddocks.

We then compare the actual ordering of genotypes by pheno-
type (2.1)–(2.2) with the random configuration. From C, we con-
struct the cumulative distribution of homozygous or
heterozygous states as follows. We define Wþ jð Þ to be the number
of ‘+’-states occurring in the first j individuals, that is, in the sub-

list c1; c2; . . . cj
� �

. Similarly, W0 jð Þ is the number of 0-states in

the first j individuals, and W� jð Þ as the number of ‘-’ states in the
first j individuals. Using the Kronecker d symbol, defined by
di;j ¼ 1 if i ¼ j and di;j ¼ 0 otherwise, the cumulative distributions
can be expressed as

Wþ jð Þ ¼
Xj

i¼1

d1;ci ¼ number of þ 10s in the first j elements of the list C;

W0 jð Þ ¼
Xj

i¼1

d0;ci ¼;number of 00s in the first j elements of the list C;

W� jð Þ ¼
Xj

i¼1

d�1;ci ¼ :number of � 10s in the first j elements of the list C;

ð2:3Þ

For completeness, we extend these definitions to j ¼ 0 with
Wq 0ð Þ ¼ 0 for q ¼ þ1;0;�1f g.

Note that Wþ jð Þ þW0 jð Þ þW� jð Þ ¼ j, which enables us to elim-
inate any one of the cumulative distributions, and rewrite in terms
of the other two, for example, W0 jð Þ ¼ j�Wþ jð Þ �W� jð Þ. If we
denote a general sign 0;�1 by q, then each of the Wq jð Þ is an
increasing function of j. Furthermore, we have

Wþ Nð Þ ¼ Nþ; W0 Nð Þ ¼ N0; W� Nð Þ ¼ N�; ð2:4Þ

since Nþ;N0;N� are the total number of +, 0, - states in the sample of
N ¼ Nþ þ N0 þ N� individuals. In later analysis, wemake use of the dif-
ference of these cumulative distribution functions Wq jð Þ, defined by

wq jð Þ ¼ Wq jð Þ �Wq j� 1ð Þ: ð2:5Þ

Intuitively, this is an appealing quantity to consider, since it
represents the probability of site j being occupied by an individual
of genetic state q; however, in practice, the quantities wq jð Þ are
either zero or one, depending which genetic state actually occurs
in the data. In cases where a gene has an effect on phenotype,
we expect Wq jð Þ to be slowly varying in j, and so wq jð Þ could be
obtained by taking averages over a range of neighbouring j values.
2.2. Comparison of actual configuration with random allocation

In the random configuration, we assume that there is no corre-
lation between phenotype and we define the probabilities of
þ1;0;�1 states occuping any particular position in the list by
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w 0ð Þ
þ ;w 0ð Þ

0 ;w 0ð Þ
� , which are defined by the probability density

functions

w 0ð Þ
þ ¼ Nþ

N
; w 0ð Þ

0 ¼ N0

N
; w 0ð Þ

� ¼ N�

N
: ð2:6Þ

We use zero superscripts to denote the random configuration.

Note that w 0ð Þ
þ þw 0ð Þ

0 þw 0ð Þ
� ¼ 1 since each position in the list must

be occupied. For this random state, the cumulative distributions for
each genotype are given by summing (2.6)

W 0ð Þ
þ jð Þ ¼ jw 0ð Þ

þ ; W 0ð Þ
0 jð Þ ¼ jw 0ð Þ

0 ; W 0ð Þ
� jð Þ ¼ jw 0ð Þ

� ; ð2:7Þ

and note that these hold for 0 6 j 6 N.
We now consider the difference between the actual cumulative

distribution (2.3) and the expected form for the random case (2.7),

hþ jð Þ ¼ Wþ jð Þ �W 0ð Þ
þ jð Þ ¼ Wþ jð Þ � jNþ

N
;

h� jð Þ ¼ W� jð Þ �W 0ð Þ
� jð Þ ¼ W� jð Þ � jN�

N
:

ð2:8Þ

As noted earlier, we do not need to consider the quantity

h0 jð Þ ¼ W0 jð Þ �W 0ð Þ
0 jð Þ, as any corresponding results can be

obtained by noting that, for all j, we have h0 jð Þ ¼ �hþ jð Þ � h� jð Þ.
The interpretation of the hq-paths is that they describe the mag-

nitude of the difference between the actual locations of individuals
in the list and those expected from an average random allocation

which would be given by w 0ð Þ
� .

There are various properties of these h� jð Þ paths that are worth
noting:

� hþ 0ð Þ ¼ 0, h� 0ð Þ ¼ 0,
� hþ Nð Þ ¼ 0, h� Nð Þ ¼ 0, this follows from Wq Nð Þ ¼ Nq and

W 0ð Þ
q Nð Þ ¼ Nq (for q ¼ þ1;0;�1f g);

� h� jð Þ � 0 (8j) if there is no genotype-phenotype influence or
correlation, since in this case, the expected distribution for the
ordered state is the random configuration, and so any deviation
from hþ jð Þ; h� jð Þð Þ ¼ 0;0ð Þ will be due to random fluctuations.

Hence the magnitude of h� jð Þ determines the strength of the
effect of the genotype on the phenotype. We view the sequence
of points hþ jð Þ; h� jð Þð Þ as a path in two-dimensional space, which
starts at 0;0ð Þ at j ¼ 0, ends at 0;0ð Þ when j ¼ N, and makes some
excursion away from 0;0ð Þ for intermediate points 0 < j < N.

To obtain the extremal hþ values, let us consider the case where
all Nþ occurrences of the + states are in locations 1;2; . . . ;Nþ; The
most extreme hþ values is obtained by considering the case where
all Nþ occurrences of the þ1 states in locations j ¼ 1;2; . . . ;Nþ, and
the remaining items in the list are occupied by 0;�1. This gives

Wþ Nþð Þ ¼ Nþ; W0 Nþð Þ ¼ 0; W� Nþð Þ¼ 0;

W 0ð Þ
þ Nþð Þ ¼ Nþw

0ð Þ
þ ; W 0ð Þ

0 Nþð Þ ¼ Nþw
0ð Þ
0 ; W 0ð Þ

� Nþð Þ ¼ Nþw 0ð Þ
� ;

hþ Nþð Þ ¼ Nþ � Nþw
0ð Þ
þ ; h0 Nþð Þ ¼ �Nþw

0ð Þ
0 ; h� Nþð Þ ¼ �Nþw 0ð Þ

� :

ð2:9Þ

Since N ¼ Nþ þ N0 þ N�, we note that

hþmax ¼ hþ Nþð Þ ¼ Nþ 1�w 0ð Þ
þ

� �
¼ Nþ

N
N � Nþð Þ;

¼ Nþ N0 þ N�ð Þ
N

; ð2:10Þ

Similar calculations for the 0;�1 gene states give

h�max ¼
N� N � N�ð Þ

N
¼ N� N0 þ Nþð Þ

N
;

h0max ¼
N0 N � N0ð Þ

N
¼ N0 Nþ þ N�ð Þ

N
: ð2:11Þ
3

3. Statistical Significance of h-paths

We noted in Section 2, particularly in Sections 2.2 that large
deviations in the h-path away from zero correspond to highly sig-
nificant genotype-phenotype interactions, whilst h-paths which
remain near h ¼ 0 for all j are a sign of SNPs or genes that have less
or no effect on phenotype. A more rigorous theoretical basis for
these effects will be given at the end of Section 4.

In this section we quantify the effect of observed genotype on
observed phenotype by showing how to calculate the p-values
for a given h-path, that is, trajectory given by h� jð Þ for 1 6 j 6 N.
We do this by using the ideas of denisty of states from theoretical
physics (Kittel, 2018), where one considers the number different
states for each energy level, and constructs a function which
counts the number of states with energy below any particular cer-
tain energy. Here, we consider the number of possible paths that
give rise to a deviation of h jð Þ (or more) away from h jð Þ ¼ 0.

We start with a simple system in which there are only two
genetic states, þ1 and �1, and later generalise to the three-state
system (þ1;0;�1), in Section 3.2.

3.1. Two-state significance calculation

We assume that there are given numbers, Nþ and N�, of the þ1
and �1 genetic states, and N ¼ Nþ þ N� (so there are N0 ¼ 0 zero
genotypes). We assume both Nþ;N� are large, so that factorials
can be approximated using Stirling’s formula (N! � NNe�N

ffiffiffiffiffiffiffiffiffiffi
2pN

p
)

(Olver et al., 2010); to simplify notation in later calculations, we

writew ¼ w 0ð Þ
þ , so that Nþ ¼ Nw and N� ¼ N 1�wð Þ. The total num-

ber of h-paths is given by the number of ways that þ1 and �1 can
be ordered in a list, that is

Ntot ¼
N

Nþ

� �
¼ N!

Nþ! N�!
� e�N w logwþ 1�wð Þ log 1�wð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pNw 1�wð Þ
p : ð3:1Þ

The cumulative distribution function Wþ jð Þ (2.3) is the total
number of + states in the first j elements of the list, and W 0ð Þ

þ jð Þ
is the expected number of + states if the listing was random

(2.7), that is W 0ð Þ
þ jð Þ ¼ jw 0ð Þ

þ . The h-path is defined by

hþ jð Þ ¼ Wþ jð Þ �W 0ð Þ
þ jð Þ ¼ Wþ jð Þ � jw 0ð Þ

þ (2.8). If there are k ‘+1’
states and so j� kð Þ ‘-1’ states in the first j list positions
(1;2; . . . ; j), then we have

hþ jð Þ ¼ k� jw 0ð Þ
þ ; ð3:2Þ

and the number of ways that this can happen is

Nþpaths k; jð Þ ¼
j

k

� �
N � j

Nþ � k

� �
¼ j! N � jð Þ!

k! j� kð Þ! Nþ � kð Þ! N � j� Nþ þ kð Þ! :

ð3:3Þ

This is the number of ways of allocating k copies of the þ1 state
in the first j locations multiplied by the number of ways of allocat-
ing Nþ � k copies of the þ1 state in the last N � j positions. Whilst,
formally we have hþ jð Þ and h� jð Þ, it is sufficient for us to consider
only one of them, since h� jð Þ ¼ �hþ jð Þ. In the two-dimensional
space hþ; h�ð Þ, this can be viewed as motion in j being constrained
to the line hþ jð Þ þ h� jð Þ ¼ 0, as illustrated in Fig. 1. We assume
hþ jð Þ > 0 and then, to calculate a p-value, we want to know what
fraction of all possible paths (Ntot), have a hþ jð Þ value which is lar-
ger than (3.2). Larger values of jhq jð Þj correspond stronger depen-
dencies of phenotype on genotype, which are less likely to occur
by chance. We view such occurrences as being more ‘extreme’,
and wish to include all values of h above hþ jð Þ when determining
a probability of an event of hþ jð Þ occurring. Thus we wish to
evaluate



Fig. 1. Illustration of an example trajectory for the case of two genetic states; the three-dimensonal trajectory j; hþ; h�ð Þ, can be viewed, for any fixed j (with 1 6 j 6 N), as a
point in two-dimensional space h jð Þ ¼ hþ jð Þ; h� jð Þð Þ. However, the point is not free to arbirarily in the plane, it as to start and end at 0;0ð Þ, (at j ¼ 0;N) and in between, it is
constrained to move on the line h� ¼ �hþ.
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p ~k; j
� �

¼ 1
Ntot

X1
k¼~k

Nþpaths k; jð Þ: ð3:4Þ

In the following calculations, we assume

N � 1; Nþ ¼ Nw; j ¼ Nx; k ¼ Ny; ~k ¼ Nz; ð3:5Þ

so, for large lists, we expect j; k to be relatively large too, hence

Nþpaths k; jð Þ� jj 1� j=Nð ÞN�j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j N� jð Þ

p
2pNkk j�kð Þj�k w�k=Nð ÞNw�k 1�w� j=Nþk=Nð ÞN�Nw�jþk ffiffiffi

R
p ;

R¼ k j�kð Þ w�k=Nð Þ 1�w� j=Nþk=Nð Þ:
ð3:6Þ

The relative position in the list is then given by 0 < x < 1, and
0 < y < x. Since the terms inside the square roots need to be posi-
tive, we also have wþ x� 1 < y < w. The domain of interest is
illustrated in Fig. 2.

