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a b s t r a c t 

Delayed reward discounting (DRD) is a form of decision-making reflecting valuation of smaller immediate rewards 

versus larger delayed rewards, and high DRD has been linked to several health behaviors, including substance 

use disorders, attention-deficit/hyperactivity disorder, and obesity. Elucidating the underlying neuroanatomical 

factors may offer important insights into the etiology of these conditions. We used structural MRI scans of 1038 

Human Connectome Project participants (M age = 28.86, 54.7% female) to explore two novel measures of neu- 

roanatomy related to DRD: 1) sulcal morphology (SM; depth and width) and 2) fractal dimensionality (FD), or 

cortical morphometric complexity, of parcellated cortical and subcortical regions. To ascertain unique contribu- 

tions to DRD preferences, indicators that displayed significant partial correlations with DRD after family-wise 

error correction were entered into iterative mixed-effect models guided by the association magnitude. When 

considering only SM indicators, the depth of the right inferior and width of the left central sulci were uniquely 

associated with DRD preferences. When considering only FD indicators, the FD of the left middle temporal gyrus, 

right lateral orbitofrontal cortex, and left lateral occipital and entorhinal cortices uniquely contributed DRD. 

When considering SM and FD indicators simultaneously, the right inferior frontal sulcus depth and left central 

sulcus width; and the FD of the left middle temporal gyrus, lateral occipital cortex and entorhinal cortex were 

uniquely associated with DRD. These results implicate SM and FD as features of the brain that underlie variation 

in the DRD decision-making phenotype and as promising candidates for understanding DRD as a biobehavioral 

disease process. 
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. Introduction 

An individual’s propensity to value smaller more immediate re-

ards over larger delayed rewards is referred to as delayed reward dis-

ounting (DRD). While all individuals devalue future rewards to a cer-

ain extent, heightened levels of DRD are of interest to various health

ehaviors, including psychoactive substance use ( MacKillop et al.,

011 ; Amlung et al., 2017 ), pathological gambling ( Dixon et al., 2003 ;

acKillop et al., 2014 ), obesity ( Amlung et al., 2016 ), attention-deficit/

yperactivity disorder ( Rosch and Mostofsky, 2015 ; Wilson et al., 2011 ;

.N. Jackson and MacKillop, 2016 ), bipolar disorder ( Uro š evi ć et al.,

016 ), and schizophrenia ( Horan et al., 2017 ). Moreover, given its im-

lication underlying these disorders, DRD has been proposed to be a

rans-disease mechanism ( Bickel et al., 2012 ). Consequently, elucidat-
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ng the neuroanatomical foundations of elevated DRD may contribute

o understanding risk for numerous health behaviors and guide brain-

ased treatment strategies (e.g., neuromodulation; Manuel et al., 2019 ;

ho et al., 2015 ). 

A relatively small number of studies have examined the underly-

ng structural substrates of DRD, primarily focusing on differences in

ray matter volume (GMV), cortical thickness (CT), and surface area.

ore specifically, research in healthy participants has revealed signif-

cant associations between elevated discounting of rewards and reduc-

ions in cortical structure indicators, including decreased GMV of the

nferolateral prefrontal cortex (PFC), decreased GMV, CT and cortical

urface area of the dorsolateral PFC ( Bjork et al., 2009 ; Drobetz et al.,

014 ) and decreased GMV of the orbitofrontal cortex (OFC; Li et al.,

019 ). Regarding subcortical structures, volume reductions of the bilat-

ral ventral putamen and prefrontal subgyral area and increased volume
ay 2022 
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f the parahippocampus have also been reported in relation to height-

ned DRD ( Cho et al., 2013 ; Yu, 2012 ). Studies have also linked elevated

RD to greater indicators of cortical structure. Opposing the findings of

i et al. (2019) , Cho et al. (2013) found that increased GMV and CT of

he orbitofrontal gyrus was related to increased discounting of delayed

ewards. Increased GMV in relation to elevated DRD in the bilateral an-

erior cingulate cortex (ACC; Li et al., 2019 ), medial frontal gyri, left

iddle cingulate ( Cho et al., 2013 ), left middle frontal gyri, and the

ight frontal pole (FP; Wang et al., 2016 ) have also been reported. Apart

rom GMV, increased CT of the left lateral FP and increased cortical sur-

ace area of the left FP and OFC, and mid ACC have also been linked to

levated DRD ( Drobetz et al., 2014 ). These contrasting reports of cor-

ical alterations related to increased DRD may reflect differential local-

zed patterns of cortical structure underlying aberrant DRD; however,

ue to predominantly small sample sizes, discrepant sample ages (e.g.,

dolescents, seniors), varying scanner resolution (i.e., 1.5 Tesla or 3.0

esla) and DRD task format, and consideration of only specific regions

f interest (ROIs) rather than the whole brain, the comparability and

xternal validity of these structural findings may be limited. To address

imitations in structural DRD research, Owens et al. (2017) completed a

tudy systematically examining the neuroanatomical correlates of DRD

sing GMV of parcellated cortical and segmented subcortical regions of

he brain in a large sample ( n = 1038) from the Human Connectome

roject (HCP). Results of the study indicated that lower total cortical

MV of the bilateral middle temporal gyrus (MTG) and entorhinal cor-

ex (EC) were unique and significant predictors of DRD, accounting for

.7% of the variance. Subcortical regions did not display any significant

elations with DRD . 

To delineate the neuroanatomical substrates of DRD, there may be

tility in comparing findings from structural MRI to those from func-

ional MRI and non-invasive brain stimulation (e.g., repetitive transcra-

ial stimulation [rTMS]). However, research has indicated that alter-

tions in functional activity do not necessarily correspond to structural

ifferences ( Owens et al., 2018 ). More prosaically, just because an area

isplays aberrant activity or connectivity during a DRD task, it may

ot display any difference in structure (e.g., volume, thickness, FD).

esearch using functional imaging techniques have identified several

egions of interest (ROIs) to DRD decision-making, including regions of

he frontal pole (i.e., ventromedial PFC and lateral frontopolar cortex;

ang et al., 2016 ), other regions of the PFC (ie., left dorsolateral PFC

nd medial PFC; Kable and Glimcher, 2007 ; Cho et al., 2015 ), middle

emporal and frontal gyri ( MacKillop et al., 2012 ), and the insular and

nterior cingulate cortices ( MacKillop et al., 2012 ; Yang et al., 2022 .

owever, while various theories exist, research is not unanimous on the

oles of these ROIs ( McClure et al., 2004 ; Kable and Glimcher, 2007) .