To evaluate (3.4) we approximate by considering x; y;w as con-
tinuous variables, and replacing the sum (3.4) by the integral

~p z; x;wð Þ ¼ eNg w;xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w 1�wð Þx 1�xð Þ

p ffiffiffiffiffiffiffi
2pN

p
R 1
y¼z

e�Nf y;w;xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y x�yð Þ w�yð Þ 1þy�w�xð Þ

p Ndy

f y;w; xð Þ ¼ y log yþ x� yð Þ log x� yð Þ þ w� yð Þ log w� yð Þ
þ 1þ y� x�wð Þ log 1þ y�w� xð Þ;

g w; xð Þ ¼ w logwþ 1�wð Þ log 1�wð Þ þ x log x
þ 1� xð Þ log 1� xð Þ:

ð3:7Þ
Fig. 2. Illustration of the region of interest in x; yð Þ-space, namely that satisfying all
the constraints. The thicker line shows the location of the maximum over y for any
fixed value of x. The constraints are 0 < y < x < 1 and y > xþw� 1, corresponding
to 0 < k < j < N (number of + states,k, cannot exceed location, j, and both must be
between zero and N) and k > jþ Nþ � N, which is equivalent to N � j > Nþ � k, so
that there must be more positions in the list (jþ 1; . . . ;N) remaining than + states
still to allocate (Nþ � k).

4

The dominant part of this integral comes from minimum of
f y;w; xð Þ over y, which is given by y ¼ wx (from solving f y ¼ 0 for
y). Since

f y y;w; xð Þ ¼ log
y 1þ y� x�wð Þ
x� yð Þ w� yð Þ

� �
; and

f yy y;w; xð Þ
��
y¼wx

¼ 1
xw 1� xð Þ 1�wð Þ ; ð3:8Þ

we have

~p z; x;wð Þ ¼
ffiffiffiffi
N

pffiffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w 1�wð Þx 1� xð Þ

p Z 1

y¼z
exp � N y� xwð Þ2

2xw 1� xð Þ 1�wð Þ

 !
dy

¼ 1
2
erfc

ffiffiffiffi
N

p
z� xwð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2xw 1� xð Þ 1�wð Þ
p !

: ð3:9Þ

Using (3.2) and (3.5), and noting that we should consider both
tails of the distribution (h > hþ jð Þ and h < �hþ jð Þ), we double this
value of p, giving

pþ jð Þ ¼ erfc
hþ jð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Nxw 1� xð Þ 1�wð Þ
p !

¼ erfc
N
ffiffiffiffi
N

p
hþ jð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j N � jð ÞNþN�
p !

: ð3:10Þ

(where jzj ¼ z if z P 0 and jzj ¼ �z if z < 0).
This formula gives a p-value for each position in the list, j; how-

ever, it would be preferable to have a single p-value for each SNP,
thus we now propose various formula for obtaining a single p-
value from the whole list, (3.10). Firstly, we could simply take
the minimum over all j-values

pSNP1 ¼ min
16j6N

pþ jð Þ
� 	

; ð3:11Þ

or we could consider the average (mean) p-value calculated over
every position in the list

pSNP2 ¼ 1
N

XN
j¼1

pþ jð Þ: ð3:12Þ

Since we commonly want to know the outliers, and so plot
L ¼ � log pSNP, one could also plot

� logpSNP3 ¼ LSNP3 ¼ 1
N

XN
j¼1

� logpþ jð Þ: ð3:13Þ

Our final two methods rely on taking various weighted averages
of jhq jð Þj or hq jð Þ over j. Since (3.10) can be written as

pþ jð Þ ¼ erfc Zð Þ; with Z ¼ jhþ jð ÞjN
ffiffiffiffi
N

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j N � jð ÞNþN�

p ; ð3:14Þ

we consider
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pSNP4 ¼ erfc Zð Þ; Z ¼
ffiffiffiffi
N

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NþN�

p XN
j¼1

jhþ jð Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j N � jð Þ

p ; ð3:15Þ

and

pSNP5 ¼ erfc jZjð Þ; Z ¼
ffiffiffiffi
N

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NþN�

p XN
j¼1

hþ jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j N � jð Þ

p : ð3:16Þ

The efficacy of these will be considered in Section 7.

3.2. Three-state significance calculation

We now consider the case of 3 genetic states, þ1;0;�1 and aim
to determine a formula similar to (3.10) for the p-value in this
three-component case. In the 2-genetic-state system, if we assume
only þ1 and �1 genetic states occur, the distance of h ¼ hþ; h�ð Þ

from 0;0ð Þ is given by d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þ þ h2�

q
¼

ffiffiffiffiffiffiffiffi
2h2þ

q
¼

ffiffiffi
2

p
jhþj, so using

jhj ¼ jhþj ¼ jh�j is consistent with jhj ¼ d, the difference being only
a factor of

ffiffiffi
2

p
, and calculations of p-values based on the density of

states is not changed by how we calculate jhj. With two states, the
two-dimensional motion on the hþ; h�ð Þ plane is contrained to the
line hþ þ h� ¼ 0, as illustrated in Fig. 1.

However, in a system with three genetic states, it is not imme-
diately clear how best to interpret the distance of h from zero. Arbi-

trarily choosing jhj as jhþj þ jh�j or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þ þ h2�

q
ignores the role that

h0 ¼ �hþ � h� has in making the h-paths move away from zero.
We consider the full 3D motion of h ¼ hþ; h0; h�ð Þ as illustrated in
Fig. 3, which illustrates a trajectory (or h-path) which starts from
j ¼ 1 (corresponding to x ¼ 0) and ends at j ¼ N (corresponding
to x ¼ 1). At each point (labelled by j or x) along the path, we have
values for h ¼ hþ; h�; h0ð Þ. At any particular location j, we treat the
three hq jð Þ variables in a consistent manner. We calculate the dis-
tance from the origin 0;0;0ð Þ to h, and then make use of the condi-
tion that the trajectory is constrained to lie on the plane
hþ þ h0 þ h� ¼ 0 afterwards, which yields the distance d as

d2 ¼ h2þ þ h2� þ h20 ¼ 2h2þ þ 2h2� þ 2hþh�

¼ 1
2

3 hþ þ h�ð Þ2 þ hþ � h�ð Þ2
h i

: ð3:17Þ

We consider the case where, in locations 1;2; . . . ; j in the
ordered list, there are k occurrences of the þ1 genetic state, and l
occurrences of �1. Thus
Fig. 3. Illustration of an example trajectory for the case of three genetic states. Here, t
1 6 j 6 N; or as a three-dimensional trajectory in h ¼ hþ jð Þ; h0 jð Þ; h� jð Þð Þ space, which star
hþ þ h0 þ h� ¼ 0.

5

Wþ jð Þ ¼ k; W 0ð Þ
þ jð Þ ¼ jw 0ð Þ

þ ; hþ jð Þ ¼ k� jw; w ¼ w 0ð Þ
þ

W� jð Þ ¼ l; W 0ð Þ
� jð Þ ¼ jw 0ð Þ

� ; h� jð Þ ¼ l� jv; v ¼ w 0ð Þ
� :

ð3:18Þ

As in Section 3.1 we assume

j ¼ Nx; k ¼ Ny; l ¼ Nz; Nþ ¼ Nw; N� ¼ Nv ; N � 1;

ð3:19Þ

so that there are many occurrences of each genotype, and we con-
sider the main central part of the trajectory (that is, j is not near
j ¼ 1 or j ¼ N), so there are many of each genetic state in the inter-
vals 1 . . . j and j . . .N. This assumption simplifies later calculations
by allowing Stirling’s formula to be used (Olver et al., 2010).

We calculate the total number of paths which have Nþ;N0;N�
occurrences the genetic states þ1;0;�1 respectively, as

Ntot ¼
N!

Nþ! N0! N�
� exp �N g wð Þ þ g vð Þ � g 1� v �wð Þ½ �


 �
2pN

;

g qð Þ ¼ q log qð Þ; ð3:20Þ

by Stirling’s formula (Olver et al., 2010), and the number of paths
from j; hþ; h�ð Þ ¼ 0;0;0ð Þ to j; k� jw; l� jwð Þ and on to (N,0,0), as

Npaths j; k; lð Þ ¼ j!
k! l! j� k� lð Þ!

:
N � jð Þ!

Nþ � kð Þ! N� � lð Þ! N � Nþ � N� � jþ kþ lð Þ! : ð3:21Þ

The conditions of there being a positive number of each state in
both the intervals 0; . . . ; jf g and j; . . . ;Nf g imply that

0 < y < x < 1; 0 < z < x < 1; xþ vþw� 1 < yþ z < x:

ð3:22Þ

The last inequalities arise from the fact that there must be
j� k� l ¼ N x� y� zð Þ > 0 occurrences of the zero state in the first
j elements, and that there must be
N � Nþ � N� � jþ kþ l ¼ N 1�w� v � xþ yþ zð Þ > 0 zero states
in the last N � j elements.

We define bp j; k; lð Þ as the fraction of all possible paths, that
have k occurrences of the + 1 genetic states, and l occurrences
of the state �1 in the first j items of the list. This is given by
the path density bp j; k; lð Þ ¼ Npaths j; k; lð Þ=Ntot which can be
approximated by
he h-path is can be viewed as a four-dimensional object (j; hþ jð Þ; h0 jð Þ; h� jð Þ) with
ts and ends at h ¼ 0;0;0ð Þ; however, this trajectory is constrained to lie on the plane
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bp j; k; lð Þ ¼ eNG x;y;zð Þ

2pN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 1� xð Þvw 1� v �wð Þ

yz w� yð Þ v � zð Þ x� y� zð Þ 1þ yþ z� x� v �wð Þ

s
;

G x; y; zð Þ ¼ g xð Þ þ g 1� xð Þ þ g wð Þ � g yð Þ � g w� yð Þ þ g vð Þ � g zð Þ
�g v � zð Þ þ g 1� v �wð Þ � g x� y� zð Þ
�g 1þ yþ z�w� v � xð Þ

ð3:23Þ

The function G x; y; zð Þ has a single maximum, a property which
can be demonstrated by solving the conditions Gy ¼ 0 ¼ Gz for y; z,
where

@G
@y

¼ log
w� yð Þ x� y� zð Þ

y 1� v �w� xþ yþ zð Þ

� �
;

@G
@z

¼ log
v � zð Þ x� y� zð Þ

z 1� v �w� xþ yþ zð Þ

� �
: ð3:24Þ

This gives y ¼ xw; z ¼ xv . Evaluating the second derivatives at
the stationary point gives H ¼ GyyGzz � G2

yz > 0, and since Gyy < 0,
the stationary point at y ¼ xw; z ¼ xv is a maximum.

Since G x; y; zð Þjy¼xw;z¼xv ¼ 0, we can approximate the dominant
term in the number of paths formula (3.23) as

bp j; k; lð Þ � 1
2pNx 1� xð Þvw 1�w� vð Þ exp � NbG y; zð Þ

2vwx 1� xð Þ 1� v �wð Þ

 !
;

bG y; zð Þ ¼ v 1� vð Þ y�wxð Þ2 þw 1�wð Þ z� vxð Þ2

þ2vw y�wxð Þ z� vxð Þ: ð3:25Þ

The transformation y ¼ wxþ /þww; z ¼ vx� /þ vw, equiva-
lent to

/ ¼ vy�wz
v þw

; w ¼ y� xwþ z� xv
v þw

; ð3:26Þ

‘diagonalises’ this system (3.25) to

bp j; k; lð Þ � 1
2pNx 1� xð Þvw 1�w� vð Þ

	 exp �
N v þwð Þ 1� v �wð Þ/2 þ vww2� 

2vwx 1� xð Þ 1� v �wð Þ

 !
: ð3:27Þ

Fig. 4 shows how the transformation (3.26) removes the corre-
lation present in the multi-dimensional distribution (3.25). Note
that in the left panel, the major and minor axes of the elliptic con-
tours do not align with y; z axes, whereas in the centre panel they
do. Whilst (3.27) is simply the the product of two Gaussians, since
their standard deviations differ, we propose a further transforma-
tion to a new variable in all points with the same distance from
Fig. 4. Illustration of the two-dimensional distribution of path densities: left - as a functi
function of /;wð Þ in which there is no correlation, but the variances differ (3.27); righ
cylindrically symmetric – being only a function of ..

6

the origin have the same probability, as illustrated in the right-
most panel of Fig. 4, which has circular contours. We define
. ¼ . /;wð Þ by

.2 ¼ 1� v �wð Þ/2 þ vww2; ð3:28Þ

so that

w ¼ . cosgffiffiffiffiffiffiffi
vw

p ; / ¼ . singffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v �w

p ; tang ¼ /
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v �w

vw

r
;

ð3:29Þ
yields the path density as

bp j; k; lð Þ � 1
2pNx 1� xð Þvw 1�w� vð Þ

	 exp � N v þwð Þ.2

2vwx 1� xð Þ 1� v �wð Þ

� �
: ð3:30Þ

To obtain a p-value for the number of paths with more extreme
h-variations, we have to integrate this quantity over the range of
k ¼ Ny; l ¼ Nz, or equivalently . values for which bp is smaller.

To make this statement precise, we have to define what we
mean by ‘more extreme’ values of h�, that is, we consider the range
of all possible hþ jð Þ; h� jð Þ values, rescale these via
hþ jð Þ ¼ N y� xwð Þ and h� jð Þ ¼ N z� xvð Þ, using (3.18) and (3.19),
and then perform the transformations (3.26) and (3.28) to obtain
the corresponding values /;w and ultimately .. In terms of . the
resulting probability density function (3.30) is cylindrically sym-
metric, as illustrated in Fig. 4. Given a specific set of realised values
for hþ jð Þ; h� jð Þ, we perform these same transformations and which
give us a ‘threshhold’ value, qc , defined by

.2
c ¼ v 1� vð Þh2þ þw 1�wð Þh2� þ 2vwhþh�

N2 v þwð Þ
;

¼ N� N � N�ð Þh2þ þ Nþ N � Nþð Þh2� þ 2N�Nþhþh�

N3 Nþ þ N�ð Þ
:

ð3:31Þ

To sum the probability density function bp j; k; lð Þ over all h-paths
which have lower probabilities of occurring, we integrate bp j; k; lð Þ
over the range .c < . < 1. Hence we obtain

p ¼
X
k

X
l

p̂ ¼ N2 R R
D p̂dydz

¼ N2 v þwð Þ
R R

D p̂d/dw

¼ N2 v þwð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vw 1� v �wð Þ

p R R
D p̂.d.dg

¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vw 1� v �wð Þ

p exp � N v þwð Þ.2
c

2vwx 1� xð Þ 1� v �wð Þ

� �
:

ð3:32Þ
on of y; zð Þ in which the distribution exhibits non-zero covariance (3.25); centre - as
t - after the transformation to .;gð Þ, given by (3.30) in which the distribution is



Table 1
Summary of variables/parameters in the model.

Variable/Parameter Description

N Total number of individuals in sample
Nþ;N0;N� Number of individuals of each genotype
Wþ jð Þ;W0 jð Þ;W� jð Þ Cumulative distribution of genotypes (4.3)
wþ jð Þ;w0 jð Þ;w� jð Þ Probability density of genotypes
hþ jð Þ; h� jð Þ Difference between cdf of actual and random

configurations
C� wq

 �

Constraints on the system, (4.2), (4.4)
a� Lagrange multipliers – used to solve the

constrained problem
S wq
� 

Informational Entropy (Shannon Information)
given by (4.5)

uq jð Þ Genotype field (1 6 j 6 N; q ¼ þ1;0;�1f g)
E wq
� 

Genotype-phenotype interaction term (4.6)

A wq;a�
� 

Informational Action (4.7)
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Here, the domain of integration D is given by all value of y; zð Þ or
equivalently w;wð Þ which lead to a value of . that is larger than .c .
Any such path has a lower probability of occurring than the path
observed.

Inverting the trasnformations (3.26)–(3.29), we obtain

p hþ jð Þ; h� jð Þð Þ ¼ N
ffiffiffiffi
N

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NþN0N�

p 	

exp �
N2 N� N � N�ð Þh2þ þ Nþ N � Nþð Þh2� þ 2N�Nþhþh�
� 

2j N � jð ÞNþN0N�

 !
: ð3:33Þ

Note that this does not reduce to the two-state result (3.10) in
the limit of small N0. As with (3.10)–(3.11), Eq. (3.33) gives a p-
value for each position in the list, to give a value for the whole
SNP, one could quote minj p hþ jð Þ; h� jð Þð Þf g as in (3.11). Alterna-
tively, either (3.12)-(3.13) could be used, or following (3.15)-
(3.16), we take an average value of the argument inside the expo-
nential in (3.33), and use

pSNP4 ¼ N
ffiffiffiffi
N

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NþN0N�

p exp � N2Z
2NþN0N�

 !
;

Z ¼ 1
N

XN
j¼1

N� N � N�ð Þhþ jð Þ2 þ Nþ N � Nþð Þh� jð Þ2 þ 2NþN�hþ jð Þh� jð Þ
j N � jð Þ :

ð3:34Þ
3.3. Summary

Typically, in an investigation of the effect of a particular genetic
mutation or SNP, we would start with the ‘null hypothesis’, which
is a statistical assumption that there is no effect of the genetic state
on the ordering of phenotypes observed in the population data.
Thus one would expect the local distributions of the genetic states
þ1;0;�1 to be the same across the whole ordered list of pheno-
types, and there would be only random fluctuations from the
mean. This means that the h-path h� jð Þ would be small for all j

(1 6 j 6 N). Mathematically, we can write this as wq jð Þ � w 0ð Þ
q

(2.5)–(2.6), which implies h� jð Þ � 0 (2.8). If we were to observe a
h-path which exhibits a ‘large’ deviation from zero, we need to
determine whether that could have occurred by chance, or
whether it is ‘large’ enough to be statistically significant, thus we
would like to know the probability of it occurring under the null
hypothesis. This is what the p-value tells us. One can choose
whether to work at 5% or 1% threshold level; and if one is making
multiple tests, a Bonferroni (1936) or Benjamini and Hochberg
(1995) correction procedure can be applied.

If the calculated p-value is smaller than the threshold value for
a particular SNP, then there is evidence against the null hypotheis,
and it is then reasonable to claim that for the SNP under consider-
ation, genotype has an influence on phenotype. In the next sec-
tions, we analyse the form of this dependence, and provide a
quantitative description of it.

4. Mathematical model

The mathematical model which provides an effective field
strength that quantifies the genotype-phenotype interaction is
derived from a combination of Shannon’s information theory
(Shannon et al., 1948) and the Euler–Lagrange variational deriva-
tives that are commonly used to derive the equations of motion
in classical mechanics (Goldstein, 1980).
7

We now take a probabilistic approach to the h-paths (2.8) and
allele distributions (2.3), defining probability density functions

wþ jð Þ ¼ Wþ jð Þ �Wþ j� 1ð Þ; w0 jð Þ ¼ W0 jð Þ �W0 j� 1ð Þ;
w� jð Þ ¼ W� jð Þ �W� j� 1ð Þ; ð4:1Þ

which we interpret as the probabilities of finding each of gene state
þ1;0;�1f g at site j in the ordered state. The probabilities wq jð Þ for
1 6 j 6 N and q ¼ þ1;0;�1f g are the basis of the probabilistic
model. Note that in any particular set of observations each wq jð Þ
is either zero or one, and the cumulative distributions Wq jð Þ
increase by zero or one as j# jþ 1. In contrast, in the mathematical
model we assume Wq 
ð Þ is a monotonically increasing function and
we assumewq jð Þ vary slowly in j so that they can be interpreted as a
local (in j) probability of finding state q at position j in the list.

Since one of the genetic states q ¼ þ1;0;�1f g must be present
at each site j, they must sum to one at each j, thus we have

Cj :¼ wþ jð Þ þw0 jð Þ þw� jð Þ � 1 ¼ 0; j ¼ 1;2; . . . ;Nð Þ: ð4:2Þ

which is the first constraint on our system. Summing each of (4.1)
over list positions, j, the cumulative distributions are given by

Wþ jð Þ ¼
Xj

i¼1

wþ ið Þ; W0 jð Þ ¼
Xj

i¼1

w0 ið Þ; W� jð Þ ¼
Xj

i¼1

w� ið Þ;

ð4:3Þ

The second constraint that we have to impose is that the total
number of individuals with each genotype matches the data, that is

Cþ wþð Þ :¼
XN
j¼1

wþ jð Þ � Nþ ¼ 0; C0 w0ð Þ :¼
XN
j¼1

w0 jð Þ � N0 ¼ 0;

C� w�ð Þ :¼
XN
j¼1

w� jð Þ � N� ¼ 0:

ð4:4Þ

We propose to analyse the information content of the genetic
states of the ordered arrangement, hence we introduce the Shan-
non entropy

S w½ �¼ �
XN
j¼1

wþ jð Þlogwþ jð Þþw0 jð Þlogw0 jð Þþw� jð Þlogw� jð Þð Þ: ð4:5Þ

Since each of the wq jð Þ variables is positive, the log terms are
real and negative, thus S w½ � is positive. The entropy S w½ � can only
be zero in the case where, for every j two of the wq jð Þ
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(q 2 þ1;0;�1f g) are zero and the other one equal to one. Typically
S w½ � is strictly positive, and we will show later that the maximum
entropy occurs for the random configuration (2.6).

In cases where the ordered state exhibits some correlation
between phenotype and genotype we introduce ‘fields’ to describe
and help understand this effect. To preserve the equal treatment of
the three states þ1;0;�1f g, we start with three fields, one for each
genetic state, and each dependent on location,
u ¼ uþ jð Þ;u0 jð Þ; u� jð Þð Þ. We propose a simple linear interaction
term relating the fields u to the location probabilities w
of the form

E w½ � ¼ �
XN
j¼1

wþ jð Þuþ jð Þ þw0 jð Þu0 jð Þ þw� jð Þu� jð Þð Þ: ð4:6Þ

The sign means that the minimum energy state is obtained
when larger values of wq jð Þ coincide with larger values of
uq jð Þ. We consider E w½ � to be similar to the potential energy
in Lagrangian mechanics (Goldstein, 1980). If we were to max-
imse entropy, (4.5), then the genotypes would be randomly dis-
tributed across the ordered list of phenotypes; thus to account
for some influence of the genetic state on the ordered pheno-
type list, we must include an extra factor (a genetic ‘force’,
‘field’, or ‘potential energy’, denoted by uq jð Þ) which can be
interpreted as favouring a drift of a genetic state to higher or
lower values of j, that is, towards one or other ends of the phe-
notype list.

In Lagrangian mechanics, (L) is defined to be the difference
of kinetic energy (T ) and potential energy (V), and the action
is the time integral of the Lagrangian, that is,
A ¼

R
Ldt ¼

R
T � Vð Þdt. The equations of motion are then

obtained by taking variational derivative of the action with
respect to path (w). In our information theory approach, we
define action as A1 w½ � ¼ S w½ � � E w½ �, and take the variational
derivative with respect to the genetic state probabilities w.
However, we are not free to consider all possible variations,
we have to make sure that the constraints (4.2)-(4.4) are satis-
fied, thus we use the method of Lagrange multipliers to include
these contraints into the variational procedure.