he importance of the FP to DRD decision-making has been substanti-

ted by Wang et al. (2016) who used resting-state functional connec-

ivity (rsFC) to demonstrate that increased discounting of delayed re-

ards was associated with lowered connectivity between the FP and the

entromedial PFC. Multiple task-based functional MRI studies have also

upported roles of the ventral striatum, ventromedial PFC, and PCC in in-

ernal calculations of the subjective value of delayed rewards ( Kable and

limcher, 2007 ; Peters and Buchel, 2009 ; Chib et al., 2009 ). While the

entral striatum, ventromedial PFC, and PCC are believed to establish

ubjective value based on more emotional factors, the left dorsolateral

FC appears to integrate more “rational ” cognitively relevant informa-

ion to decision-making ( McClure et al., 2004 ). This is believed to oc-

ur through a modulatory role on subjective value perceptions estab-

ished in the ventromedial PFC, as demonstrated by Hare and colleagues

2014) who found that the dorsolateral PFC is most active when partic-

pants select larger delayed rewards. Further, Hare et al. (2014) found

hat connectivity between the dorsolateral and ventromedial PFC was in-

reased during DRD decisions, especially those where delayed rewards

ere selected. The importance of regions within the PFC has also been

upported by rTMS studies which have found that modulating medial

FC excitability using high-frequency rTMS reduced discounting of fu-
2 
ure rewards compared to rTMS on a control site ( Cho et al., 2015 )

nd that disruption of the left lateral PFC using low-frequency rTMS in-

reased preferences for immediate rewards (Figner et al., 2010) . Sulcal

orphology (SM) and fractal dimensionality (FD) are two novel mea-

ures of brain morphometry that have the potential to aid in the eluci-

ation of the neuroanatomical underpinnings of DRD. The first, sulcal

orphology, assesses the morphology of the cortex by estimating the

idth and depth of several major sulci of the brain. Traditionally, corti-

al morphology has been assessed using measurements of GMV, cortical

hickness, surface area, or gyrification ( Madan, 2019 ). Enlargement of

ortical sulci has been established as a natural representation of age-

elated atrophy ( Drayer, 1988 ), however, research has demonstrated

hat the degree of atrophy varies greatly between individuals and re-

ions of the brain ( Coffey, 1992 ). The utility of SM as a diagnostic crite-

ion for Alzheimer’s disease (AD) has also recently been demonstrated

n a study by Bertoux et al. (2019) , wherein they found that sulcal width

as a better predictor of AD than sulcal cortical thickness, regional corti-

al volume, cortical thickness, and hippocampal volume. Similar results

ave also been found in other studies investigating the same relationship

 Hamelin et al., 2015 ). Furthermore, as SM analysis is not dependent on

ray and white matter contrast, it is a more resilient measure to study

athological processes in which the contrasts weaken ( Bertoux, 2019 ). 

Fractal dimensionality, originally conceived as fractional dimension-

lity, is a measure of the geometric complexity of irregular natural struc-

ures (e.g., coastlines, clouds, snowflakes) that cannot be assessed in

tandard parameters like the solid figures of conventional or Euclidian

eometry (e.g., circles). While the original mathematical theories were

argely developed in the late 19th and early 20th centuries, the term

D was not popularized until 1975 when by Benoît Mandelbrot coined

he term based on the Latin word fractus meaning “fragmented ” or “bro-

en ” ( Mandelbrot, 1985 ). Etymologically, Mandelbrot also related the

erm to the word fraction, meaning between integers, as the fractal set

f an irregular structure lies between Euclid shapes ( Mandelbrot, 1985 ).

D has since been applied to complex biological components of the hu-

an body, including liver histopathological structures, microvascula-

ure of histological specimens, and various aspects of the brain such as

he cerebral cortex ( Grizzi et al., 2001 ; Reishofer et al., 2018 ). Pertain-

ng to the brain, alterations in FD have been linked to several conditions,

ncluding significant reductions in the cortical FD of mild Alzheimer’s

 King et al., 2010 ) and acute anorexia nervosa patients ( Collantoni et al.,

020 ), and decreased white matter FD in multiple sclerosis patients

 Esteban et al., 2009 ). FD has not yet been investigated in relation

o DRD; however, as it has been shown to be more sensitive to age-

elated cortical and subcortical alterations than CT or gyrification index

 Madan and Kensinger, 2016 ), FD may offer insights on structural sub-

trates of DRD beyond traditional measures. 

Given the small literature on the neuroanatomical underpinnings of

RD, the associated limitations (e.g., small sample sizes, subgroup focus,

nd low resolution), and the promise of these novel cortical measure-

ents, the current study seeks to investigate SM and FD in relation to

RD. Specifically, the current study aims to extend the previous HCP

ndings by Owens et al. (2017) by examining: 1) the width and depth

f eight major sulci of the brain and 2) parcellated cortical and seg-

ented subcortical complexity as measured by FD using the Desikan

tlas for neuroanatomical localization. Based on previous literature on

he neural correlates of DRD, we expected to find that alterations in

M and FD in sulcal regions and cortical parcels within the PFC and

rontal pole (in particular the dorsolateral, inferolateral, and ventro-

edial PFC ( Bjork et al., 2009 ; Wang et al., 2016 ; Hare et al., 2014 ;

oechlin, 2011) , the OFC ( Drobetz et al., 2014 ), and the PCC (Kable and

limcher, 2007 ; Peters and Buchel, 2009 ; Chib et al., 2009 ) would be

ssociated with DRD decision-making. Further, we postulated reduced

D in the bilateral entorhinal cortex and middle temporal gyri as low-

red GMV of these parcels was shown to be significantly associated with

RD by Owen and colleagues (2017) in the same dataset. Finally, given

esearch has shown SM to be a better Alzheimer’s predictor than CT
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Fig. 1. Pearson correlation matrix represented as a heatmap for sulcal morphology regions. Sulcal Depth (Median = .194, IQR = .098); Sulcal Width (Median = .117, 

IQR = .077); Combined Sulcal Width and Depth (Median = .117, IQR = .088). 
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nd volume ( Bertoux et al., 2019 ) and that FD is more sensitive to age-

elated changes than volume ( Madan, 2021 ), we postulated that SM and

D measures would account for more variance than using GMV alone. 

. Results 

.1. Sulcal morphology 

The zero-order correlation matrix displaying all SM regions ex-

ressed as a heatmap is shown in Fig. 1 . Correlations ranged from 0.13

etween the widths of the left and right middle occipital and lunate and

ccipito-temporal sulci to 0.61 between the depths of the left and right

arginal part of the cingulate sulcus, indicating that only 1.7–37.2% of

ariance was shared across homologous sulci. Given this finding, sulcal

easures were examined separately by hemisphere. 

When considering significant associations between SM and DRD,

uantified using a mean area under the curve (mAUC) discounting mea-

ure, reduced sulcal width and depth were consistently associated with

ncreased mAUC, or less steep DRD. Of the 16 sulcal depth measure-

ents examined, greater depths of 7 sulci were significantly associated

ith greater mAUC. These included the depths of the left marginal part

f the cingulate, right post-central, left inferior frontal, right central, left

uperior frontal, left central, and right inferior frontal sulci, in ascending

rder of correlation magnitude. Of the 16 sulcal width measurements,
3 
reater widths of 4 sulci displayed significant positive associations with

AUC: the right superior frontal, right central, and left central sulci, in

scending order of correlation magnitude. The depth of the right infe-

ior frontal sulcus and the width of the left central sulcus maintained

 significant association with mAUC after family-wise error (FWE) cor-

ection (see Supplemental Table 1). 

Of the two SM measures that survived FWE correction, the depth

f the right inferior frontal sulcus displayed the lowest FWE-corrected

 -value and was added to the linear mixed-effects model first. The re-

aining significant SM measure, the width of the left central sulcus, was

hen added to the model to see if it offered unique significant variance.

oth displayed significant unique effects on DRD, resulting in a final lin-

ar mixed-effects model including the right inferior frontal sulcal depth

nd left central sulcal width (see Fig. 2 ). Income was the only covariate

hat exhibited a significant effect in the model, with lower income being

ssociated with decreased mAUC, or increased DRD. The final model is

resented in Table 1 and accounted for 4.7% and 30.8% of marginal and

onditional variability in mAUC, respectively. 

.2. fractal dimensionality 

The zero-order correlation matrix for FD of cortical parcels expressed

s a heatmap are displayed in Fig. 3 . Correlations between the FD of cor-

ical parcels in the right and left hemispheres ranged from .29 in cau-
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Fig. 2. Sulcal morphology regions that exhib- 

ited unique significant effects on area under the 

curve delay discounting measure. Blue = Left 

Central Sulcus Width, Red = Right Inferior 

Frontal Sulcus Depth. 

Table 1 

Final linear mixed-effects model including sulcal width and depth as predictors of an area under the curve discounting 

measure. 

F B SE t P Δ Marginal R 2 / Combined Marginal R 2 

Covariate Model .025/.047 

Sex 0.670 − 0.015 0.019 − 0.819 .413 –

Age 0.327 − 0.001 0.002 − 0.572 .567 –

Income 8.602 0.010 0.003 2.933 .003 –

Dizygotic Twin Status 0.029 0.003 0.020 0.170 .865 –

Monozygotic Twin Status 0.004 0.001 0.017 0.062 .951 –

Total Intracranial Volume 1.169 0.011 0.010 1.081 .280 –

Morphometry Indicators .022/.047 

R Inferior Frontal Sulcal Depth 14.127 0.015 0.004 3.759 1.8E-4 .014 

L Central Sulcal Width 7.108 0.041 0.015 2.666 .008 .008 

Note. R = Right. L = Left. SE = Standard Error. Only regions with significant p -values after family-wise error correction 

are included (p FWE < 0.05) Delay discounting was assessed using mean area under the curve for $200 and $40,000 tasks. 

Smaller area under the curve is indicative of higher delayed reward discounting. 
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al anterior cingulate cortex to .79 in the insula; indicating that 8.4% –

2.4% of variance was shared across homologous cortical regions. Given

his finding, cortical FD measures were examined separately by hemi-

phere. Of the 62 cortical FD measures included in the study, FD of 10

arcels were significantly associated with mAUC after FWE correction.

egions in which cortical FD was significantly correlated with mAUC

ollowing FDR correction are listed in order of magnitude in Supple-

entary Table 2. In all cases, higher cortical FD was associated with

igher mAUC, or less steep DRD. As Owens et al. (2017) did not find

ignificant associations between subcortical GMV and to reduce type I

rror rate, the FD of subcortical structures were tested as bilaterally com-

ined measures. No significant associations were observed. Correlations

etween the FD of subcortical measures are available in Supplementary

igure 1. 

The results of the final mixed-effects model exploring parcellated

ortical FD with mAUC as the dependant variable are visible in Table 2 .

he final model indicated that the FD of four parcellated cortical re-

ions exhibited unique significant contributions to mAUC: the left mid-

le temporal gyrus, right lateral OFC, left lateral occipital cortex, and

eft entorhinal cortex (See Fig. 4 for a visual representation). Among

he covariates in the model, only sex and income exhibited significant

ffects, with female sex and lower income being associated with greater

RD. The final model accounted for 7.2% and 29.6% of marginal and

onditional variability in mAUC, respectively. 

.3. Integrated analysis 

Supplementary Table 3 displays SM and FD measures that displayed

ignificant partial correlations with mAUC after FWE correction, ranked

n order correlation magnitude. Taken together, there were 2 SM and

0 FD regions with significant FWE-corrected associations with mAUC.

n all cases, greater FD or sulcal width and depth was associated with

reater mAUC, or less steep DRD. The final linear mixed-effects model

s visible in Table 4 . Of the 12 regions included in the integrated iter-
4 
tive analysis, 5 measures produced significant independent effects on

AUC: FD of the left middle temporal gyrus and left lateral occipital and

ntorhinal cortices; depth of the right inferior frontal sulcus; and width

f the left central sulcus. The final model accounted for 8.2% and 32.9%

f marginal and conditional variability in mAUC, respectively. Among

he covariates in the model, sex and income exhibited significant effects,

ith female sex and lower income being associated with greater DRD. 

Table 3 

When including GMV regions which were found to be significant pre-

ictors of mAUC by Owens et al. (2017) , correlations surviving FWE cor-

ection are visible in Supplemental Table 4. In all cases, higher FD, larger

ulcal width, and greater GMV were associated with higher mAUC, or

ess steep DRD. The final linear mixed-effects model is displayed in

able 4 . Of the 15 FWE-corrected indicators included in the iterative

inear mixed-effects model analysis, 4 displayed unique contributions to

AUC: FD of the left middle temporal gyrus, GMV of the left entorhinal

ortex, FD of the left lateral occipital cortex, and the depth of the right

nferior frontal sulcus. The final model accounted for 7.7% and 32.9%

f marginal and conditional variability in mAUC, respectively. Among

he covariates in the model, income exhibited significant effects, with

ower income being associated with greater DRD. 

. Discussion 

The current study sought to elucidate the neuroanatomical underpin-

ings of DRD by examining two novel measures: SM and FD. Analysis

f SM revealed that of the 16 sulcal width and 16 sulcal depth measure-

ents, 2 were significantly associated with DRD after FWE correction,

nd 2both predicted unique variance in DRD preferences: 1) the depth

f the right inferior frontal sulcus, and 2) the width of the left cen-

ral sulcus. In both cases, decreased depth and width were associated

ith increased discounting of future rewards. The finding of increased

epth of the right inferior frontal sulcus supports our initial hypothe-

is that SM alterations associated with elevated DRD would be present
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Fig. 3. Pearson correlation matrix represented as a heatmap for parcellated cortical fractal dimensionality (Median = .311, IQR = .140). 
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ithin the PFC, whereas the central sulcus finding does not. This hy-

othesis was based on previous structural findings that found reduced

easures of cortical structure including (e.g., GMV, CT, and cortical

urface area) within the dorsolateral PFC, inferolateral PFC, and OFC in

elation to increased discounting of delayed rewards ( Bjork et al., 2009 ;

robetz et al., 2014 ; Li et al., 2019 ). 

The depth of the right inferior frontal sulcus, which lies between

he inferior and middle frontal gyri in the lateral PFC ( Guenther et al.,

015 ), was negatively correlated with DRD and predicted the high-

st amount of unique variance in DRD behavior. The relevance of this

nding is supported by previous research implicating the right inferior

rontal gyrus as a key cortical region for inhibitory control (Aron et al.,

014 ; Cai et al., 2017) . This finding relates to DRD as research sug-

ests that cognitive control is necessary to select delayed over imme-

iate rewards ( McClure et al., 2004 ) . This finding also adds to a bulk

f literature demonstrating the importance of regions in the lateral PFC

o DRD behavior ( Drobetz et al., 2014 ; Wang et al., 2016 ; Hare et al.,

014) . As a whole, the inferior frontal sulcus also appears to have a

ey functional role in working memory ( Demanet et al., 2016 ); a brain

ystem used to store and manipulate temporary information that is piv-

tal for effective learning and reasoning ( Baddeley, 1992 ). More specif-

cally, the inferior frontal sulcus is believed to play a role in procedural

M, a subtype of WM used for applying instructions ( Demanet et al.,

016 ). The link between DRD and WM has been substantiated in the

iterature and appears to be due to the need for executive WM to ef-
5 
ectively consider two choices, their associated costs and benefits, and

n individual’s own short-term and long-term goals ( Bickel et al., 2011 ;

inn et al., 2015 ). Taken together, it is conceivable that altered SM of

he inferior frontal sulcus may be related to DRD through deficits in

eward benefit formulations and retrieving those formulations during

ecision making ( Bickel et al., 2007 ). The width of the left central sul-

us, which divides the primary motor and somatosensory areas ( Li et al.,

015 ), predicted the second-highest amount of unique variance in DRD

mong sulcal measures, with reduced width being associated with in-

reased devaluation of future rewards. This finding was not expected,

owever, may be of interest as research has demonstrated a link be-

ween central sulcal morphology and ADHD ( Li et al., 2015 ). Specifi-

ally, Li et al. (2015) found that central sulcus depth was significantly

arger in children with ADHD compared to controls, while other mea-

ures, such as average span and surface area, were not. The authors

ttributed these structural changes in the motor cortex to ADHD symp-

omology ( Li et al., 2015 ). Given that ADHD is associated with elevated

RD ( Jackson and MacKillop, 2016 ), this finding warrants further ex-

loration. 