Combining the constraints (4.2), (4.4) with Lagrange multipliers
a ¼ a1;a2; . . . ;aNð Þ, b ¼ bþ; b0; b�


 �
and the difference, S� E, we

define the informational action A, by

A w;a;b½ � ¼ S w½ � � E w½ � þ bþCþ wþð Þ þ b0C0 w0ð Þ

þ b�C� w�ð Þ þ
XN
j¼1

ajCj wð Þ: ð4:7Þ

The location probabilitiesw are then given by requiring the first
variation of A w;a; bð Þ with respect to wq jð Þ to be zero. The con-
straints are recovered and satisfied by requiring the first variation
of A with respect to each element of a; b to be zero. The details of
these calculations are presented in A, which results in the relation-
ship between probabilities wq jð Þ and fields uq jð Þ (for
q 2 þ1;0;�1f g and 1 6 j 6 N) as

uþ jð Þ � u0 jð Þ ¼ logwþ jð Þ � logw0 jð Þ � bþ þ b0;

u� jð Þ � u0 jð Þ ¼ logw� jð Þ � logw0 jð Þ � b� þ b0;
ð4:8Þ

together with the constraints (4.4)

Nþ ¼
XN
j¼1

wþ jð Þ; N� ¼
XN
j¼1

w� jð Þ: ð4:9Þ

Rearranging (4.8), we have wþ ¼ w0euþ�u0þbþ�b0 ,
w� ¼ w0eu��u0þb��b0 , and adding these to w0, we find
8

wþ jð Þ ¼
exp bþ þ uþ jð Þ


 �
D

; w0 jð Þ ¼ exp b0 þ u0 jð Þð Þ
D

;

w� jð Þ ¼ exp b� þ u� jð Þð Þ
D

;

D ¼ exp bþ þ uþ jð Þ

 �

þ exp b0 þ u0 jð Þð Þ þ exp b� þ u� jð Þð Þ:
ð4:10Þ

We observe that only the differences uþ � u0 and u� � u0 are
relevant, and so just two fields will suffice. In general, one can
assume u0 jð Þ ¼ 0 for all j. Alternatively, in cases where only two
genotypes (�) are present, we have

wþ jð Þ ¼ exp
bþ þ uþ jð Þ

2

� �
sech

uþ jð Þ � u� jð Þ þ bþ � b�
2

� �
;

w� jð Þ ¼ exp
b� þ u� jð Þ

2

� �
sech

uþ jð Þ � u� jð Þ þ bþ � b�
2

� �
:

ð4:11Þ

We will make use of these formulae later to determine the
forms of the field strengths uq jð Þ and location probabilities wq jð Þ
and their interdependencies. By analogy with ergodic systems in
statistical physics, these expressions for the genotype location
probabilities (4.10) can be viewed as Gibbs distributions, where
bq þ uq jð Þ takes the place of chemical potential.

Mathematically, we describe the forward problem to be the
determination of the observables, that is the path h� jð Þ and the
cumulative distributions Wq jð Þ from a given field u� ið Þ. The inverse
problem is defined to be the derivation of the field u� ið Þ from
observed data for the path h� jð Þ and the distributions Wq jð Þ. Both
formulations of the problem are complicated by the presence of
Lagrange multipliers b�. The inverse problem is simpler to solve,
since (4.8) can be rearranged to give independent and explicit
expressions for the fields u� jð Þ. If one considers the formulae
(4.8) as the forward problem for w� jð Þ the solution is complicated
due to the coupling and the nonlinearity. In Section 5 we illustrate
the solution of a couple of cases of the inverse problem, finding the
fields u� from given distributions W�. In Section 6, we consider the
forward problem in the case where the field-strengths u� are weak,
that is small amplitude, but are nonzero and dependent on position
j.

If we consider the random configuration, in which there is no
field imposed (uq jð Þ ¼ 0 for all j and all q), then maximising the

entropy gives the uniform distributions wq jð Þ ¼ w 0ð Þ
q . In this case,

the expected values for the cumulative distributions (2.3) are
(2.7). Thus, for a negative control gene or SNP (i.e. one that has
no causative effect or correlation with phenotype), the expected
value of the h-paths are zero, that is, E h� jð Þ½ � ¼ 0 for all positions
in the list 1 6 j 6 N.
5. The inverse problem

Here we assume that the location probabilities wq jð Þ, and hence
the cumulative distribution Wq jð Þ as well, are known functions,
with 0 < wq jð Þ < 1 for q 2 þ1; 0;�1f g. We aim to determine the
corresponding field-strengths uq jð Þ, using (4.8). For the theory pro-
posed in Section 4, this inverse problem is more easily solved than
the forward problem, whose analysis we delay to Section 6.

In this section, we consider a sample population taken from
specific distributions p Xð Þ, Thus we can consider our variables to
be functions of phenotype value (X) rather than position in the list
(j); in place of (2.3), the cumulative distribution of individuals of
each genostate is then defined by



;

~Wþ Xð Þ ¼ number of þ 1� genostate individuals with phenotype 6 X in the list C;
~W0 Xð Þ ¼ number of 0� genostate individuals with phenotype 6 X in the list C;
~W� Xð Þ ¼ number of � 1� genostate individuals with phenotype 6 X in the list C;

ð5:1Þ
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and we have the corresponding versions of all the variables, given
by ~Wq X jð Þð Þ ¼ Wq jð Þ, ~hq X jð Þð Þ ¼ hq jð Þ; ~wq X jð Þð Þ ¼ wq jð Þ,
~W 0ð Þ

q X jð Þð Þ ¼ W 0ð Þ
q jð Þ; ~w 0ð Þ

q ¼ w 0ð Þ
q , and ~uq X jð Þð Þ ¼ uq jð Þ. See C for

more details.

5.1. Gaussian (Normal) distributions

Phenotypes are often assumed to be normally distributed, that
is, have a Gaussian distribution. We assume that the distributions
of þ1;0;�1f g states are given by the probability denisty functions

pþ Xð Þ¼ N lþ;rþ

 �

; p0 Xð Þ¼N l0;r0

 �

; p� Xð Þ¼N l�;r�

 �

;

N l;rð Þ¼ 1ffiffiffiffi
2p

p
r exp � X�lð Þ2

2r2

� �
;

ð5:2Þ

where lq are the means of the distributions, generally taken to be
distinct, and rq the corresponding standard deviations, which could
be distinct or the same. Fisher (1918); Moran and Smith (1966) typ-
ically assume them to have the same standard deviations.

Assuming the sample has Nþ;N0;N� individuals of each corre-
sponding genetic type, the probabilities wq Xð Þ of each position in
the list being occupied by an individual of genotype
q 2 þ1;0;�1f g are given by

~wþ Xð Þ¼ Nþpþ Xð Þ
Nþpþ Xð ÞþN0p0 Xð ÞþN�p� Xð Þ;

~w0 Xð Þ¼ N0p0 Xð Þ
Nþpþ Xð ÞþN0p0 Xð ÞþN�p� Xð Þ ;

~w� Xð Þ¼ N�p� Xð Þ
Nþpþ Xð ÞþN0p0 Xð ÞþN�p� Xð Þ:

ð5:3Þ

If we assume that rþ ¼ r� ¼ r0 ¼ r, then these formulae can
be simplifed, to

~wþ Xð Þ¼ Nþ exp l0�lþð Þ l0þlþ�2Xð Þ=2r2ð Þ
N0þNþ exp l0�lþð Þ l0þlþ�2Xð Þ=2r2ð ÞþN� exp l0�l�ð Þ l0þl��2Xð Þ=2r2ð Þ ;

~w� Xð Þ¼ N� exp l0�l�ð Þ l0þl��2Xð Þ=2r2ð Þ
N0þNþ exp l0�lþð Þ l0þlþ�2Xð Þ2=r2ð ÞþN� exp l0�l�ð Þ l0þl��2Xð Þ=2r2ð Þ ;

~w0 Xð Þ¼ N0

N0þNþ exp l0�lþð Þ l0þlþ�2Xð Þ=2r2ð ÞþN� exp l0�l�ð Þ l0þl��2Xð Þ=2r2ð Þ :

ð5:4Þ

By comparing the above with (4.10), we see that the field
strengths ~u� Xð Þ are given by

~uþ Xð Þ ¼ log Nþ
N0

� �
þ

l0 � lþ

 �

l0 þ lþ � 2X

 �
2r2 � bþ;

~u� Xð Þ ¼ log N�
N0

� �
þ

l0 � l�

 �

l0 þ l� � 2X

 �
2r2 � b�;

ð5:5Þ

where b� are constants (Lagrange multipliers). This calculation
shows that if the phenotype distributions for the different geno-
types are all normally distributed (Gaussians), with different means,
lq, but share a common standard deviation (as assumed by Fisher,
1918; Moran and Smith, 1966) then the genotype field is linear in
phenotype (X), with ~u� ¼ mXþ c. The gradient of the line (m)
depends on the difference in means (lþ � l0 and l� � l0). Thus
values of difference in means is influenced by the whole data set.

This analysis has been for the case of general phenotype mea-
surements, X; the result for the case where we consider w� and
9

u� be functions of position in the list, j, (rather than absolute phen-
totype value, X) can be obtained simply by defining X jð Þ ¼ j.

Whilst it is noteworthy that Gaussian distributions give rise to a
linear field, there may be other phenotype distributions which also
lead to linear fields, so the converse statement (that linear fields
indicate normal distributions) is not necessariy true. In fact, below,
we show that another phenotype distribution also leads to linear
field (see Section 5.3).

5.2. More general Gaussian distribution

If do not make the assumption that all the distributions
pþ Xð Þ; p0 Xð Þ; p� Xð Þ have the same variance, then we do not obtain
such a simple field dependence on X. Following the same proce-
dure as in Section 5.1, denoting the standard deviations of the phe-
notype distributions by rþ, r0;r�, we find

~uþ Xð Þ ¼ log Nþr0
rþN0

� �
þ r2

þ�r2
0ð ÞX2

2r2
þr

2
0

þ lþr2
0�l0r2

þð ÞX
r2
þr

2
0

þ l2
0r

2
þ�l2

þr
2
0ð Þ

2r2
þr

2
0

� bþ;

~u� Xð Þ ¼ log N�r0
r�N0

� �
þ r2

��r2
0ð ÞX2

2r2
�r2

0
þ l�r2

0�l0r2
�ð ÞX

r2
�r2

0
þ l2

0r
2
��l2

�r2
0ð Þ

2r2
�r2

0
� b�;

ð5:6Þ

thus we see that the field-strength is now quadratic in phenotype
value - still a relatively simple form, though not as simple as linear.

5.3. Gamma distribution

If we assume that the phenotypes for each genotype are dis-
tributed according to Gamma distributions, that is,

pq Xð Þ ¼ Xk�1e�kXkk=C kð Þ; ð5:7Þ

with q 2 þ1;0;�1f g denoting the genotypes, and parameters given
by kþ; k0; k�; kþ; k0; k�. The relationships between the mean and
standard deviation, and these parameters are given by

l ¼ k
k
; r ¼

ffiffiffi
k

p

k
; k ¼ l2

r2 ; k ¼ l
r2 : ð5:8Þ

The location probabilities wþ;w0;w� are given by (5.3) which
can be written as

~wþ Xð Þ¼ NþX
kþ�1e�kþXkkþþ =C kþð Þ

NþX
kþ�1e�kþXkkþþ =C kþð ÞþN0X

k0�1e�k0Xkk00 =C k0ð ÞþN�X
k��1e�k�Xkk�� =C k�ð Þ

ð5:9Þ

with similar formulae for ~w0 Xð Þ; ~w� Xð Þ.
There are two special cases where some simplification occurs:

(i) where the three genotypes share the same k, but have different
k values, and (ii) where they share the same k and have different k-
values. In both cases, the means and the standard devations both
differ. We consider each in turn.