These results demonstrate regional heterogeneity in SM in relation

o DRD preferences. While SM in the context of DRD preferences has not

een previously explored, the central and inferior frontal ( Madan, 2019 ;

in et al., 2018 ) sulci appear to be particularly sensitive to age-related at-

ophy. However, while age-related atrophy is generally associated with

ore wide and shallow sulci, higher DRD in the current study was asso-
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Table 2 

Final hierarchical regression model including fractal dimensionality of cortical parcels as predictors of an area 

under the curve discounting measure. 

F B SE t p Δ Marginal R 2 / Combined Marginal R 2 

Covariate Model .025/.072 

Sex 2.782 − 0.031 0.019 − 1.708 .096 –

Age 0.243 0.001 0.002 0.632 .622 –

Income 9.818 0.011 0.003 3.095 .002 –

Dizygotic Twin Status 0.004 0.001 0.020 0.083 .952 –

Monozygotic Twin Status 0.221 − 0.008 0.017 − 0.434 .638 –

Total Intracranial Volume 0.475 − 0.007 0.011 − 0.689 .491 –

Morphometry Indicators .047/.072 

L Middle Temporal Gyrus FD 8.497 1.045 0.359 2.915 .004 .022 

R Lateral OFC FD 4.205 0.903 0.440 2.051 .041 .011 

L Lateral Occipital Cortex FD 6.939 0.945 0.359 2.634 .009 .008 

L Entorhinal Cortex FD 7.092 0.494 0.185 2.663 .008 .006 

Note. FD = Fractal Dimensionality. L = Left. R = Right. OFC = Orbitofrontal Cortex. SE = Standard Error. Only 

regions with significant p -values after family-wise error correction are included (p FWE < 0.05). Delay discounting 

was assessed using mean area under the curve for $200 and $40,000 tasks. Smaller area under the curve is indicative 

of higher delayed reward discounting. 

Fig. 4. Cortical fractal dimensionality parcels 

that exhibited unique significant effects on 

delay reward discounting area under the 

curve. Blue = Left Middle Temporal FD, 

Yellow = Right Lateral Orbitofrontal FD, 

Red = Left Lateral Occipital FD, Green = Left 

Entorhinal Cortex. 

Table 3 

Final hierarchical regression model with fractal dimensionality of parcellated cortical regions and sulcal morphology 

as predictors of an area under the curve discounting measure. 

F B SE t p Δ Marginal R 2 / Combined Marginal R 2 

Covariate Model .023/.082 

Sex 2.968 − 0.032 0.019 − 1.723 .085 –

Age 0.011 0.000 0.002 0.107 .915 –

Income 8.968 0.010 0.003 2.995 .003 –

Dizygotic Twin Status 0.109 0.007 0.020 0.331 .741 –

Monozygotic Twin Status 0.002 0.001 0.016 0.044 .965 –

Total Intracranial Volume 0.909 − 0.010 0.011 − 0.953 .340 –

Morphometry Indicators .059/.082 

L Middle Temporal Gyrus FD 8.987 1.060 0.354 2.998 .003 .022 

L Lateral Occipital Cortex FD 8.399 1.030 0.355 2.898 .004 .012 

R Inferior Frontal Sulcus Depth 6.984 0.011 0.004 2.643 .008 .010 

L Entorhinal Cortex FD 5.858 0.448 0.185 2.420 .016 .008 

L Central Sulcus Width 6.995 0.040 0.015 2.645 .008 .007 

Note. R = Right. L = Left. OFC = Orbitofrontal Cortex. SE = Standard Error. Only regions with significant p -values after 

family-wise error correction are included (p FWE < 0.05) Delay discounting was assessed using mean area under the 

curve for $200 and $40,000 tasks. Smaller area under the curve is indicative of higher delayed reward discounting. 

6 
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Table 4 

Final hierarchical regression model including sulcal morphology, fractal dimensionality, and gray matter volume of 

cortical parcels as predictors of an area under the curve discounting measure. 

F B SE t p Δ Marginal R 2 / Combined Marginal R 2 

Covariate Model .023/.077 

Sex 2.194 − 0.027 0.019 − 1.481 .139 –

Age 0.009 2.0E-4 0.002 0.096 .924 –

Income 9.603 0.010 0.003 3.099 .002 –

Dizygotic Twin Status 0.206 0.009 0.020 0.454 .650 –

Monozygotic Twin Status 0.001 − 0.001 0.016 − 0.035 .972 –

Total Intracranial Volume 0.777 − 0.009 0.011 − 0.882 .378 –

Morphometry Indicators .054/.077 

L Middle Temporal Gyrus FD 8.829 1.054 0.355 2.971 .003 .022 

L Entorhinal GMV 8.689 6.5E-5 2.2E-5 2.948 .003 .014 

L Lateral Occipital FD 7.117 0.011 0.004 2.668 .008 .009 

R Inferior Frontal Sulcus Depth 8.829 1.054 0.355 2.971 .003 .009 

Note. N = 973. FD = Fractal Dimensionality. L = Left. R = Right. GMV = Gray Matter Volume. Only regions with 

significant p -values after FWE correction are included ( p FWE < 0.05). Delay discounting was assessed using mean area 

under the curve for $200 and $40,000 tasks. Smaller area under the curve is indicative of higher delayed reward 

discounting. 
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s  
iated with less wide and more shallow sulci. These patterns may differ

s participants included in the current study were young, healthy indi-

iduals, unlikely to exhibit age-related atrophy. Furthermore, the inclu-

ion of age as a covariate of analysis should have also circumvented any

ge-related effects. Rather, these variations in SM may be due to genetic

r environmental factors impacting neurodevelopment. Indeed, accord-

ng to the tension-based theory of cortical folding, alterations in mor-

hogenesis of the sulci during development are due to differing mechan-

cal tension along axons within the subcortical white matter ( Van Es-

en, 1997 ; Davatzikos et al., 2002 ). Further, in certain conditions such

s Down’s Syndrome, reduced average and regional sulcal depth have

een observed in living fetuses, highlighting that sulcal alterations may

ccur during fetal development and their utility as neurocognition mark-

rs ( Yun et al., 2021 ). While the effects of SM on cognition have not been

xplicitly studied to our knowledge, changes likely reflect reduced size

r density of cells, which correlate to cognitive changes in certain con-

itions, such as multiple sclerosis ( Liu et al, 2014 ). Interestingly, sulcal

idening has been previously linked to lowered cognitive performance

 Liu et al., 2011 ), however, in the current study, sulcal widening was

ssociated with lower delay discounting. This conflicts with abundant

esearch linking lowered delay discounting to increased cognitive abil-

ty ( Shamosh and Gray, 2008 ). More research is warranted to delineate

hese relationships and to consider whether these links between alter-

tions in SM and DRD preferences may represent biobehavioral vari-

tions that precede comorbid neurological and psychiatric conditions

e.g., ADHD, bipolar disorder, substance use disorder). 