If we assume that kþ ¼ k0 ¼ k� ¼ k then the formula (5.9) sim-
plies to

~wþ Xð Þ ¼ Nþe k0�kþð ÞX kþ=k0ð Þk

N0 þ Nþe k0�kþð ÞX kþ=k0ð Þk þ N�e k0�k�ð ÞX k�=k0ð Þk
; ð5:10Þ

with similar formulae for ~w0; ~w�. Then comparing this expression
with (4.10) gives
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~uþ Xð Þ ¼ log
Nþ

N0

� �
þ k0 � kþð ÞXþ k log

kþ
k0

� �
� bþ;

~u� Xð Þ ¼ log
N�

N0

� �
þ k0 � k�ð ÞXþ k log

k�
k0

� �
� b�;

ð5:11Þ

thus this case also corresponds to field strength (~u� Xð Þ) which var-
ies linearly with phenotype value, X. Since these distributions have
different values of k, both mean and standard deviation differ
between the various genotypes.

If we assume that the k’s are distinct, whilst kþ ¼ k0 ¼ k� ¼ k
then (5.9) simplies to

~wþ Xð Þ¼ Nþ=N0ð ÞXkþ�k0kkþ�k0C k0ð Þ=C kþð Þ
1þ Nþ=N0ð ÞXkþ�k0kkþ�k0C k0ð Þ=C kþð Þþ N�=N0ð ÞXk��k0kk��k0C k0ð Þ=C k�ð Þ

;

ð5:12Þ

with similar formulae for ~w0; ~w�. Then comparing this expression
with (4.10) gives

~uþ Xð Þ ¼ log
Nþ

N0

� �
þ kþ � k0ð Þ log Xð Þ þ kþ � k0ð Þ log kð Þ

þ log
C k0ð Þ
C kþð Þ

� �
� bþ;

~u� Xð Þ ¼ log
N�

N0

� �
þ k� � k0ð Þ log Xð Þ þ k� � k0ð Þ log kð Þ

þ log
C k0ð Þ
C k�ð Þ

� �
� b�;

ð5:13Þ

which corresponds to the field-strength (~u�) being logarithmic in
phenotype value (X).

5.4. Form of h-path

From knowledge of the probabilities wq jð Þ or ~wq Xð Þ, it possible
to give formulae for the expected form of the h-paths, hq jð Þ or
~hq Xð Þ. We return to the case of Gaussian distributions with the
same standard deviation studied in Section 5.1; we assume that
the means are close with respect to the standard deviation of the
overall distribution (l� � l� r). This asymptotic relationship
can be thought of either as the means of the three phenotype dis-
tributions being similar or the variance of all of them are large, so
that the distributions strongly overlap. We write the means as

lþ ¼ lþ hrl̂þ; l0 ¼ lþ hrl̂0; l� ¼ lþ hrl̂�; with h � 1; ð5:14Þ

where the overall mean l is weighted by the number of each geno-
type in the sample

l ¼ Nþlþ þ N0l0 þ N�l�
Nþ þ N� þ N�

: ð5:15Þ

This condition (5.15) implies that the perturbations lþ;l0;l�
satisfy

0 ¼ Nþl̂þ þ N0l̂0 þ N�l̂�: ð5:16Þ

Expanding (5.3) we obtain

~wþ Xð Þ ¼ w 0ð Þ
þ þ hw 0ð Þ

þ l̂þ X� lð Þ=r;
~w� Xð Þ ¼ w 0ð Þ

� þ hw 0ð Þ
� l̂� X� lð Þ=r;

~w0 Xð Þ ¼ w 0ð Þ
0 � h w 0ð Þ

þ l̂þ þw 0ð Þ
� l̂�

� �
X� lð Þ=r;

ð5:17Þ

which automatically satisfy the constraints

~wþ Xð Þ þ ~w0 Xð Þ þ ~w� Xð Þ ¼ 1;
Z

p Xð Þ ~wq Xð ÞdX ¼ Nq; ð5:18Þ

for all X and any q 2 þ1;0;�1f g. These conditions are met both at

leading order (where ~wq Xð Þ ¼ w 0ð Þ
q ) and at O hð Þ. The former con-

straing corresponds to
P

qwq ¼ 1 and the latter to
10
Nq ¼
P

jwq jð Þ ¼ Wq Nð Þ. At O hð Þ we recover (5.16) andR
p Xð Þ X� lð ÞdX ¼ 0, which is simply the definition of the mean

of the distribution.

Since ~hq Xð Þ ¼ ~Wq Xð Þ � ~W 0ð Þ
q Xð Þ, by differentiating, and using

(C9)–(C11) and (5.17), we obtain

dhq
dj

¼ d~hq
dX

1
Np Xð Þ ¼

d ~Wq

dX
� d ~W 0ð Þ

q

dX

 !
dX
dj

¼ wq �w 0ð Þ
q

¼ hw 0ð Þ
q l̂q X� lð Þ=r; ð5:19Þ

Since p Xð Þ is Gaussian, it satisfies the ordinary differential equa-
tion p0 ¼ � X� lð Þp=r2, hence we rearrange (5.19) and solve

d~hq
dX

¼ hw 0ð Þ
q l̂qNp Xð Þ X� l

r

� �
¼ �hw 0ð Þ

q l̂þrN
dp
dX

ð5:20Þ

by ~hq Xð Þ ¼ hrNw 0ð Þ
q l̂qp Xð Þ, which clearly has the properties ~h ! 0

as X ! �1, and d~h=dX ¼ 0 at the mean of p Xð Þ. Also, we expect
the general magnitude of ~h to be proportional to the the difference
in means (l̂q), and the number of genotype Nq ¼ Nw 0ð Þ

q as in

~hþ Xð Þ ¼ Nþ lþ � l

 �

p Xð Þ;
~h� Xð Þ ¼ N� l� � l


 �
p Xð Þ; ~h0 Xð Þ ¼ N0 l0 � l


 �
p Xð Þ: ð5:21Þ

For other distributions, that is, p not Gaussian with identical
variances, there is no reason for ~h to follow the p, since
~h0 Xð Þ / X� lð Þp – p0 Xð Þ. For example, if the distributions pq Xð Þ
are Gaussian with identical means but different variances, the h-
paths may be positive in some ranges of X and negative elsewhere
(as illustrated in the next subsection).
5.5. Effect of different standard deviations

We now consider the case of the phenotype distributions of the
various genotypes having the same mean but slightly different
variances. Thus we have

p Xð Þ ¼ 1
r
ffiffiffiffiffiffiffi
2p

p exp � X� lð Þ2

2r2

 !
; ð5:22Þ

with l the same for all genotypes q 2 þ1;0;�1f g and standard
deviations given by sq ¼ sþ hŝq, where h � 1, and s is chosen by
s ¼ 1=Nð Þ

P
qNqsq so that

P
qNqŝq ¼ 0. The phenotype distribution

for the three genotypes and the location probabilities
~wq ¼ Nqpq=

P
q0Nq0pq0 are given by

pq Xð Þ ¼ p Xð Þ 1þ hŝq
s2

X� lð Þ2 � s2
� �� �

;

~wq Xð Þ ¼ w 0ð Þ
q þw 0ð Þ

q
hŝq
s2

X� lð Þ2 � s2
h i

: ð5:23Þ

Using (5.19), we have

d~hq
dX

¼ wq �w 0ð Þ
q ¼ Np Xð Þw 0ð Þ

q hŝqs�2 X� lð Þ2 � s2
h i

; ð5:24Þ

which is solved by

~hq Xð Þ ¼ �
Nw 0ð Þ

q hŝq X� lð Þ
s
ffiffiffiffiffiffiffi
2p

p exp � X� lð Þ2

2s2

 !
: ð5:25Þ

This function changes sign at X ¼ l, whilst approaching zero in
both the limits X ! �1.
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5.6. Summary

In Sections 4 and 5 we have generalised Shannon’s information
theory to include phenotypic fields, uq jð Þ which account for and
describes the effects that genotype has on the ordered phenotype
list. For example, if the effect of the genotype is that the þ1-
genostate have values of X larger than the 0-genostate, and the
�1-genstate are smaller, then we see that the field ~uþ Xð Þ is an
increasing function of X and ~u� Xð Þ is a decreasing function. More
specifically for general phenotypic distributions for each of the
genotypes of the form pþ Xð Þ; p0 Xð Þ; p� Xð Þ we have the field
strength being given by

~uþ Xð Þ ¼ log
Nþ

N0

� �
þ log

pþ Xð Þ
p0 Xð Þ

� �
� bþ;

~u� Xð Þ ¼ log
N�

N0

� �
þ log

p� Xð Þ
p0 Xð Þ

� �
� b�: ð5:26Þ

We have considered various forms for the location probabilities
~wq Xð Þ, and in each case found explicit formulae for the field
strengths, ~u� X jð Þð Þ, highlighting some special cases where the
fields are linear in the phenotypes, due to differences in the distri-
butions of the phenotype for each genotype.
6. The forward problem

Having examined a few examples of the calculation deriving
field strengths uq jð Þ, from the location probabilities wq jð Þ, we
return to the mathematically more difficult problem of determin-
ing the location probabilities wq jð Þ or ~wq X jð Þð Þ from the field
strengths u� jð Þ or ~u� X jð Þð Þ. In general this is a nonlinear problem,
due to the gobal constraints on the total number of each genotype
in the distributions. Hence we focus on generating an approximate
solution, in the case of a weak but nonzero dependence of pheno-
type on genotype, this corresponds to the field terms uq jð Þ being
small.

The algebra is simplied by introducing constants A ¼ ebþ and
B ¼ eb� , and an interaction ‘potential’ v� jð Þ given by
v� jð Þ ¼ expu� jð Þ so that we have algebraic relationships between
v� and w�. In this notation, the zero genetic state u0 jð Þ ¼ 0 corre-
sponds to v0 jð Þ ¼ eu0 ¼ 1. From (4.10) we have

w0 jð Þ ¼ 1
1þ ebþþuþ jð Þ þ eb�þu� jð Þ ¼

1
1þ Avþ jð Þ þ Bv� jð Þ ;

wþ jð Þ ¼ ebþþuþ jð Þ

1þ ebþþuþ jð Þ þ eb�þu� jð Þ ¼
Avþ jð Þ

1þ Avþ jð Þ þ Bv� jð Þ ;

w� jð Þ ¼ eb�þu� jð Þ

1þ ebþþuþ jð Þ þ eb�þu� jð Þ ¼
Bv� jð Þ

1þ Avþ jð Þ þ Bv� jð Þ ;

ð6:1Þ

with A;B determined by (4.9), namely

Nþ ¼
XN
j¼1

wþ jð Þ ¼
XN
j¼1

Avþ jð Þ
1þ Avþ jð Þ þ Bv� jð Þ ;

N� ¼
XN
j¼1

w� jð Þ ¼
XN
j¼1

Bv� jð Þ
1þ Avþ jð Þ þ Bv� jð Þ :

ð6:2Þ

Whilst the j-dependence is given relatively straightforwardly by
(6.1), the problem of determining A; B from the nonlinear Eqs. (6.2)
is the main complicating factor.

6.1. Weak-field analysis

Since we are aiming to solve the system (6.2) with (6.1) in the
weak field limit, we introduce a small parameter, �� 1 and
assume u� � �, so that v� jð Þ ¼ 1þ u� jð Þ þ O �2


 �
. We expect the
11
probabilities w� jð Þ to be close to w 0ð Þ
� , which, from (4.10) with

uq ¼ 0, are given by

w 0ð Þ
þ ¼ A

1þ Aþ B
; w 0ð Þ

� ¼ B
1þ Aþ B

; w 0ð Þ
0 ¼ 1

1þ Aþ B
; ð6:3Þ

and are solved by

A ¼ w 0ð Þ
þ

1�w 0ð Þ
þ �w 0ð Þ

�
; B ¼ w 0ð Þ

�

1�w 0ð Þ
þ �w 0ð Þ

�
: ð6:4Þ

Note that A;B are O 1ð Þ quantities.
Expanding (6.1) to O �ð Þ, we find

wþ ið Þ ¼ A
1þ Aþ B

1þ 1þ Bð Þuþ ið Þ
1þ Aþ B

� Bu� ið Þ
1þ Aþ B

� �
þO �2


 �
;

w� ið Þ ¼ A
1þ Aþ B

1þ 1þ Að Þu� ið Þ
1þ Aþ B

� Auþ ið Þ
1þ Aþ B

� �
þO �2


 �
:

ð6:5Þ

with the constraints

Nþ ¼
XN
j¼1

wþ jð Þ ¼ NA
1þAþB

þ A
1þAþB

XN
j¼1

1þBð Þuþ jð Þ�Bu� jð Þ
1þAþB

� �
þO �2


 �
;

N� ¼
XN
j¼1

w� jð Þ ¼ NB
1þAþB

þ B
1þAþB

XN
j¼1

�Auþ jð Þþ 1þAð Þu� jð Þ
1þAþB

� �
þO �2


 �
:

ð6:6Þ

We now aim to find solutions for A;B in terms of a series write

A ¼ A0 þ �A1 þ . . . ; B ¼ B0 þ �B1 þ . . . ð6:7Þ

with Ak; Bk ¼ O 1ð Þ.
After substiting these expansions into (6.6), at leading order, we

find A0;B0 are given by A0 ¼ Nþ=N0 and B0 ¼ N�=N0 as in (6.4). This
solution describes the uniform distribution of the genotypes across
the range of phenotypes as in the random case. To gain insight into
the effect of the field, we consider the next order terms in this
expansion.

At O �ð Þ we find (6.6) are solved by

�A1 ¼ �A0uþ; �B1 ¼ �B0u�; uþ ¼ 1
N

XN
i¼1

uþ ið Þ; u� ¼ 1
N

XN
i¼1

u� ið Þ;

ð6:8Þ

where u� are the average strength of the field u� jð Þ over all loca-
tions j. The resulting probabilities are defined by

wþ ið Þ ¼ A0
D 1þ uþ ið Þ � uþð Þ; w� ið Þ ¼ B0

D 1þ u� ið Þ � u�ð Þ;
D ¼ 1þ A0 þ B0 þ A0 uþ jð Þ � uþð Þ þ B0 u� ið Þ � u�ð Þ

ð6:9Þ

which can be rewritten as

wþ jð Þ ¼ w 0ð Þ
þ þw 0ð Þ

þ 1�w 0ð Þ
þ

� �
uþ jð Þ � uþð Þ �w 0ð Þ

þ w 0ð Þ
� u� jð Þ � u�ð Þ;

w� jð Þ ¼ w 0ð Þ
� þw 0ð Þ

� 1�w 0ð Þ
�


 �
u� jð Þ � u�ð Þ �w 0ð Þ

� w 0ð Þ
þ uþ jð Þ � uþð Þ:

ð6:10Þ

We note that both the fields u� jð Þ influence both the location
probabilities w� jð Þ; (hence, both also influence w0 jð Þ). The impor-
tant factors are the differences between the local fields u� jð Þ and
the mean values u�. These differences are further modulated by
the relative numbers of þ1 and �1 genetic states in the population

w 0ð Þ
þ ¼ Nþ=N, w 0ð Þ

� ¼ N�=N, with these coefficients dropping to zero
if there are no states or if all entries have the same state. The local
probabilities experience their largest values when there are similar
numbers of the states present. This solves the problem of deter-
mining the location probabilities wq jð Þ and hence the expected
cumulative distribution functions Wq jð Þ, from the field strengths
uq jð Þ.

However, it is possible to take these calculations further, and
give predictions for the form of the h� jð Þ functions. Since the
cumulative distributions are given by



Fig. 5. Top left, the upper part shows that phenotype distributions of þ1;0;�1 genetic states, ‘bar codes’ at the bottom show the sample actually used. Dashed red curve
corresponds to the �1 genetic state (bottom bar code); solid black curve corresponds to the 0-state (middle bar code), dash-dotted blue curve corresponds to the þ1 state
(upper bar code), the dotted black line indictates the overall phenotype distribution, scaled down by a factor of three. Top centre: the cumulative distributions of each state
( ~Wq X jð Þð Þ), both expected values (smooth curves) and actual curves from the sample. Top right panel: plots of hq jð Þ obtained from the difference ( ~Wq � ~W 0ð Þ

q ); narrower lines
show expected values. Lower left panel: location probabilities, ~wq jð Þ from (5.3). Lower centre panel: the cumulative distribution assuming a random allocation of the samples.
Lower right panel: field strengths u� Xð Þ, expected (theoretical) values given by (4.8), and calculated values given by (7.5)..
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Wþ jð Þ ¼
Xj

i¼1

wþ ið Þ; W0 jð Þ ¼
Xj

i¼1

w0 ið Þ; W� jð Þ ¼
Xj

i¼1

w� ið Þ;

ð6:11Þ

and the h�-paths by (2.8), we have

hþ jð Þ ¼ w 0ð Þ
þ 1�w 0ð Þ

þ

� � Xj

i¼1

uþ ið Þ � juþ

 !

�w 0ð Þ
þ w 0ð Þ

�

Xj

i¼1

u� ið Þ � ju�

 !
;

h� jð Þ ¼ w 0ð Þ
� 1�w 0ð Þ

�

 � Xj

i¼1

u� ið Þ � ju�

 !

�w 0ð Þ
� w 0ð Þ

þ
Xj

i¼1

uþ ið Þ � juþ

 !
:

ð6:12Þ

Note that all four terms in large brackets are zero at j ¼ 0 and
j ¼ N, but can be positive or negative for intermediate values
(1 6 j < N). The leading order solution (6.10) is the same as the
random case giving h�-paths which are the same as random case,
that is, h� jð Þ  0 for all i. The terms present in (6.12) are all of
O �ð Þ in magnitude.
7. Numerical results

We illustrate the method using two sources of data, first we
illustrate the method using synthetic data, taking samples from
known distributions so that expected values can be quoted as well
as calculated. Secondly, we use sample data from arabidopsis
thaliana.
12
7.1. Illustration using synthetic data

Here, we assume that the phenotype distributions of each geno-
type (q 2 þ1;0;�1f g) is given by a normal (Gaussian) distribution,
with distinct means

X � N lq;rq

� �
¼ pq Xð Þ: ð7:1Þ

Whilst the standard deviations could be distinct, the illustrative
calculations given in Fig. 5 are for a case in which the standard
deviations are all the same. In particular, the results are for the
parameter values

lþ ¼ 60; l0 ¼ 55; l� ¼ 35; r ¼ 12;
Nþ ¼ 35; N0 ¼ 40; N� ¼ 25:

ð7:2Þ

The probability density distributions pq Xð Þ are illustrated in the
top left panel of Fig. 5. These values are chosen to test the method
in several ways and illustrate a variety of outputs: whilst the + 1
and 0 states have similar means, these differ substantially from
the �1 state; the overall phenotype distribution if far from normal.

Using the sample data, illustrated by the ‘bar-codes’ in the
lower part of panel 1 in Fig. 5, we construct cumulative distribu-
tions ~Wq Xð Þ, which are illustrated in the top centre panel;
specifically

~Wq Xð Þ ¼ number of individuals with genotype q and phenotype < X:

ð7:3Þ

In addition, we construct the cumulative distribution of the
whole sample, PX Xð Þ ¼ NþPþ Xð Þ þ N0P0 Xð Þ þ N�P� Xð Þð Þ=N. We
then consider the random allocation of genetic states, and con-
struct the h-paths hq Xð Þ ¼ Wq Xð Þ �W 0ð Þ

q Xð Þ, which is illustrated
in the top right panel. The cumulative distributions for the aver-
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aged random configuration are shown in the lower centre panel. In
the top right panel, we also plot the expected value of the h-paths,
obtained by evaluating hq Xð Þ ¼ NqPq Xð Þ � NqPX Xð Þ.

The predicted location probabilities wq jð Þ ¼ ~wq X jð Þð Þ given by
(5.3) are plotted in the lower left panel. These can be derived from

hq jð Þ ¼ ~hq X jð Þð Þ using ~Wq ¼ ~W 0ð Þ
q þ hq, Eqs. (C9), and (C11)

wq ¼
dWq

dj
¼ w 0ð Þ

q þ 1
Np Xð Þ

dhq
dX

; ð7:4Þ

which can be used to produce the field strength by (4.8)

~uþ Xð Þ ¼ ln
Np Xð Þw 0ð Þ

þ þ dhþ=dX

Np Xð Þw 0ð Þ
0 þ dh0=dX

 !
;

~u� Xð Þ ¼ ln
Np Xð Þw 0ð Þ

� þ dh�=dX

Np Xð Þw 0ð Þ
0 þ dh0=dX

 !
: ð7:5Þ

As can be seen in the lower right panel of Fig. 5, the numerical
evaluation of a derivative leads to an increase in the noise. How-
ever, the solid narrow curves show relatively good fits to a straight
line in the range of phenotype where there is a larger amount of
data - namely - for smaller phenotype values for u� (the red curve)
Fig. 6. Plots of� log p values for a range of SNPs over a gene that is known to be significan
SNPs from Rad50, shown in red online). We illustrate 5 different methods for averaging t
left: � log p-value for SNP using the minimum (3.11); top right: � log p-value calculated u
values; centre right: using the mean of scaled jhj, (3.15); lower left: using the mean of s
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and larger phenotype values for uþ (the blue curve). There are
many approaches which could be used to smooth the h-data before
taking the derivatives, for example, local averaging, or binning
data. The blue dashed and red dash-dotted lines correspond to
the theoretical values, these are linear due to the assumption of
Gaussian distributions of phenotype values for the three geno-
types, and these having the same standard deviation, that is
rq ¼ r for all of q ¼ þ1;0;�1 in (7.1). If more general distributions
are used, the field strengths have more general shapes.

7.2. Analysis of data from arabidopsis

Here we consider a subset of SNPs from arabidopsis thaliana
(Busoms et al., 2018) and apply the method outlined in sections
2 and 3 to calculate the significance parameters (3.11)–(3.16).

We illustrate the output from two case studies: firstly, we con-
sider about 330 SNPs from the HKT1 gene, which is known to be a
significant in the uptake of sodium, so we would expect a strong
correlation between sodium levels and certain SNPs on the HKT1
gene. The second case is the RAD50 gene, which is involved with
detection of damage in DNA, and subsequent repair. There is no
reason to expect this to be correlated to ion uptake; so this pro-
t (� 330 SNPS from HKT1, shown in blue online), and a negative control gene, (� 170
he p values from the list 1 6 j 6 N to obtain a single p-value for the whole SNP. Top
sing the mean p-value over the list (3.12); centre left: (3.13) the average of � log p-
caled h (3.16).
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vides a negative control, only �170 SNPs on this gene are consid-
ered. For both of these genes, only two genetic states are present
in the sample, corresponding to þ1 and �1; there are no zero-
states.

In Fig. 6 we plot the p-values for each SNP, with each panel illus-
trating a different measure (3.11)–(3.16). Results for both genes are
shown in the same panel, HKT1 in blue and RAD50 in red. Panel 1
shows that using theminimum value of p jð Þ (3.11) gives a reasonable
separation between SNPs which do not influence phenotype and
those that do, although about SNP 150–170 we see several RAD50
SNPs which are moderately significant. For some SNPS, the� lnp val-
ues in this case are quite extreme. Panel 2 has much smaller p-values
across the whole range, and shows more RAD50 SNPs as significant,
hence we conclude that taking the mean p-value across all positions
in the list as in (3.12) is a poor indicator of significance.