Analysis of FD revealed that of the 62 cortical parcels included, 15

ere significantly associated with DRD after FWE correction, and 4 cor-

ical predicted unique significant variance in DRD: 1) the left middle

emporal gyrus, 2) the right lateral OFC, 3) left lateral occipital cortex,

nd 4) left entorhinal cortex. In all regions, lowered FD, or lowered com-

lexity, was associated with heightened devaluation of future rewards.

f these findings, reduced FD of the left middle temporal gyrus, right lat-

ral OFC, and left entorhinal cortex corresponded with our hypotheses.

ontrary to our hypotheses, FD of the PCC did not any display unique

ignificant contributions to DRD behavior. 

FD of the left middle temporal gyrus accounted for the highest

mount of unique variance in DRD. This finding was hypothesized given

hat Owens et al. (2017) found that GMV of the bilateral middle tem-

oral gyri was negatively correlated with DRD and had unique signif-

cant effects on DRD preferences in the same dataset. This finding is

urther supported by MacKillop et al. (2012) , who found associations

etween activity in the middle temporal gyrus and intertemporal choice

ecision-making in a preliminary functional MRI study including adult

mokers. While DRD-specific literature regarding the middle temporal
7 
yrus is limited, it is an established node within the default mode net-

ork wherein activity increases during goal-directed tasks involving

elf-generated thought, such as episodic information retrieval and fu-

ure planning ( Andrews-Hanna et al., 2014 ). Lowered FD in this region

ay relate to lower neuron density and less activation of this region

uring tasks; however, given structural findings do not always relate to

unctional findings, more research is required to discern what the ef-

ects of lowered FD, or complexity, of this region may beget. The asso-

iation between FD of the entorhinal cortex also coincides with those of

wen’s et al. (2017) , wherein they found reduced GMV of the bilateral

ntorhinal cortex had unique significant contributions to DRD behavior.

his finding is also supported Lempert et al. (2020) who found that de-

reased cortical thickness of the entorhinal cortex was associated with

igher DRD in healthy aging adults and adults with mild cognitive de-

line. Further, Lempert et al. (2020) found that this effect was partially

ediated by episodic memory and that rates of perception-based de-

ails in autobiographical memories were correlated with entorhinal CT.

aken together, these findings suggest the importance of the entorhinal

ortex in vividly recalling past experiences to create representations of

uture scenarios; a process required to make rational DRD decisions. 

The FD of the cortical parcel that predicted the second highest

mount of unique variation in DRD preferences was the right lateral

FC. This finding was in line with our hypotheses, which were based

n the role of the OFC in DRD decision-making in previous research.

he link between the GMV of the right OFC and DRD has been previ-

usly demonstrated by Mohammadi et al. (2016) , wherein they found

hat GMV of the right OFC was significantly associated with DRD rates

ithin small samples of healthy controls and pathological gamblers. This

nding was also observed by Owen’s et al., (2017) who revealed that

he GMV of the right and left lateral OFC was significantly associated

ith DRD preferences; however, unlike the current study, the OFC did

ot provide significant variance beyond the bilateral middle temporal

yrus and entorhinal cortex. This incongruity may be attributable to

D being a more sensitive measure of neuroanatomical variation than

MV, as was seen with cortical thickness and gyrification ( Madan and

ensinger, 2016 ). Functionally, as the right OFC cortex plays a role in

alue-based decision making ( Wallis, 2007 ), the observed FD deficits

n this parcel may be associated with problematic valuation leading to

eightened DRD. The final cortical parcel wherein FD predicted DRD be-

avior was the lateral occipital cortex. This finding is unexpected given

t has not been seen in previous structural DRD literature and as the

rimary function of the lateral occipital cortex is believed to be object

ecognition ( Grill-Spector et al., 2001 ). Of note, Hare et al. (2014) did

nd significant activation of the occipital cortex during delayed reward

election after whole-brain correction. Further research controlling for



C. McIntyre-Wood, C. Madan, M. Owens et al. NeuroImage 257 (2022) 119309 

v  

i

 

o  

r  

(  

E  

t  

m  

a  

t  

t  

b  

r  

a  

i  

b  

b  

w  

c  

s  

p  

l  

e  

i  

W  

o  

m  

p  

s

 

s  

m  

t  

v  

m  

b  

e  

b  

t  

e  

d  

i  

h  

i  

i  

F  

(  

u  

m  

t  

S  

i  

fi  

a  

p  

C  

w  

d  

w  

u

 

t  

e  

o  

e  

s  

I  

t  

e  

c  

A  

l  

a  

F  

T  

t  

s  

s  

s  

a  

h  

l  

a  

p

 

r  

s  

t  

(  

a  

r  

a  

s  

t  

s  

a  

i  

r  

t  

i  

m  

d  

b

4

4

 

u  

o  

y  

w  

u  

g  

d  

n  

o  

l  

c  

p  

c  

c  

t  

c

 

t  

t  

t  

2  

s  
isual stimuli is required to discern whether the lateral occipital cortex

s truly related to DRD behavior. 

Whether FD differences in these regions are due to local atrophy

r developmental alterations is unclear within the scope of the cur-

ent study. While alterations in FD are often attributed to atrophy

 Collantoni et al., 2020 ; Madan and Kensinger, 2016 ; King et al., 2010 ),

steban et al. (2009) found that reductions in whole-brain FD in mul-

iple sclerosis patients were not correlated with GM atrophy. Further-

ore, research has demonstrated that surface-based morphometry, such

s cortical FD, generally develop until early childhood, at which point

he morphology becomes more stable ( Armstrong et al., 1995 ). Under

his logic, local FD alterations may occur during development and may

e antecedents to steep DRD and comorbid psychopathologies. Further

esearch is required to improve understanding the origins of cortical FD

lterations and how they relate to DRD. While research involving FD

s still limited, literature has shown a significant positive relationship

etween FD across the right hemisphere and IQ . Given the relationship

etween DRD and IQ ( Bailey et al., 2020 ), it may be valuable to explore

hether IQ may modulate the relationship between FD and DRD. When

onsidering the location of cortical parcels that demonstrated unique

ignificant contributions to DRD preferences, parcels spanned the tem-

oral lobe (i.e., left middle temporal gyrus and left entorhinal), frontal

obe (i.e., right lateral orbitofrontal), and occipital lobe (i.e., left lat-

ral occipital). Contrastingly, findings in the literature predominantly

mplicate cortical alterations within the frontal lobe ( Cho et al., 2015 ;

ang et al., 2016 ; Bjork et al., 2009 ; Drobetz et al., 2014) . The lack

f existing structural findings within the temporal and occipital lobes

ay be due to several of these studies limiting analysis to a priori ROIs,

ossessing minimal sample sizes, and utilizing incongruent DRD tasks,

canner resolution and sample ages. 