The other three measures (3.13)-(3.16) all show very similar
and very good results. Eq. (3.13) corresponds to taking the average
of the lnp jð Þ-values; in (3.16) we take a weighted average of hq jð Þ
values and use that to compute a p-value; (3.16) is similar to
(3.15), but uses a weighted average of jhj values. In all these cases,
the � ln pð Þ-values range from zero to �30, and the significance of
RAD50 SNPs all lie in the range < 10, with a scatter of HKT1 SNPs
being much more significant. These points are clustered around
SNPs 25–30, 150–170, 240, 310.
8. Conclusions

We have outlined a Genomic Informational Field Theory (GIFT)
which combines knowledge of the genotypes of a population
sample with a ranked list of phenotype values to extract informa-
tion on the strength of interaction between genotype and pheno-
type. This can be applied to any continuous phenotype
measurements, and used across a range of SNPs to determine those
which have greatest influence on a particular characteristic. Such
analyses will be the topic of future work (Bray et al., 2022).

We have derived formulae for the calculation of p-values in both
the biallelic case (3 genetic states labelled þ1;0;�1) and the mono
allelic case (only + and - states). Both derivations a continuum limit
of the theory which requires a large value of N – the number of indi-
viduals in the sample, and reasonably large number of each genetic
state. These p-values, together with a choice of significance level
(e.g. 5% or 1%) and false discovery rate correction factors, enable one
to determine which mutations have a significant impact on phenotype
(measured physical characteristic). The model makes no assumptions
on the form of the data - it may or may not exhibit Gaussian distribu-
tion, it may or may not fit the Hardy-Weinburg assumption
(N2

0 ¼ 4NþN�). However, in Section 5 we find a few special properties
that hold in the case of phenotype distributions which are Gaussian, in
particular, if the distributions for the various genotypes have the same
variance, and similar means, then the field strength is approximately
linear in phenotype value, and the shape h-path is simply a multiple
of the rescaled Gaussian distribution. For more general distributions
these properties are no longer hold, but the shape of the h trajectory
and the form of the field are still meaningful.

The mathematics underlying the model relies on a combination
of Shannon’s Information theory (Shannon et al., 1948) and varia-
tional calculus (Goldstein, 1980) to relate information content to a
postulated field which describes the relationship between geno-
type and phenotype. We outline how to determine field-strength
from data. Preliminary numericaly studies show this method high-
lights more genes as having an influence on phenotype than classic
GWAS; this is due to the ability to distinguish between negative
controls (SNPs which have no influence on phenotype) and SNPS
which have a weak influence. In the cases where genotype influ-
ences phenotype, we have introduced a field u� jð Þwhich quantifies
14
the strength and form of interaction between genetic states �1;0
and phenotype. Preliminary results, both theoretical and numeri-
cal, show that monotone fields are due to genotype causing a shft
in the mean of the phenotype distribution between different geno-
types, as illustrated in (5.5) and Fig. 5, whilst more general fields
can indicate the genotype causing a change in standard deviation
of the phenotype distributions (5.6).

In future work, we propose to use these techniques to study the
genome of arabidopsis (Bray et al., 2022), includeing SNPs which
are genuinely bi-allelic - that is - where the zero state is present
in the sample, along with the +1 and �1 states, and use larger sam-
ples, so that the informational fields can be explored. We also pro-
pose to study in more detail the relationship between these
methods and the work of Fisher, to explore the various sources
of variance in phenotype values, and to analyse cases where a sin-
gle field can be used to analyse the phenotype-genotype correla-
tion (Rauch et al., 2022).
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Appendix A. Calculation of the Variational Derivative

The equation relating the field strength u� to the genotype dis-
tribution functions wq jð Þ in Section 4 comes from a variational
derivative. We solve this is Euler–Lagrange problem with con-
straints using Lagrange multipliers. We wish to find stationary
points of the action (4.7)

A w;a; b½ � ¼ S w½ � � E w½ � þ
XN
j¼1

ajCj wð Þ þ
X

r2 þ1;0;�1f g
brCr wð Þ; ðA:1Þ

where the terms C� wð Þ represent constraints of the form C� wð Þ ¼ 0
that must be satisfied, as detailed in Eq. (4.2), and
w ¼ wþ jð Þ;w0 jð Þ;w� jð Þð Þ;a ¼ a1;a2; . . . ;aNð Þ, b ¼ bþ;b0; b�


 �
.

To derive the corresponding constrained Euler–Lagrange equa-
tions, we allow all the local genotype probabilities w to be per-
turbed from w ¼ wþ jð Þ;w0 jð Þ;w� jð Þð Þ to wþ hd, where h � 1 is a
small scalar quantity, and d ¼ dþ jð Þ; d0 jð Þ; d� jð Þð Þ are general O 1ð Þ
perturbations, which satisfy certain contraints that will be derived
later (A.6).

We consider the first Fréchet derivative of A w;a½ �, which is the
difference in the Action between the perturbed state and the orig-
inal state in the limit of small h, that is

A0 w;a;b½ �dq jð Þ ¼ lim
h!0

h�1 A wþ hd;a; b½ � � A w;a;b½ �ð Þ; ðA:2Þ

which implies

A0 w;a;b½ �dq ¼ dq jð Þ 1þ logwq jð Þ þ uq jð Þ þ bq þ aj

 �

: ðA:3Þ

We are interested in ‘stationary’ or ‘critical’ points of the func-
tional A, which correspond to A0 w;a½ �dq jð Þ ¼ 0 for all possible
dq jð Þ. Note that here dq jð Þ are not completely arbitrary, there are
constraints which dq jð Þ have to satisfy.

If we perturb the terms involving aj to aj þ hâj and take the dif-
ference between h – 0 and h ¼ 0, then we recover the conserved
quantities in (4.2) and (4.4). In general, we have
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lim
h!0

h�1 A w;aþ hâ;b½ � � A w;a;b½ �ð Þ ¼ âjCj wð Þ; ðA:4Þ

and so by considering each component of a variable in turn, we
obtain each contraint Cj ¼ 0 (4.2). The constraints (4.4) are recov-
ered by considering perturbations of b ¼ bþ;b0; b�


 �
to

b ¼ bþ þ b̂þ; b0 þ b̂0;b� þ b̂�

� �
, that is,

lim
h!0

h�1 A w;a;bþ hb̂
h i

�A w;a; b½ �
� �

¼ b̂qCq wq jð Þ

 �

: ðA:5Þ

Setting this quantity to zero for arbitary b̂q means the con-
straints C� ¼ 0 ¼ C0 are satisfied.

The constraints (4.2) and (4.4) require that dq jð Þ satisfy

dþ jð Þ þ d0 jð Þ þ d� jð Þ ¼ 0 8j;
XN
j¼1

dþ jð Þ ¼ 0;

XN
j¼1

d0 jð Þ ¼ 0;
XN
j¼1

d� jð Þ ¼ 0: ðA:6Þ

To satisfy the last set of constraints, we replace d0 jð Þ with
�dþ jð Þ � d� jð Þ, this also satisfies the second constraint, provided
that the first and third constraints hold. Collecting terms in dþ jð Þ
and d� jð Þ, Eq. (A.3) implies

A0 w;a; b½ �dþ jð Þ ¼ dþ jð Þ bþ � b0 þ uþ jð Þ � u0 jð Þ � logwþ jð Þ þ logw0 jð Þ
� 

;

A0 w;a; b½ �d� jð Þ ¼ d� jð Þ b� � b0 þ u� jð Þ � u0 jð Þ � logw� jð Þ þ logw0 jð Þ½ �:
ðA:7Þ

Since we requireA‘ wq;a�
� 

dq ¼ 0 for all d� jð Þ, we obtain the pair
of equations

uþ jð Þ � u0 jð Þ ¼ logwþ jð Þ � logw0 jð Þ � bþ þ b0; ðA:8Þ
u� jð Þ � u0 jð Þ ¼ logw� jð Þ � logw0 jð Þ � b� þ b0; ðA:9Þ

which are quoted in the main text (4.8).

Appendix B. Master equation approach

The master equation approach refers to a methodology for
describing the evolution of a stochastic system using variables to
express the probability that a system is in a particular state at time
t (Krapivsky et al., 2010).

We introduce a function which describes the probability of the
system being in a certain state. Specifically, we let G� j; kð Þ be the
probability that in positions 1;2; . . . ; j of the ordered list, there have
been k occurrences of the genetic state �. We can write this for-
mally as G� j; kð Þ ¼ P W� jð Þ ¼ k½ �.

By conditioning the probability P Wþ jþ 1ð Þ ¼ kþ 1½ � on the two
possible states at j (namely k or kþ 1), that is

P Wþ jþ 1ð Þ ¼ kþ 1½ � ¼ P Wþ jð Þ ¼ k½ �wþ jþ 1ð Þ
þ P Wþ jð Þ ¼ kþ 1½ � 1�wþ jþ 1ð Þð Þ; ðB1Þ

we obtain a recurrence relation for G�.

Gþ jþ 1; kþ 1ð Þ ¼ Gþ j; kð Þwþ jþ 1ð Þ þ 1�wþ jþ 1ð Þð ÞGþ j; kþ 1ð Þ;
G� jþ 1; kþ 1ð Þ ¼ G� j; kð Þw� jþ 1ð Þ þ 1�w� jþ 1ð Þð ÞG� j; kþ 1ð Þ;

ðB2Þ

We note that the Eqs. (B2) are almost identical, only differing in
the � subscripts, so any analysis of the equations can be under-
taken on a general case, and the results obtained will be applicable
in both the � cases, hence, below, we ignore the subscripts. Clearly
k P 0 and k 6 j; thus this system has to be solved subject to the
boundary conditions G� j;�1ð Þ ¼ 0 and G� j; jþ 1ð Þ ¼ 0, and the
‘initial’ condition G 0;0ð Þ ¼ 1; here we treat j as a time-variable,
with the region 0 < j < N being the range of interest.

In the case of large N, a continuum limit argument can be used
to determine the spread of the probability distributions G j; kð Þ, and
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show that this has the form of a Gaussian distribution. We define a
small parameter h � 1, by h ¼ 1=N, and a continuum limit of the
probability by

G j; kð Þ ¼ h ~G s; yð Þ; where s ¼ h j� 1
2

� �
; y ¼ h kþ 1

2

� �
; ðB3Þ

The scaling G ¼ h~G is introduced so that the conditionP
kG j; kð Þ ¼ 1 for all j is transformed into

R ~Gdy ¼ 1 for all s.
Following (B2), the governing equation for ~G s; yð Þ is

~G sþ 1
2
h; yþ 1

2
h

� �
¼ ~w sþ 1

2
h

� �
~G s� 1

2
h; y� 1

2
h

� �
þ 1� ~w sþ 1

2
h

� �� �
~G s� 1

2
h; yþ 1

2
h

� �
;

ðB4Þ

where ~w sð Þ ¼ w jþ 1
2


 �
. Shifts of j;n in the definition of continuum

limit amount to a choice about which point to perform a Taylor ser-
ies expanion, and simplify later analysis. The continuum version of

the cumulative distribution is defined by fW yð Þ ¼ 1
NW jð Þ, so that

~W 0ð Þ ¼ 0 and ~W 1ð Þ ¼ w 0ð Þ. Since w jð Þ ¼ W jð Þ �W j� 1ð Þ we also
have ~w sð Þ ¼ ~W sð Þ � ~W s� hð Þ � h ~W0 sð Þ and ~W ¼ hW together with
~W0 sð Þ ¼ ~w sð Þ. Taking Taylor series of (B4) in G, up to and including

terms of O h2
� �

, we find the PDE

@eG
@s

þ ~w sð Þ @
eG

@y
þ 1
2
h 1� ~w sð Þð Þ @2eG

@y@s
¼ 0: ðB5Þ

We are interested in the solution on the domain 0 < s < 1 and

0 < y < s < 1 with eG s; 0ð Þ ¼ 0 ¼ eG s; sð Þ ¼ 0, and G 0; yð Þ ¼ d yð Þ
(this being the Dirac delta function).