When considering SM and FD of cortical parcels simultaneously, re-

ults revealed that including both indicators in the model accounted for

ore unique variance in DRD preferences than SM or FD alone. Further,

he FD of the right lateral OFC FD no longer provided significant unique

ariance, indicating that SM and FD are capturing some degree of com-

on variance. When repeating the integrated analysis including the two

ilateral GMV regions that had significant unique effects on DRD prefer-

nces (i.e., bilateral MTG and entorhinal cortex) within the same sample

y Owens et al. (2017) , all significant regions remained the same except

he FD of the entorhinal cortex which was replaced by the GMV of the

ntorhinal cortex and removal of the left central sulcus width. In ad-

ition, rather than accounting for the least amount of unique variance

n the model, GMV of the entorhinal cortex accounted for the second-

ighest amount of unique variance in DRD preferences. These results

ndicate that, when assessing changes in entorhinal cortex morphology

n relation to DRD preferences, GMV may capture further variation than

D. Beyond variance explained by covariates in the model, Owens et al.,

 2017 ) found that using GMV of cortical parcels accounted for 4.2% of

nique variance in DRD preferences. When rerunning these through the

ixed-effect hierarchical regression model used in the current study,

his was reduced to 3.6%. In the current study, all models except for

M only exceeded this, with FD predicting 4.7%, SM and FD predict-

ng 5.9%, and SM, FD, and GMV predicting 5.4%. Taken together, these

ndings fulfill our third hypothesis and demonstrate the utility of FD

nd SM morphometry indicators to capture the complex patterns of mor-

hology that underlie DRD. When comparing FD and GMV and FD and

T of the same parcels, shared variance ranged from 24.3% to 85.7%

ith a median shared variance of 66.6% and 4.7% to 38.0% with a me-

ian shared variance of 16.3%, respectively. These results indicate that,

hile there is some degree or overlap, there is a substantial amount of

nique variance explained by this novel measure. 

Several considerations bear on the current results. First, given that

his was the first investigation of SM and FD in relation to DRD, it was

xploratory and tested a large the number of regions, increasing risk

f type I error. While, FDR correction and a large sample size were

mployed to mitigate these risks, future studies should utilize these re-
8 
ults to inform a priori regions, allowing a hypothesis-driven approach.

n addition, reward choices in the study were hypothetical, leading

o responses that may not accurately reflect real-life decisions. How-

ver, a number of studies have shown high correspondence between

hoices for hypothetical and actual DRD outcomes ( Madden et al., 2003 ;

mlung et al., 2012 ). Considering the sample, the current study also

acked racial diversity. Accordingly, future research would benefit from

 more diverse sample to improve the generalizability of the results.

inally, as the study was cross-sectional, causation cannot be inferred.

hus, for a better understanding of whether these neuroanatomical al-

erations precede the development of steepened DRD, further research

hould address this question longitudinally. Acknowledging these con-

iderations, the study also had numerous strengths including a very large

ample size, a relatively high-resolution DRD phenotype, and a system-

tic analytic strategy. In addition, as the sample was composed of young

ealthy individuals, the observed neuroanatomical alterations are not

ikely to due to disease-, substance-, or age-related atrophy, and thus

re more likely to reflect alterations derived during development that

recede the DRD behavioral phenotype. 

While advancements have been made in understanding the neu-

oanatomical variations that underlie DRD, inconsistent findings under-

core the need for large sample sizes to discover reproducible associa-

ions between brain structure and behavioral phenotypes such as DRD

 Marek et al., 2020 ). In a large ( n = 1038) sample of healthy, young

dults from the HCP dataset, results of the current study implicate local

eductions in cortical complexity and increased sulcal width and depth

cross the frontal, occipital, and temporal lobes as morphological sub-

trates of steepened DRD. Further, they affirm that SM and FD are able

o capture the complex cortical patterns that underlie DRD. In fact, re-

ults reveal FD to be a more sensitive measure of DRD-related cortical

lterations than GMV, a common structural indicator, in all nearly all

mplicated cortical parcels. As the first study to consider FD and SM in

elation to DRD, the current study lays groundwork for future research

o further elucidate the neuroanatomical underpinnings of DRD employ-

ng a hypothesis-driven approach. Together with the current results, this

ay offer the potential to enhance understanding of steepened DRD and

elineate its relationships with several neurological conditions, such as

ipolar disorder, substance use disorder, and schizophrenia. 

. Methods 

.1. Participants 

Participants were drawn from a community sample of 1206 individ-

als recruited through the Human Connectome Project (HCP), a large

pen access study that aimed to map the human connectome in healthy

oung adults. Eligible individuals were between the ages of 22 and 35

ith the goal of providing a sample that had passed major neuromat-

ration benchmarks but was prior to the onset of potential neurode-

eneration ( Van Essen et al., 2012 ). Exclusion criteria included genetic

isorders, significant head injuries, contraindications to MRI (e.g., preg-

ancy, unsafe metal devices or claustrophobia), and significant history

f psychiatric disorder, substance use, or neurological and cardiovascu-

ar disease. All participants provided informed consent and research was

ompleted in accordance with the Declaration of Helsinki. Detailed ex-

lanations regarding the inclusion and exclusion criteria and informed

onsent are available elsewhere ( Van Essen et al., 2013 ). Recruitment,

onsent, and sharing of data protocols were approved by the Washing-

on University Institutional Review Board. No further ethical review was

ompleted. 

Of the 1206 individuals in the original study, 1113 underwent struc-

ural MRI scans and were included in the present study. Of those, a fur-

her 75 participants were excluded: 8 due to missing DRD data, 65 due

o inconsistent DRD data (see quality control procedures below), and

 due to missing income values. As displayed in Table 5 , the full final

ample included 1038 individuals that were, on average, in their late
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Table 5 

Comparison of full sample participant characteristics and complete SM data. 

Demographic Characteristic M [SD] or% M [SD] or% 

Full Sample a Complete SM Data Only b 

Age 28.86 [3.69] 28.82 [3.70] 

Sex (% Female) 54.7 54.7 

Race (% Caucasian) 75 74.7 

Ethnicity (% Non-Hispanic) 90.4 89.7 

Median Income (USD) 50,000 − 74,999 50,000 − 74,999 

Years of Education 14.94 [1.80] 14.91 [1.81] 

Note. a n = 1038. b n = 973. SM = Sulcal Morphology. M = Mean. SD = Stan- 

dard Deviation. USD = U . S. Dollars. 
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wenties with a median household income of $50,000 to $74,999 USD

nd a modest overrepresentation of females (45.3% male). For analyses

nvolving SM, a further 65 individuals were excluded due to missing

t least one SM measure (e.g., left central sulcus width). This occurs if

he toolbox cannot reliably determine the width or depth of a specific

ulci ( Madan, 2019 ). A comparison of the full sample and complete SM

ample is available in Table 5 . 

.2. Delayed reward discounting 

Participants completed two DRD tasks to assess their affinity for

maller more proximal rewards over larger delayed rewards. Within

ach task, participants were asked to make a series of hypothetical

hoices between a varying immediate monetary reward and a fixed

elayed reward (either $200 or $40,000 maximum) available after 1

onth, 6 months, 1 year, 3 years, 5 years, and 10 years. The immediate

onetary reward that was offered to participants was based on a previ-

usly validated adaptive adjusting amount procedure (Estle et al., 2006 ;

reen et al., 2007) , wherein the value of the present reward is adjusted

ased on the participant’s previous response. For example, during the

rst trial, participants must choose between either $100 today or $200

n 1 month. If the participant selects the immediate reward, the subse-

uent immediate reward option will be reduced by half and they will be

ffered $50 today or $200 in 1 month. According to DRD theory, an in-

ividual’s subjective value of a reward decreases as the reward becomes

ore remote ( Mazur, 1987 ). Accordingly, by adjusting the magnitude of

he immediate reward, the monetary amount at which the value of the

resent reward equals the participant’s subjective value of the larger de-

ayed reward can be quantified and labelled as the point of indifference

POI). This procedure was repeated for both maximum delayed rewards

$200 and $40,000) at each delay length (1 month, 6 months, 1 year, 3

ears, 5 years, and 10 years), for a total of 12 combinations. 

To ensure adequate attention was given to DRD tasks, a quality

ontrol procedure was implemented in each following a previously es-

ablished technique ( Owens et al., 2017 ). Using the POIs for each de-

ay length on both the $200 and $40,000 DRD task, each participant

as assessed for response consistency. Across each task, if the POI re-

ained the same between delay lengths or increased in magnitude, it

as counted as an inconsistency. If, across the six POIs in each task,

he participant had more than three inconsistencies, they were removed

rom the study. For example, if a participant had a POI of $96.88 at the

-month delay for the $200 DRD task and had a POI of $103.13 at the

-month delay, that would be counted as one inconsistency. This follows

he principles of temporal discounting which ascertain that the subjec-

ive value of the reward decreases with increased delay ( Myerson et al.,

001 ; Green et al., 2007 ). The implementation of this quality control

easure resulted in the removal of 65 additional participants (5.8% of

he original sample). 

The POIs from the $200 and $40,000 DRD tasks were each concate-

ated into a single discounting variable referred to as an area under

he curve (AUC) discounting measure ( Myerson et al., 2001 ). A smaller

UC is representative of steeper discounting of delayed rewards. AUC
9 
alues for the $200 and $40,000 DRD tasks were normally distributed

nd were found to be moderately correlated ( r = .668, p = 2.4E-135); as

 result, a mean AUC (mAUC) value was calculated for each participant.

.3. Structural MRI acquisition 

.3.1. Scanning protocol 

Participants were scanned within a 2-day span between August 2012

nd October 2015 using a custom Siemens Skyra 3T scanner with a

2-channel head coil (Siemans AG. Erlanger, Germany) at Washing-

on University, St. Louis. Two 7-minute T1-weighted (T1w) and two

-minute T2-weighted (T2w) 0.7 mm isotropic structural scans were

btained per participant. The parameters for the T1 scans were field

f view (FOV) = 224 mm x 224 mm, matrix = 320, 256 sagittal

lices, repetition time (TR) = 2400 ms, echo time (TE) = 2.14 ms,

nversion time (TI) = 1000 ms, flip angle (FA) = 8°, and band-

idth (BW) = 210 Hz/pixel. The parameters for the T2 scans were

OV = 224 mm x 224 mm, matrix = 320, 256 sagittal slices,

R = 3200 ms, TE = 565 ms, TI = variable, and BW = 744 Hz/pixel.

f technical issues were encountered or if the quality of the scans was

eemed inadequate, the participants underwent an additional scanning

ession. The quality of structural scans was inspected and rated by an

xperience rater based on criteria including tissue contrast, presence

f motion artifacts, ringing, blurriness, and abnormal anatomy. To be

ncluded in the HCP data release, participants were required to have a

inimum of one T1w and one T2w scan that received a rating of “good ”

r higher within the same scan session. 

.3.2. Preprocessing 

HCP structural MRI preprocessing relevant to the current study can

e broken down into three pipelines: 1) PreFreeSurfer, 2) FreeSurfer,

nd 3) Local Gyrification Index. All steps were designed to account for

he high spatial and temporal resolution of images and to retain maxi-

um data by limiting processing. An in-depth explanation of each step is

escribed elsewhere ( Glasser et al., 2013 ). Briefly, the objectives of the

reFreeSurfer pipeline included creating an undistorted “native ” space

or within subject structural data. This included gradient distortion cor-

ection necessitated by the unique design of the HCP Skyra scanner,

lignment and averaging of T1w and T2w images if more than one

uality image (see Scanning Protocol) was obtained per participant, and

igid alignment of T1w and T2w images to the MNI space template (with

.7 mm resolution). Additionally, T1w and T2w images underwent field

ias correction and T1w images were registered to MNI space to allow

or comparisons across subjects and studies, particularly for subcortical

ata ( Glasser et al., 2013 ). Two output folders were produced; one with

ll images in native volume space and another with all images registered

o MNI space. 

The FreeSurfer step was the use of an adapted version of the

reeSurfer v5.3.0 main processing stream “recon-all ” which has been

idely used in MRI studies for the quantification of neuroanatom-

cal structures (Fischl, 2012 ; https://surfer.nmr.mgh.harvard.edu/

swiki/recon-all ). The undistorted, bias-corrected T1w image (i.e., na-

ive volume space) output from the PreFreeSurfer pipeline served as the

nput. As recon-all has been developed to run with 1 mm isotropic res-

lution scans, the 0.7 mm isotropic HCP scans were first downsampled

o 1 mm isotropic resolution with spline interpolation ( Glasser et al.,

013 ). The majority of the recon-all pipeline was then permitted to

un, including segmentation of neuroanatomical structures ( Fischl et al.,

002 ) and tessellation and removal of topological defects of the white

atter surface ( Dale et al., 1999 ). The recon-all pipeline was inter-

upted when the final white matter surfaces were generated and 1.0 mm

ownsampled scans were returned and readjusted in the 0.7 mm na-

ive volume space (see Glasser et al., 2013 for more details). Images

ere returned to 1.0 mm resolution and the final steps of the recon-all

ipeline were completed which included inflation of white matter sur-

aces ( Fischl et al., 1999a ), surface-based registration to the FreeSurfer

https://www.surfer.nmr.mgh.harvard.edu/fswiki/recon-all
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T  
verage template to increase the accuracy of alignment to major sulcal

nd gyral landmarks ( Fischl et al., 1999b ), and sulcal and gyral seg-

entation ( Destrieux et al., 2010 ). Recon-all was then halted and pial

urfaces were identified through an improved algorithm that utilised

oth the high-resolution T1w and T2w images. The recon-all pipeline

hen recommenced and the final steps, including cortical parcellation

nd volumetric and surface area quantification, were completed. 

To prepare MRI data for SM quantification, the pial output

rom the recon-all pipeline (h.pial) was processed through an

dditional script, Local Gyrification Index (Schaer et al., 2008 ;

ttps://surfer.nmr.mgh.harvard.edu/fswiki/LGI ). This processing

tream creates a smoothed outer surface that tightly wraps the pial

urface and uses it to create a ratio with each vertex of the pial surface

ithin three-dimensional (3D) regions of interest. The final output

les include “.pial-outer-smoothed ” which is used as an input for the

eneration of SM and FD measurements. 

.4. Sulcal morphology 

Sulcal morphology was employed as a measure to assess the width

nd depth of several sulci of the brain. Measurements were ob-

ained via the validated MATLAB toolbox calcSulc ( Madan, 2019 ),

hich bases calculations on the cortical reconstruction (?h.pial),

arcellation (h.aparc.a2009.annot), and sulcal map (?h.sulc) outputs

f the FreeSurfer recon-all pipeline along with the “?h.pial-outer-

moothed ” output from the local gyrification analysis ( Madan, 2019 ;

ttps://cmadan.github.io/calcSulc/ ). Cortical parcellation was based on

he Destrieux et al., atlas which is included within the standard recon-

ll pipeline (Destrieux et al., 2010). The toolbox produces estimates of

ilateral sulcal widths and depths in eight major sulci of the brain: 1)

ccipito-temporal, 2) middle occipital and lunate, 3) parieto-occipital,

) post-central, 5) marginal part of the cingulate, 6) central, 7) superior

rontal, and 8) inferior frontal (32 measurements total). The width mea-

urement is calculated by marking the vertices at the boundary between

he gyrus and the sulcus on both sides and then finding the shortest dis-

ance between each boundary vertex and a vertex on the opposite side.

he sulcal depth is similarly calculated by identifying vertices at the fun-

us of the sulcus and finding the shortest distance between each vertex

f the fundus and a vertex on the enclosing surface of the sulcus. The

easurement reliability of this toolbox has been validated using test-

etest data ( Madan, 2019 ) and intraclass correlation coefficients (ICC)

hich indicated excellent reliability for all sulcal depth (ICC = .848 -

979) and sulcal width (ICC = .757 - .864) measurements, except for

idths of the bilateral parieto-occipital, occipito-temporal, and middle

ccipital and lunate sulci which indicated good reliability (ICC = .605 -

692). 