The leading order terms of (B5) are ~Gs ¼ � ~w sð Þ~Gy, which gives

the leading order travelling wave solution ~G ¼ eG y� ~W sð Þ; s
� �

. At

any particular value of s, the mean of the distribution G is given
by W jð Þ ¼ N ~W yð Þ. We define a new variable z for this quantity,
and seek a solution of the form

~G s; yð Þ ¼ 1ffiffiffi
h

p �G s; zð Þ; z ¼ y� ~W sð Þffiffiffi
h

p : ðB6Þ

Again the scaling between ~G and �G ensures
R ~Gdy ¼ 1 is mapped

to
R
Ĝdz ¼ 1 for all s. Returning to the second-order expansions of

(B5), we obtain an equation of Fokker–Planck type
@bG
@s

¼ 1
2
~w sð Þ 1� ~w sð Þð Þ @

2bG
@z2

; ðB7Þ

which has the solution

Ĝ s; zð Þ ¼ e�z2=4s sð Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
ps sð Þ

p ; where
ds sð Þ
ds

¼ 1
2
~w sð Þ 1� ~w sð Þð Þ: ðB8Þ

Inverting the transformations using (B6) and (B3), we obtain

Gþ j; kð Þ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pNsþ jð Þ

p exp � k�Wþ jð Þð Þ2

4Nsþ jð Þ

 !
;

sþ jð Þ ¼ 1
2N

Xj

i¼1

wþ ið Þ 1�wþ ið Þ½ �: ðB9Þ

This shows how far from the expected value we would expect to
see stochastic fluctuations; similar formula hold for G�;G0, with
corresponding formulae for s�; s0 in terms of w� ið Þ;w0 ið Þ. Since
h� jð Þ ¼ W� jð Þ � jw 0ð Þ

� ¼ W� jð Þ � jN�=N, the variance of h� jð Þ will
be the same as the variance in W� jð Þ.

The null hypothesis corresponds to the assumption that the
gene has no effect on the phenotype, which is equivaelent to the
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case of random allocation discussed at the end of Section 4. Here

we assume that ~w ¼ w 0ð Þ, hence W jð Þ ¼ jw 0ð Þ
; s jð Þ ¼

w 0ð Þ 1�w 0ð Þ
 �
j=2N and so

Gþ j; kð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjw 0ð Þ

þ 1�w 0ð Þ
þ

� �r exp
� k� jw 0ð Þ

þ

� �2
2jw 0ð Þ

þ 1�w 0ð Þ
þ

� �
0B@

1CA: ðB10Þ

The maximal variance would occur at j ¼ N=2 since we require

G 0; kð Þ ¼ dk;0 and G N; kð Þ ¼ dk;Nq . The combination k� jw 0ð Þ corre-
sponds to our h variable.

Whilst this approach works well for the early stages in the list,
1 6 j 6 N=2, for later locations (as j– arrowN), the distibution
should reduce in variance, and converge to the single point
Gq N; kð Þ ¼ dk;Nq . This PDE approach is not able to describe this type
of behaviour. One could work back from this ‘initial’ condition and
aim to match the variances of the two continuum solutions: one
from s increasing from zero and the other with s decreasing from
1. The difference between (B10) and the distributions calculated in
Section 3 is accounted for by this effect.
Appendix C. Phenotypic-dependent distributions

In Section 2, we considered just the location of an individual in
an ordered list (1 6 j 6 N); in some contexts it may make more
sense to think of the distributions uq jð Þ;Wq jð Þ, and hq jð Þ-paths as
functions of phenotype value, X, (where X is, for example, height).
To model this alternative way of thinking, we define ~Wq Xð Þ by

~Wq Xð Þ ¼ number of individuals of
genetic state q with phenotype < X; ðC1Þ

~W 0ð Þ
q Xð Þ ¼ expected number of individuals of genetic state

qwith phenotype < X

the‘random0configuration; i:e: the averageð
over all possible arrangementsÞ: ðC2Þ

and generalise hq jð Þ to

~hq Xð Þ ¼ ~Wq Xð Þ � ~W 0ð Þ
q Xð Þ; q 2 þ1; 0;�1f g: ðC3Þ

In general, since the cumulative distribution of X; P Xð Þ, is

unknown, there is no simple expression for ~W 0ð Þ
q Xð Þ similar to

(2.7). We define p Xð Þ ¼ P0 Xð Þ as the probability density function
of phenotype.

To relate this phenotypic-dependent formulation with the orig-
inal (list-based), we write X jð Þ as the phenotype of individual j, and
make use of the relations

Wq jð Þ ¼ ~Wq X jð Þð Þ; W 0ð Þ
q jð Þ ¼ ~W 0ð Þ

q X jð Þð Þ; hq jð Þ ¼ ~hq X jð Þð Þ:
ðC4Þ

Similarly, the phenotype-dependent fields ~uq Xð Þ can be
obtained from ~uq X jð Þð Þ ¼ uq jð Þ; and this field can be related to
the local genotype probability density, ~wq Xð Þ using an extension
to the formula (4.8), namely

~uþ Xð Þ � ~u0 Xð Þ ¼ log ~wþ Xð Þ � log ~w0 Xð Þ � bþ þ b0;

~u� Xð Þ � ~u0 Xð Þ ¼ log ~w� Xð Þ � log ~w0 Xð Þ � bþ þ b0:
ðC5Þ

In general, the distributions of the phenotypes for the three
genotypes could be different, that is, we have distinct probability
density functions pþ Xð Þ; p0 Xð Þ; p� Xð Þ with corresponding cumula-
tive distributions Pþ Xð Þ; P0 Xð Þ; P� Xð Þ.

If we make the assumption that the three distributions are
almost equal, that is
16
Pq Xð Þ � P Xð Þ þ O hð Þ with h � 1; ðC6Þ

then we can construct the quantity ~wq Xð Þ akin to wq jð Þ (2.5). The
expected values of the order statistics X jð Þ are given by
E P X jð Þð Þ½ � ¼ 2j� 1ð Þ=2N; taking the difference of this with respect
to j gives

E P X jð Þð Þ � P X j� 1ð Þð � � E P0 Xð Þ X jð Þ �X j� 1ð Þð Þ½ � ¼ p Xð ÞDX ¼ 1
N
;

�
ðC7Þ

where X 2 X j� 1ð Þ;X jð Þð Þ. Since the derivative of the cumulative
distribution function P Xð Þ is the density function p Xð Þ, and N � 1
we have

DX ¼ X jð Þ �X j� 1ð Þ � 1
Np Xð Þ : ðC8Þ

This describes the expected separation between individual’s
phenotypes in the sample C (2.2).

Combining (2.5), (C4), (C7) noting that, at leading order, the dis-
tribution of phenotype states is given by P Xð Þ, we obtain

wq jð Þ ¼ Wq jð Þ �Wq j� 1ð Þ ¼ ~Wq X jð Þð Þ � ~Wq X j� 1ð Þð Þ

� d ~Wq

dX
X jð Þ �X j� 1ð Þð Þ ¼ 1

Np Xð Þ
d ~Wq

dX
¼ DXð Þd

~Wq

dX
:

ðC9Þ

In the case of the expectation of the random configuration, this
calculation amounts to a consistency condition

w 0ð Þ
q ¼ W 0ð Þ

q jð Þ �W 0ð Þ
q j� 1ð Þ ¼ ~W 0ð Þ

q X jð Þð Þ � ~W 0ð Þ
q X j� 1ð Þð Þ

� d ~W 0ð Þ
q

dX
X jð Þ �X j� 1ð Þð Þ � Nq

Np Xð Þ
dP
dX

¼ Nq

N
:

ðC10Þ

Thus, it is natural to define

~wq Xð Þ ¼ d ~Wq

dX
DX ¼ d ~Wq

dX
1

Np Xð Þ ; ðC11Þ

so that we have ~wq ¼ w0
q in the random case. The interpretation of

the paths hþ; h�ð Þ and ~hþ; ~h�
� �

follow the development of a mathe-

matical model which relates phenotype to genotype via a ‘field’,
which is determined using the distributions Wq;wq; ~Wq; ~wq. Table 1.

References

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. Roy. Statist. Soc, Ser. B 57 (1), 289–
300.

Bonferroni, C.E., 1936. Teoria statistica delle classi e calcolo delle probabilita,
Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di
Firenze. .

Bray, S., Rauch, C., Wattis, J.A.D., 2022. in preparation. .
Busoms, S., Paajanen, P., Marburger, S., Bray, S., Huang, X.-Y., Poschenrieder, C., Yant,

L., Salt, D.E., 2018. Fluctuating selection on migrant adaptive sodium
transporter alleles in coastal Arabidpsis thaliana. Proc. Natl. Acad. Sci. 115,
E12443–E12452.

Fisher, R.A., 1918. The Correlation between relatives on the supposition of Medelian
inheritance. Trans. Roy. Soc. Ed. 52, 399–433.

Gibson, G., 2010. Hints of hidden heritability in GWAS. Nature Genetics 42, 558–
560.

Goldstein, H., 1980. Classical Mechanics. Addison-Wesley.
Kittel, C., 2018. Introduction to Solid State Physics. Wiley.
Krapivsky, P.L., Redner, S., Ben-Naim, E., 2010. A Kinetic view of Statistical Physics.

CUP, Cambridge.
Manolio, T.A., 2010. Genomewise Association Studies and Assessment of the Risk of

Disease. New England J. Med. 363, 166–177.
Moran, P.A.P., Smith, C.A.B., 1966. Commentary on RA Fisher’s paper on he

correlation between relatives on the supposition of Medelian inheritance.
CUP, London.

Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R..F, Clark, C.
W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain, M.A., eds. 2010. NIST Digital
Library of Mathematical Functions, CUP, (2010). http://dlmf.nist.gov/, (Eq.
5.11.1). .

http://refhub.elsevier.com/S0022-5193(22)00196-5/h0005
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0005
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0005
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0020
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0020
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0020
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0020
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0025
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0025
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0030
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0030
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0035
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0040
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0045
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0045
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0050
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0050
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0055
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0055
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0055


Jonathan A.D. Wattis, S.M. Bray, P. Kyratzi et al. Journal of Theoretical Biology 548 (2022) 111198
Ozaki, K., Ohnishi, Y., Iida, A., Sekine, A., Yamada, R., Tsunoda, T., Sato, H., Sato, H.,
Hori, M., Nakamura, Y., Tanaka, T., 2002. Functional SNPs in the lymphotoxin-a
gene that are associated with susceptibility to myocardial infarction. Nature
Genetics 32, 650–654.

Pearson, T.A., 2008. How to Interpret a Genome-wide Association Study. J. Am. Med.
Assoc. 299, 1335–1344.
17
Rauch, C., Blott, S., Kyratzi, P., Bray, S., Wattis, J.A.D. 2022. GIFT: a new method for
the genetic analysis of small gene effects for phenotype values measured with
high precision and small population size. in preparation. .

CE Shannon, A Mathematical Theory of Communication, Bell System Technical
Journal, 27, 379–423, & 623–656, (July, & October, 1948). .

http://refhub.elsevier.com/S0022-5193(22)00196-5/h0065
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0065
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0065
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0065
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0070
http://refhub.elsevier.com/S0022-5193(22)00196-5/h0070

	Analysis of phenotype-genotype associations using genomic informational field theory (GIFT)
	1 Introduction
	2 Statistical algorithm
	2.1 Experimental setup & observable data
	2.2 Comparison of actual configuration with random allocation

	3 Statistical Significance of [$] \theta [$]‐paths
	3.1 Two-state significance calculation
	3.2 Three-state significance calculation
	3.3 Summary

	4 Mathematical model
	5 The inverse problem
	5.1 Gaussian (Normal) distributions
	5.2 More general Gaussian distribution
	5.3 Gamma distribution
	5.4 Form of [$] \theta [$]‐path
	5.5 Effect of different standard deviations
	5.6 Summary

	6 The forward problem
	6.1 Weak-field analysis

	7 Numerical results
	7.1 Illustration using synthetic data
	7.2 Analysis of data from arabidopsis

	8 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Calculation of the Variational Derivative
	Appendix B Master equation approach
	Appendix C Phenotypic-dependent distributions
	References