.5. Fractal dimensionality 

FD was employed as a measure to assess the structural com-

lexity of parcellated cortical and segmented subcortical 3D struc-

ures of the brain. FD measurements were obtained via the vali-

ated MATLAB toolbox calcFD , which bases calculations on cortical

econstruction and parcellation outputs from the FreeSurfer recon-

ll pipeline, including “ribbon.mgz ” and “aparc.a2009s + aseg.mgz ”,

nd local gyrification index outputs ( Madan and Kensinger, 2016 ;

ttp://cmadan.github.io/calcFD/ ). To assess FD, a select neuroanatom-

cal structure on an MRI image is overlayed with a grid of boxes of a

articular size (e.g., 2 mm). The number of boxes that contain either

he border (i.e., surface-only) or filled space within (i.e., filled volume)

he structure of interest (e.g., hippocampus) are counted. The box size

an be then increased, either on a fixed grid (box-counting method)

r on a sliding grid scale (dilation method), and the boxes containing

he structure are counted again. Fractal dimensionality is then quan-

ified as the negative double logarithmically transformed change in

he number of cubes containing the structure over change in cube size
10 
 𝐹 𝐷 = − 

Δ𝑙𝑜𝑔2( 𝐶𝑜𝑢𝑛𝑡 ) 
Δ𝑙𝑜𝑔2( 𝑆𝑖𝑧𝑒 ) ) . Put another way, FD represents the steepness of the

radient by which increasing cube size reduces the number of cubes re-

uired to fully capture a structure. This measure captures complexity as

ore complex structures show greater reductions in the number of cubes

equired to capture them as cube size grows, owing to the larger number

f cubes needed at high resolutions to capture higher complexity. The

urrent study used the filled volume method with 1 mm, 2 mm, 4 mm,

 mm, and 16 mm cubes and the dilation algorithm. These options were

elected as filled volume has been shown to yield improved measure-

ent of age-related differences ( Esteban et al., 2009 ) and the dilation

lgorithm has been shown to yield superior measurements compared

o the box-counting method ( Madan and Kensinger, 2016 ; Madan and

ensinger, 2017) . FD was calculated for all cortical regions included in

he DKT atlas with the exception of the banks of the superior temporal

ulcus, the corpus callosum, and the frontal and temporal poles, result-

ng in 31 cortical regions per hemisphere. The FD of 7 subcortical struc-

ures was also assessed based on segmentation using the conventional

reeSurfer subcortical segmentation protocol ( Fischl et al., 2002 ). 

.6. Data analysis 

.6.1. Correlational analysis 

Before beginning the primary analysis, associations between bilat-

ral SM and FD measures were explored using zero-order correlations.

dditionally, partial correlations were used to determine the magnitude

f association between SM and FD regions and mAUC, including sex,

ge, income, intracranial volume, and monozygotic and dizygotic twin

tatus as covariates. Partial correlations were then FWE corrected using

 permutation analysis and were ranked based on corrected p -values

ithin three subgroups: 1) SM regions, 2) FD of cortical parcels, and 3)

M regions and FD of cortical parcels combined. Finally, to permit com-

arison with findings from a study that explored DRD and GMV of corti-

al parcels in the same dataset ( Owens et al., 2017 ), partial correlations

ere ran between GMV of parcels previously found to be significant

redictors of mAUC – the GMV of the bilateral entorhinal cortex and

TG. These partial correlations were then FWE corrected and ranked

longside SM and FD indicators in a fourth subgroup. 

.6.2. Permutation analysis 

In addition to partial correlation analyses, to account for the un-

sual variance structure of the HCP dataset (i.e., substantial inclusion

f siblings) and to correct for FWE, we used a permutation testing ap-

roach to evaluate the association between each brain metric and DRD.

ssociations were quantified by the Aspin-Welch v score, an alterna-

ive to a t-score that better accounts for heteroscedasticity. The same

ovariates as the partial correlation analyses were used in permutation

esting. This approach was implemented in the Python library Neuro-

ools ( https://github.com/sahahn/neurotools ), using an exchangeabil-

ty block approach analogous to that of PALM software ( Winkler et al.,

014 ; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM ). In this approach, a

ull distribution was created by conducting 10,000 permutations, in

hich DRD labels were shuffled and the association between each brain

etric and the shuffled DRD score was assessed. To maintain the vari-

nce structure of the original data, the label shuffling was performed

ccording to two constraints: 

1 Swaps were permitted to occur between entire families of the same

size. For example, for a family of size two, a valid swap would in-

volve switching their labels with both members of another family of

size two. On the other hand, all singletons were allowed to freely

swap with any other singleton. 

2 Swaps were permitted within family, that is, any two siblings could

freely exchange labels with each other. 

To correct for multiple comparisons, the maximum v -score among

ll brain metrics was identified from each of the 10,000 permutations.

hese were used to create a distribution of max v -scores under the

https://www.surfer.nmr.mgh.harvard.edu/fswiki/LGI
https://www.cmadan.github.io/calcSulc/
http://www.cmadan.github.io/calcFD/
https://www.github.com/sahahn/neurotools
https://www.fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM
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ull hypothesis (i.e., a distribution of the largest scores likely to occur

y chance in a given family of tests). After creating this null distribu-

ion, an Aspin-Welch v score was calculated for the actual association

f each brain metric and DRD, and the p -value of that score was de-

ermined using the null distribution. Thus, for each brain region, an

spin-Welch v score and family-wise error (FWE) corrected p -value were

enerated. 

.6.3. Linear mixed effects modeling 

SM and FD regions that were significantly correlated with mAUC

nd survived FWE correction were further analyzed to ascertain which

ad unique effects on mAUC. Given the HCP dataset is comprised of

iblings, linear mixed effect modeling was conducted to account for

ifferences which may be attributable to shared experience and genet-

cs as opposed to neuroanatomical differences. All models were com-

leted with family as a random intercept; mAUC as the dependant vari-

ble; sex, dizygotic twin status, and monozygotic twin status as fac-

ors; and income, age, and intracranial volume as scale variables. For

he first step, SM regions that were significantly correlated with mAUC

ere added to the model based on order of correlation magnitude with

AUC. If the region was a significant predictor of mAUC, it remained

n the subsequent model as a scale variable and the next highly cor-

elated region was added to the model. If the region was not a signif-

cant predictor, it was removed from the model and the next highly

orrelated region was added. This process was completed iteratively

or all SM regions until a final model was established. The same it-

rative modeling process was then completed for all FD regions, SM

nd FD regions combined, and SM, FD, and GMV regions combined.

ll correlational and mixed effect models were completed using SPSS

Version 26). 

To improve interpretability of results and to permit better compari-

on between models in the current study and in Owens et al. (2017) ,

oefficient of determination ( R 

2 ) values were generated for each fi-

al model. As R 

2 is not readily available in linear mixed-effects mod-

ls, all final mixed effect models were reproduced in R studio (ver-

ion 1.4.1103) and R 

2 values were calculated using the R package

2_nakagawa ( Nakagawa and Schielzeth, 2012 ). The output includes

alues for marginal and conditional R 

2 , wherein marginal R 

2 estimates

ariance of the fixed effects (i.e., covariates and morphological indica-

ors) as a proportion of all variance and conditional R 

2 includes vari-

nce explained by the random effects (i.e., family groupings) and fixed

ffects. 
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